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Abstract

The adoption of Plug-in Hybrid Electric Vehicles (PHEVs) is widely seen as an

interim solution for the decarbonisation of the transport sector. Within a PHEV,

determining the required energy storage capacity of the battery remains one of

the primary concerns for vehicle manufacturers and system integrators. This fact is

particularly pertinent since the battery constitutes the largest contributor to vehicle

mass. Furthermore, the financial cost associated with the procurement, design

and integration of battery systems is often cited as one of the main barriers to

vehicle commercialisation. The ability to integrate the optimization of the energy

management control system with the sizing of key PHEV powertrain components

presents a significant area of research. Further, recent studies suggest the use of

“intelligent transport” infrastructure to include a predictive element to the energy

management strategy to achieve reductions in emissions. The thesis addresses the

problem of determining the links between component-sizing, real-world usage and

energy management strategies for a PHEV. The objective is to develop an integrated

framework in which the advantages of predictive energy management can be realised

by component downsizing for a PHEV.

The study is spilt into three sections. The first part presents the framework by

which the predictive element can be included into the PHEV’s energy management

strategy. Second part describes the development of the PHEV component models

and the various energy management strategies which control the split in energy

used between the engine and the battery. In this section a new control strategy is

presented which integrates the predictive element proposed in the first part. Finally,

in the third section an optimisation framework is presented by which the size of the

components within the PHEV are reduced due to the lower energy demands of the

new proposed energy management strategy.

The first part of the study presents a framework by which the energy consumption

of a vehicle may be predicted over a route. The proposed energy prediction

framework employs a neural network and was used off-line for estimating the

real-world energy consumption of the vehicle so that it can be later integrated

within the vehicles energy management control system. Experimental results show

an accuracy within 20%–30% when comparing predicted and measured energy

consumptions for over 800 different real-world EV journeys.

The second part of the study is to develop a model with scalable PHEV

components for evaluation. The base data was obtained from a real-world electric

vehicle evaluation programme. A scalable engine was built using Willan’s line



method. A number of different “charge-blended” control strategies were developed

and evaluated based on an established instantaneous optimal control strategy.

Two benchmarks were used for analysing the performance of the controllers. The

global-optimal solution using dynamic programming was developed along with a

well-known rule-based thermostat control strategy. On comparing two weeks of

driving data from 40 different drivers, the new proposed control strategy was within

3% of the global optimal solution while the rule based controller was only within 12%.

The non-applicability of “charge-blended approaches” for benchmarking PHEVs

using legislative procedures were considered.

The final part of the thesis consists of an optimisation study in which the new

proposed “charge-blended” controller is used to facilitate the downsizing of the

electrical machine, the internal combustion engine and the high voltage battery. For

a target gCO2/km value and drive-cycle, results show that this approach can yield

significant downsizing opportunities, with cost reductions on the order of 2%–9%

being realisable.

The conclusion of the present work is that, by making use of real-world data

and a “charge-blended” controller it is possible to achieve significant downsizing

opportunities with no additional financial cost and “intelligent-transport”

infrastructure. This would aid in further decarbonisation of the transport sector

and make PHEVs more commercially viable.
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Chapter 1

Introduction

This thesis addresses the problem of determining the links between

component-sizing, real-world usage and energy management for a plug-in hybrid

electric vehicle (PHEV). The objective is to develop an integrated framework in

which the advantages of a predictive energy management strategy can be realised by

component downsizing for a PHEV. Further, recent legislation such as Regulation

101 in Europe which is used to benchmark the emissions of PHEVs are misleading

because PHEV performance depends on the usage profile and charging behaviour

in the real-world. Therefore, a secondary objective is to compare the performance

of these vehicles in the real-world against the legislative benchmark figures.

1.1 Background

Within the automotive sector one of the main drivers for technological development

and innovation is the need to reduce the vehicle’s fuel consumption and the emissions

of carbon dioxide (CO2) [10]. Legislative requirements are motivating manufacturers

and subsystem suppliers to develop new and innovative electric vehicles (EV)and

hybrid electric vehicle (HEV) concepts. In recent years, PHEVs have also attracted

considerable interest from both academia and industry [94].

In a conventional vehicle, the internal combustion engine (ICE) burns fuel

and converts chemical energy to mechanical energy. The wheels use this power

to overcome inertia, rolling resistance and aerodynamic drag to accelerate the

vehicle. The improvement of a vehicle’s fuel consumption and tank to wheel (TTW)

emissions can be achieved by improving the efficiency of the drive-train and using

alternate energy sources. Since EVs use electricity from the grid and produce zero

TTW emissions they are an appropriate solution to reduce CO2 emissions. However,

it has to be realised that the inclusion of a large battery pack to the powertrain

has a significant cost and weight implication [7]. Further, issues such as battery
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degradation and “range-anxiety”, have always deterred the adoption of EVs by

consumers [21].

In order to address the contradicting requirements between TTW CO2 reduction

and range / cost limitation of EVs, the PHEV was developed [4]. It is widely seen as

an interim solution for the decarbonization of the transport sector [6]. A PHEV is

comprised of a traditional EV with a small ICE which works as an on-board charger.

Augmenting the electrical components of the powertrain with a small ICE helps to

overcome the limited range of existing EVs [6]. This improvement in range can be

achieved without significant financial investment for new recharging infrastructure

or a step-change improvement in the energy density of the storage technology being

required [75].

The distance a PHEV can travel using only the battery is typically known as the

vehicle’s all electric range (AER). Generally AER values are represented in miles

and can typically range from 20-40 miles [53]. For journeys that are shorter than

the AER of the vehicle, the PHEV will have zero TTW CO2 emissions. However,

recognising that one of the primary drivers for the adoption of PHEVs is the ability

to use the vehicle for travelling extended distances, the design challenge is therefore

one of:

1. correctly sizing the powertrain components to balance the powertrain cost and

the reduction in TTW emissions for varied usage profiles and,

2. managing the energy flows between the ICE and the battery to maximise the

operating efficiency and the reduction of CO2 tail-pipe emissions.

The traditional method of sizing a battery for a PHEV or an EV is through a

combination of numerical modelling and physical testing of the target vehicle over

a subset of legislative drive-cycles. These include the Urban Dynamometer Driving

Schedule (UDDS) in North America and the JC08 Cycle in Japan. In Europe,

the homologation of EVs, HEVs and PHEVs are based on the requirements of

Regulation 101 [87] that specifies the use of the New European Drive-cycle (NEDC).

It is acknowledged that the NEDC is unrepresentative and fails to emulate realistic

driving conditions [2, 9]. As a result, a number of different research publications have

attempted to evaluate the performance of a vehicle through a better understanding

of how that vehicle is used in the real-world [9, 39, 64].

For distances longer than the AER, a new area of research has been suggested

in [39] where if a level of journey predictability can be used then the ICE can

be employed “optimally” throughout the journey. Similarly, [64] suggests that

by blending both energy sources smaller components can be utilised with almost

no change in PHEV performance and only a small increase in fuel consumption.
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Therefore, in summary, typically the performance of the PHEV is affected by three

key considerations :

1. The real-world usage profile of the PHEV.

2. The supervisory controller or energy management strategy of the PHEV

3. The component size selection of the PHEV.

In isolation all three areas of research strive for the development of the “optimal”

PHEV to reduce TTW emissions. However, as a holistic approach it becomes

apparent that there are many links between the three areas of research and an

understanding of all the three areas are needed to develop the “optimal” PHEV.

1.2 Motivation and Objectives

Although PHEVs show promise with the reduction of TTW emissions, it is unlikely

that there is a single solution of PHEV component sizes to address the different

usage scenarios. Indeed, the influence of the usage profile on component sizes

has been investigated in [39]. The idea was further extended in [64], where it has

been suggested that by using advanced control approaches the components can be

downsized. The paper compared the fuel consumption of two PHEVs where one

PHEV had a considerably smaller Electrical Machine (EM) and battery in terms of

power and energy ratings. However, since these studies used a global optimal control

trajectory, which demands a high computational load, the PHEV component sizes

were pre-selected for comparison and could not be selected within an optimisation

framework.

As an alternative to studying the complete design space of different component

sizes, a sizing methodology was developed by the Argonne National Laboratory

within a commercially available tool called Powertrain System Analysis Toolkit

(PSAT). This tool sized and compared a myriad of different components using a

rule based methodology and results are published in [46, 24]. However, due to

the computational load per model execution, the control strategy was limited to a

simple rule-based controller. The study was improved in [96], where an optimisation

technique was employed to determine the “optimal” PHEV for a given drive-cycle.

This research was also limited to a simple rule-based control strategy. A summary of

these limitations for component sizing has been listed in [6]. The author was critical

of the previous literature since these design exercises considered a single automotive

technology, a specific type of architecture and a simple control strategy to reduce

computational load [6]. Therefore, the first objective of this thesis is to develop
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an optimisation based framework by which the advantages of an advanced control

strategy can be compared to a simple rule-based strategy for different powertrain

designs. It is envisaged that the benefits of the control strategy would be realised

as a financial cost benefit by adopting smaller components.

Since PHEVs have been developed, several advanced control strategies have been

designed which are discussed further in Chapter 2. Among the various strategies,

an important consideration are control approaches that have a predictive element

in their design. Predicting the speed profile in advance has led to fuel consumption

benefits of around 10% [28] over a simulated real-world drive-cycle. However, on

reviewing existing literature, one of the main drawbacks of this approach is the

additional computational load encountered to implement such a control strategy

in real-time. It has been assumed that due to this consideration these strategies

have not been used in conjunction with component size optimisation. The second

objective of this thesis is therefore to design a predictive energy management

controller to maximise the benefits of a PHEV which can be used in real-time and

has a comparatively lower computational load.

Finally, in order to predict the speed or demand profile for a PHEV, a framework

has to be developed. However, these methods have been previously developed for

the creation of drive-cycles [2]. The objective is to extend this work so that a novel

framework can be developed by which the power demand of the PHEV or energy

consumption of an EV may be predicted over a route.

The author acknowledges that some of these areas of research have been

investigated before with varying levels of complexity. However, the understanding

of the interaction between these areas of research has not been fully undertaken.

Therefore in summary, the three key areas of research are listed by the Venn

diagram in Figure 1.1. The research objectives are:

• Development of a novel framework by which real-world data can be analysed

and the energy demand can be predicted for a PHEV.

• Secondly, to develop a prediction based control strategy and to compare the

performance of the PHEV in the real-world to legislative tests.

• Thirdly, to develop a sizing methodology and optimisation framework using

which the advantages of a prediction based control strategy can be extended

by the downsizing of components in the PHEV.

Novel methods were developed to address each of the individual areas of research.

These include a road-type prediction methodology, an energy management strategy

and a sizing framework for a PHEV. The methods are discussed in Chapters 4, 7 and
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9. A summary of the new methods and the achievements compared to benchmarks

are presented in the Conclusions in Chapter 10.

thesis

Real-world

usage

Supervisory

control

strategy

Component

sizing

PHEV

Figure 1.1: Area of research

1.3 Published Work

During this research several papers were published in journals and presented in

conferences, these have been listed in this section. Specifically, each journal paper

addresses a specific area of novelty.
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Conferences

[1] R. Shankar and J. Marco. Performance of an ev during real-world usage. In

Cenex Hybrid Electric Vehicles Conference 2011. Cenex, 18th – 19th May

2011

[2] R. Shankar, J. Marco, and F. Assadian. A methodology to determine

drivetrain efficiency based on external environment. In IEEE International

Electric Vehicle Conference (IEVC), pages 1 – 6. IEEE, 2012

[3] R. Shankar, J. Marco, and F. Assadian. Design of an optimized

charge-blended energy management strategy for a plugin hybrid vehicle.

In UKACC International Conference on Control, pages 619 – 624. IEEE,

2012

Journals

[4] R. Shankar, J. Marco, and F. Assadian. The novel application of

optimization and charge blended energy management control for component

downsizing within a plug-in hybrid electric vehicle. Energies, 5(12):4892 –

4923, 2012

[5] R. Shankar and J. Marco. A method for estimating the energy consumption

of electric vehicles and plug-in hybrid electric vehicles under real-world

driving conditions. IET Intelligent Transport Systems, 2013

1.4 Thesis Structure

This thesis comprises of ten chapters.

Chapter 2 discusses existing work on real-world usage data analysis, component

sizing of PHEVs and energy management strategies. Particular emphasis is paid to

literature which studies the links and implications of these three interrelated areas

of research.

The research undertaken is based on the data obtained from two field-trials

conducted by others. Chapter 3 evaluates the data available, the important features

of the trials and the limitations of the respective datasets. Chapter 3 also discusses

the the drive-cycles tradionally used during evaluation.

Chapter 4 describes the data-analysis phase of the research. A neural network

(NN) based framework has been developed to analyse the usage profile obtained

from the first field trial. The NN is used to predict the energy consumption of an

EV which was used in the trial introduced in Chapter 3.

Chapter 5 presents the EV model. The experimental data used for development

and verification of the EV model is from the field-trial.

Chapter 6 extends the model developed in Chapter 5 to a PHEV. Particular
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emphasis is given to the scaling parameters and methodology used for the

development of an ICE model.

Chapter 7 evaluates the various control strategies developed as part of the

research. It includes a global optimal solution using dynamic programming (DP).

An instantaneous optimal solution with predictive capabilities is presented based

on the NN developed in Chapter 4. Finally, to compare the various controllers a

rule-based controller is also developed.

Chapter 8 evaluates the performance of the PHEV over the current European

legislative procedure (Regulation 101). The legislative tests are compared to the

results obtained using real-world data from the second field trial described in

Chapter 3.

Chapter 9 involves the development of an optimisation framework by which

the various components are sized for different drive-cycles. The framework is

developed with the objective of component downsizing by the use of the novel energy

management strategy developed in Chapter 7.

Chapter 10 addresses the primary conclusion of the work and areas for further

research.
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Chapter 2

Literature Review

The objective of this chapter is to evaluate the pertinent research published relating

to the thesis objectives listed in Section 1.2. The chapter has been divided into four

parts:

1. The first section (Section 2.1) details the analysis of real-world data. The

data can be analysed at a macroscopic level in which entire trips over a large

time-period are analysed. Conversely, the second type of analysis is in a

microscopic level where the data is split into smaller sections and clustered

for analysis.

2. The second section (Section 2.2) considers the importance of different

operating modes of the PHEV. The choice of modes affects the energy

management strategy adopted.

3. The third section (Section 2.3) presents the energy management strategies

developed for the PHEV. Recent research highlights the advantages of

predictive energy management strategies.

4. The last section (Section 2.4) addresses the various powertrain component size

determination techniques.

2.1 Review of Real-World Vehicle Usage

The objective of this section is to derive a methodology through which data obtained

from the real-world operation of a vehicle can be analysed. Specifically, the objective

is to form a framework by which the power demand / energy consumption of

the vehicle across different driving environments can be predicted. The proposed

advantage of such an approach is discussed in detail in the control strategy review

Section 2.3.
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A majority of the literature publications obtain data from on-board vehicle

loggers for analysis. This data universally includes speed and depending on the

application several additional vehicle parameters such as fuel consumption and

battery energy. The analysis of this real-world data is typically undertaken for

three reasons.

• Researchers analyse real-world data to derive a representative drive-cycle that

captures the predominant characteristics of the data collected. For example,

in [2] 58 cars were monitored for 73000km. This data was then analysed for

development of the Assessment and Reliability of Transport Emission Models

and Inventory Systems drive-cycle (ARTEMIS).

• The second reason for analysing real-world data such as vehicle speed and

acceleration is often to estimate the emissions and fuel consumption in the

real-world and compare them to results obtained by performing legislative

tests. It has been argued in [23] that fuel consumption and emissions can vary

by as much as 20% from legislative tests due to varying operating parameters

in the real-world.

• The third avenue of research is relatively new and deals with analysing

real-world data directly to aid in the development of advanced powertrains

and/or their control strategies. For example, an initial study done in [48] shows

the establishment of a battery stress factor using the driving environment.

This can be useful in estimating the size of the battery needed for typical

journeys.

As stated at the beginning of the Chapter, the data is analysed in existing

literature at a macroscopic level where entire trips are analysed over several months

or a large user-base [9] or at a microscopic level where trips are deconstructed to

smaller portions known as microtrips [2].

2.1.1 Macroscopic Review of Trip Data

The macroscopic studies are undertaken to understand the consumer requirements

when adopting PHEVs. Some of the parameters which are typically recorded to

analyse consumer behaviour are charging duration, distance travelled between charge

events and energy consumption per unit distance. However, the first prototype

PHEV was built only in 1996 and mass-produced commercial PHEV such as the

Chevrolet Volt, Toyota Prius PHEV, Ford C-Max Energi, BYD F3DM and Fisker

Karma have become available only since 2010. Therefore, these consumer studies

make use of only a few vehicles and clearly defined market segments. Therefore, the
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results of the studies cannot be held as best representative for a typical driver. For

completeness, current demonstration vehicles from other manufactures include Ford

Escape Plug-in Hybrid, Volvo V70 Plug-in Hybrid, Suzuki Swift Plug-in, Audi A1

e-tron, Dodge Ram 1500 Plug-in Hybrid, and Volkswagen Golf Variant Twin Drive.

It has been assumed the data from these vehicles have been analysed in-house and

hence data is not available in the public domain.

However, there are several EV trials among which two are listed here. The next

two programmes presented are from a retro-fitted PHEV trial and a website report

of customers using PHEVs [45, 89].

The MINI E Consumer Study

There have been several EV user studies around the Mini-E programme [15, 86].

It is one of the largest studies to date. The programme consisted of two 6 month

periods where during each period 40 EVs were given to different households for

evaluation. The vehicle used was a Mini Cooper powered by a 150 kW EM and a

35 kWh battery pack. The expected range of the EV was 250 km over the NEDC.

An important finding is that 94% of the users drove less than 160 km per trip.

However, an interesting consideration is that these cars were used as second cars

and 14% of the trips could not be completed on average because of range or cargo

space limitations. It is argued that this issue has to be addressed due to the high

cost implications of purchasing a zero CO2 emission powertrain. In such a scenario

a PHEV with an optimised AER to address the majority of the trips would have

been better suited.

Cenex Smart ED Trial Programme

This study forms one of the source data for this research. The details of the study

are discussed further in Section 3.1. The objective of the study was to analyse the

driving patterns of EVs [9]. Among the trips 93% of them were started with over

50% battery SOC. This attributes to the fact that the majority of the users charged

the vehicle every day.

PHEV Demonstration and Consumer Education, Outreach, and Market

Research Program

This study involved the evaluation of retro-fitted hybrid vehicles to include a plug-in

capability [45]. A standard Toyota Prius with a 1.4 kWh battery was upgraded by

the company Hymotion to a 5kWh battery pack with a plug-in capability. The

vehicle had a 30 mile (48.2 km) theoretical EV range. The vehicles were given to
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67 different households which were using them as their second car for four to six

weeks each. An interesting outcome of the research is that the charging behaviour is

related to infrastructure issues rather than user behaviour. A subset of the results

due to their varied performance is shown in Figure 2.1. The area of the circles

represent the mileage covered during the trial programme for each household. The

x axis shows the percentage of miles driven in charge depletion (CD) mode. In this

mode the use of the battery is maximised. The y axis shows the corresponding fuel

consumption in miles per gallon (mpg). From the figure, although it is obvious that

the percentage of miles driven in CD mode improves the fuel consumption, there

does not seem to be a relationship between miles covered and fuel consumption.

This fact reiterates the point that in a PHEV the charging profiles and the AER

have a significant effect on fuel consumption compared to total distance covered.

Figure 2.1: Fuel economy recorded during a PHEV trial programme [45]

VoltStats.com

The website has reports from the live datalogs of the PHEV Chevrolet Volt sold in

the US [89]. The on-board logger gives trip-wide statistics which are then displayed

on the website. Trends can be determined such as electric range driven and the

average fuel economy achieved. Figure 2.2 shows the fuel consumption of the

Chevrolet Volt among 1400 drivers listed on the website to date. However, the

duration for which the vehicle has been driven is not known. Since it is an active

website with each new addition to the fleet of cars signed-on, the data changes. The

fuel consumption is a definite function of the amount of electric miles driven, as seen

by the green line which shows the percentage of miles driven electrically.

Although data and trends could be analysed at the trip level with large data-sets

they do not contain sufficient resolution to predict energy consumption for specific
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Figure 2.2: Fuel economy of Chevrolet Volt

scenarios based on road-type and traffic condition. Therefore, in the next stage of

the review of real-world usage, examples are shown as to how the data maybe split

into smaller sections for analysis.

2.1.2 Review of Microtrip Level Analysis

A microtrip can be considered as a split or portion of the main trip. The research

presented in [2, 82] splits trips based on vehicle rest periods. Each microtrip is the

amount of time spent between two rest periods. Each microtrip is then classified

into different groups based on road-types and traffic conditions. The identification

of these various road-types and traffic conditions is done by the adoption of these

typical processes :

• Euclidean distance based methods [82, 2]

• Neural Network based methods [23]

• Fuzzy Logic based methods [50]

Irrespective of the tool chosen to classify the data, the two key pre-processing

tasks are as follows :
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• Identification of the method of splitting the data into microtrips with sufficient

resolution for analysis [2].

• Identification of parameters within the microtrip such that sufficient variability

is shown for the accurate identification of the driving environment [23].

The classification of real-world data was started as early as 1978 by Kuhler

and Karstens when ten different driving pattern parameters were used: average

speed, average speed excluding stop, average acceleration, average deceleration,

mean length of a driving period, average number of acceleration-deceleration changes

within one driving period, proportion of standstill time, proportion of acceleration

time, proportion of deceleration time, and proportion of time at constant speed [44].

The study was undertaken to determine a realistic legislative cycle for the USA.

The number of parameters chosen for identifying the various driving

environments vary based on the fidelity needed. For example, in [23] during the

investigation of relationships between fuel consumption and driver behaviour, 62

different parameters were identified per microtrip for classification of the data into

12 groups of varying road-types and traffic congestion. As a contradiction; in [80]

only two parameters; average trip speed and average distance between stops were

used to cluster driving cycles into three categories : highway, suburban, and urban.

The work was extended in [50] to establish a battery “stress factor” based on the

predicted power and driving environment. Interestingly, in case of the work done

by [80] there is no verification procedure to check the validity of the identification

process. The objective was only to identify three dissimilar groups. However, in

contrast the work done by [23] had an objective to identify homogeneous groups

and they were verified by identifying the corresponding area on a map. Urban trips

were verified using geographical information system databases (GIS) on whether

they were located inside city limits.

It is noteworthy that there is a trade-off between computational load, number of

parameters chosen and accuracy of the classification process [90]. Indeed, for studies

where the objective is to have an on-line implementation of the system, the number

of parameters are reduced at the expense of accuracy. For example, the authors

in [36] develop a NN based framework to differentiate six representative driving

patterns (drive-cycles). Finally, based on the driving environment identified the

energy management strategy is tuned. Compared to [23] in [36], 62 parameters have

been reduced to 24 and 12 groups have reduced to 6 and the drive-cycles identified

were still consistent. The work was extended in [61] where a NN is used to match

the driving profile to pre-established USA driving cycles (Facility Specific cycles).

The NN makes use of 14 different parameters to recognise the cycles.
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Similar to [61], several papers have been published with varying numbers of

parameters. The selection largely depends on the training data available and the

amount of road-categories to be identified. In [61] a key point which is addressed is

the trade-off between prediction accuracy and determination of road-types for new

datasets. Several similar research papers have addressed this issue and are listed

here in Table 2.1 for completeness. 17 different parameters with a NN tuned fuzzy

logic method is used in [97]. However, the dataset consisted of microtrips from

only two local driving cycles (urban and highway) and accuracy of prediction is not

discussed. The authors of [12] make use of 3 different parameters to differentiate

the same level-of-service (LOS) cycles split into 6 subgroups using NN. Finally [51]

and [58] makes use of 2 and 1 parameters to analyse microtrips. A summary of

the different parameters was published in [90] and extended here in Table 2.1.

The parenthesis is given for papers where the authors had to include additional

parameters for improvements in accuracy.

Table 2.1: Classification considered for real-world data [90]

Parameter [36] [61] [97] [35] [12] [51] [58]

Average speed * * * *

Average running speed except stop * *

Stop time/total time * * (*)

Positive acceleration kinetic energy change per

unit mass per unitdistance

*

Average acceleration * * *

Average deceleration * * *

Average positive gradient *

Average negative gradient *

Positive gradient time/total time *

Negative gradient time/total time *

Number of stops per kilometer *

Average micro-trip time(from start to stop) *

Acceleration time/total time *

Deceleration time/total time *

Standard deviation of acceleration * * * (*)

Standard deviation of deceleration * *

Maximum speed * * * (*)

Standard deviation of speed * * (*)

Average gradient *

Maximum gradient *

Minimum gradient *
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Table 2.1: Classification considered for real-world data [90]

Parameter [36] [61] [97] [35] [12] [51] [58]

Standard deviation of gradient *

Standard deviation of positive gradient *

Standard deviation of negative gradient *

Trip distance *

Maximum acceleration * * *

Minimum deceleration * * *

% of time in certain speed intervals * *

% of time in certain acceleration intervals *

% of time in certain deceleration intervals * *

# of acceleration/deceleration shifts per 100m

where the difference of adjacent local max-speed

and min-speed was > 2 km/h

*

Maximum product of velocity and acceleration (*)

Minimum product of velocity and acceleration (*)

Average product of velocity and acceleration (*)

Standard deviation of product of velocity and

acceleration

(*)

Current velocity *

Driver power demand *

SOC *

Average positive power demand *

Average negative power demand (*)

Standard deviation of positive power demand *

After the identification of parameters, the data has to be processed and classified.

There are several methods available to classify microtrips into different road types.

Among the literature studied, the common method to classify data is by using a

NN [36, 61, 97, 35, 12]. This could be attributed to the fact that traditionally

NNs have been used for pattern recognition in several industries [61]. However, for

completeness other methods are discussed here and include a rule-based method,

Euclidean method and fuzzy logic.

The rule based method is the simplest method to identify the type of road. The

speed limits on the road can be used as limits on the average microtrip speed to

identify the road type [2]. However, the idea was abandoned by the author due to

poor accuracy among the test data recorded. The authors acknowledged realistically

a complex set of rules with a number of different parameters would have to be tuned
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to improve the accuracy of the approach. The authors then adopted a NN since it

was more suited for the application.

In the Euclidean method, microtrips with similar parameters are grouped under

each category [82, 52]. The chosen parameters typically include average vehicle speed

and acceleration [82, 83]. A complete list of the parameters which can be considered

is given in Table 2.1. This method is relatively quick to implement with any scientific

programming language such as Matlab’s Statistical Toolbox. The methodology and

implementation of this method is discussed further in Section 4.3.1.

In [50], the authors use fuzzy logic to classify microtrips into different road types

based on average vehicle speed, distance of microtrip and the vehicle’s acceleration.

It is argued that one of the biggest advantages of using fuzzy logic for pattern

recognition is its qualitative approach rather than defined datasets. One of the

drawbacks of this method is that the author must visually inspect the data to modify

the fuzzy logic rule base to achieve the three distinct groups that are homogeneous.

The accuracy of this method for tuning was not verified by the author [50].

2.2 Different Operating Modes of PHEV

PHEVs are classified as HEVs with a battery pack that can be charged from the

electric grid. Therefore, the vehicle has the capability of running as an EV while it

has sufficient state of charge (SOC). Typically, based on the AER of the vehicle the

PHEV is denoted as PHEVx where x is the AER of the vehicle [88]. For example, a

PHEV10 has the ability to drive a predefined drive-cycle using only electric energy

for 10 miles (16 km).

The objective of a PHEV is to offset the use of the ICE by using stored energy

from the electric grid. By using these two sources of energy appropriately the PHEV

can be driven with lower TTW emissions than a comparable HEV [6]. The control

algorithm which arbitrates the use of these two energy sources is commonly known as

the energy management strategy. The strategies which are often employed in PHEVs

are discussed in Section 2.3. The different modes in which the energy management

system can operate generally includes :

Electric Vehicle Mode (EV) Charge Depleting Mode (CD)

In this mode the vehicle is driven predominantly as an EV. The ICE is used only

when the battery is not able to provide enough power. This mode is of particular

importance since this mode corresponds with the published AER value. In existing

literature EV mode and CD mode are differentiated depending on the operation of

the ICE. In a pure EV the use of ICE is completley prohibited [59].
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Charge Blending Mode (CB)

In this mode the battery SOC is controlled so as to decrease during vehicle operation.

In this mode the engine may be on or off, but most of the tractive energy is provided

by the battery. The CB mode is different from the CD mode because the rate of

decrease of battery SOC is lesser in CB mode.

Charge Sustaining Mode (CS)

This operating mode is used when the SOC of the battery is depleted. The SOC

is often controlled within a narrow operating band. This mode is similar to the

operation of a HEV because, the level of battery SOC does not decrease with time

[40]. The net source of energy is from the ICE.

Figure 2.3 shows the various modes of operations. Simple rule based strategies

may operate in EV mode until the battery energy is depleted. After the depletion

of the battery the vehicle transitions to the CS mode of operation.

Figure 2.3: PHEV different operating modes

As far as legislation and manufacturing are concerned the two key variables which

are used to compare the performance of PHEVs are fuel consumption which directly

correspond to TTW emission figures and the AER of the vehicle. As an incentive

in the UK, a £5000 subsidiary is being offered by the Department for Transport,

for PHEVs with an AER of 10 miles and CO2 emissions less than 75gCO2km
−1

between charges [55]. Similar to the UK in the USA, federal income tax credit is

available up to $7500 for vehicles with battery packs larger than 4kWh.

Surprisingly, there is no penalty for the consumption of electric grid power in

the UK [87]. For full well-to-wheel (WTW) CO2 emission studies, varied results

are reported depending on the efficiency of the electric grid and the grid-mix. The

grid-mix is the split of CO2 emitted by the various power sources powering the

generation network. It has been envisaged that in the future by adopting “cleaner”
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power sources such as wind energy and tidal energy the percentage of CO2 emitted

by the grid would gradually reduce making the WTW emissions lower.

For the purpose of this research TTW CO2 emission is given prime importance

since it is being actively reduced using incentives. However, for the sake of

completeness, comparisons are made among the various PHEVs using the grid mix

figures of the UK published by DEFRA [20]. The DEFRA report states that per

kWh of electric energy usage 594gCO2 are emitted by various UK power sources.

2.3 Review of Energy Management Control

Strategies

One of the aims of this research is to realise an energy management strategy which

can be deployed on a PHEV. It is one of the main functions which has to be developed

for the PHEV, since it arbitrates the amount of power provided from the ICE or

the battery. The aim of this section is to determine the most appropriate energy

management strategy for development, which will then be later extended and used

for component sizing of the PHEV powertrain.

The classification of the different energy management controllers is shown in

Figure 2.4. At the first level, the controllers are classified as rule-based and

optimisation based [93]. Rule based controllers are deterministic and they include

methods such as thermostat type control strategy, power-follower and fuzzy logic.

They typically require a considerable amount of off-line tuning before deployment

[43]. These controllers are used for real-time applications for their ease of deployment

and within component sizing optimisation frameworks for their speed [95]. The two

sub-categories discussed within rule-based controllers are deterministic and fuzzy

logic.

Optimisation based controllers include global optimisation methods and

instantaneous optimal methods. Global optimal solutions analytically obtain the

best possible control solution [39]. However, since the method iteratively determines

the solution, the driving-cycle needs to be known apriori. Since the trips are known

before hand the strategies can also be classified as acausal methods.

The instantaneous optimal methods include the equivalent consumption

minimisation strategy (ECMS). It involves the optimisation of the drive-train at

each time instant. They are referred to as causal systems since they minimise a

cost function based on the real-time feedback of past information. The complete

classification is shown in Figure 2.4.
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PHEV Control Strategy

Rule Based

Deterministic Fuzzy

Optimisation Based

Acausal / Global Causal / Real time

Figure 2.4: PHEV control strategy classification

2.3.1 Rule-Based Control Strategies

Typically the main objectives of rule based control strategies is to operate the

PHEV at the ICE’s highest efficiency point. Rule-based control strategies can be a

combination of EV, CD, CB and CS modes of operation. The common rule based

methods include deterministic and fuzzy logic based methods.

Deterministic rule based controllers

Rule based controllers are commonly described with state diagrams and flow charts.

They are usually tuned or calibrated for specific driving schedules. The most basic

form of the rule-based controller is a switching on-off control [22]. These controllers

were first proposed for HEVs and then extended for PHEVs [22]. During a trip a

PHEV starts with a full SOC. At the beginning of the trip the battery is used until

the SOC reaches a lower threshold. When the SOC reaches the lower threshold the

engine is switched on and operated at its maximum efficiency point. Further, the

engine is turned off when the SOC reaches an upper threshold point.

The switching on-off controller has been extended as the power follower strategy

(PF). This controller was implemented on HEVs, including production cars such

as the first generation Toyota Prius [8]. The power follower strategy consists of

the switching on-off controller and an additional set of rules. These rules include

conditions such as when the vehicle is to operate only using electric energy when

travelling below a certain speed (EV mode). A similar strategy is implemented

for a PHEV in [91]. The PF strategy was extended in [53], in this case the base

vehicle chosen is under-powered and rules were added to turn the engine on when

the battery power was exceeded.

The PF strategy has been made available in commercial software such as
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ADVISOR and PSAT which are used to model hybrid drive-trains. Therefore, they

are adapted and used for benchmarking purposes such as in [26] where, the controller

is compared to a DP based CB approach. The other purpose of these controllers

is that because of their simple construction and fast execution time, they are used

often within component sizing research [71].

The power follower while being a practical and successful solution, does not focus

on optimisation of the complete drive-train for a PHEV, however it does provide a

useful benchmark for comparison with more advanced control techniques.

Fuzzy rule based controllers

Fuzzy logic defines a subset of deterministic rule-based controllers with a higher

level of abstraction. Due to this level of abstraction they are intuitive and easier

to define and tune compared to rule-based strategies [43]. An example of this

controller implementation is presented in [43] where, the controller improves the

fuel consumption over the PF strategy for a parallel HEV. However, it was observed

that the controller had to be tuned depending on the drive-cycle to give a fuel

consumption improvement [48]. Therefore, the controller would not achieve its

optimal performance in the real-world.

To overcome this drawback, research has been reported in [48], in which the

fuzzy logic controller is able to discern the roadway type, driving style and other

parameters such as traffic congestion. Based on this data the fuzzy logic controller is

able to change the rule base online with the current vehicle operation. The research

has been published in a two-part paper series [48] and [49] where the design of the

fuzzy logic controller has been published in [48].

A fuzzy logic controller is developed for a PHEV in [98]. It varies the amount

of engine assist based on driver commands and SOC. The authors address a specific

application, which is a city bus route, they state that tuning the controller for the

specific drive-cycle is appropriate. The functioning of the controller is similar to a

power follower strategy and the authors acknowledge tuning for a specific drive-cycle

is essential to improve the performance of the controller. The controller is able to

shift between CD and CS modes of operation depending on the SOC of the battery.

2.3.2 Optimisation Based Control Strategies

Optimisation based control strategies are designed to improve the performance of the

drive-train as a whole. They are usually based on the minimisation of a cost function.

Typically, these cost functions aim to reduce fuel consumption, CO2, emissions [39]

and improve drivability [62]. As shown in Figure 2.4, optimisation based control

strategies can be split as global and real-time based optimisation approaches [77].
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In general, the energy management problem for a HEV can be expressed as the

minimisation of the performance index J as follows :

J(SOC(t0), PICE, SOC(tf )) = φ(SOC(t0), SOC(tf ) +

∫ tf

t0

L(SOC(t), PICE, t)

(2.1)

where

t is time

t0 is time at start of drive-cycle

tf is time at end of drive-cycle

PICE is control action, in this case amount of power from ICE

L(·) is the instantaneous cost function

φ(·) is terminal cost

SOC is considered as the only state in the system and it has been assumed all

other dynamics are faster and does not affect the energy management problem.

The instantaneous cost function L(·) is typically the mass flow rate of fuel, and

sometimes other considerations are included such as other pollutants, battery life

degradation etc. Using a powertrain model, which typically contains a quasi-static

engine model, the mass flow rate of fuel is related to the control action PICE(t), the

driver’s power demand Pdmd(t), the amount of power drawn from the battery Pbatt(t)

and the vehicle speed v(t). For a majority of the problems the vehicle speed and the

Pdmd are considered as external measured inputs and are a fixed vector of time for a

specific drivecycle. Finally, φ is the terminal cost at the end of the drive-cycle and

is typically included to maintain the SOC of the battery for a HEV. However, for a

PHEV since the vehicle will be charged from the electric grid φ can be considered

as zero.

Global optimisation based controllers

An overview of different global optimisation control techniques for HEVs discussing

the advantages and disadvantages of each is published in [76]. For global

optimisation techniques the drive-cycle needs to be known ahead of time. They can

also be classified as acausal systems since the minimisation is based on future events

and results. This type of controller is primarily used for benchmarking purposes or

for the comparison of different powertrains.

One of the common optimisation techniques, in general, is linear programming.

One example of which was applied for a series HEV in [84]. However, the authors

acknowledge that linearising the model is complex, specifically for special conditions

such as engine startup or cranking and gear-ratio changes.
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Another approach discussed for PHEVs is to optimise control parameters of a

real-time controller so as to tune it for minimum fuel consumption. Within [72], a

PF based strategy is tuned for different drive-cycles using evolutionary techniques

such as genetic algorithms (GA). The result of this optimisation is a SOC trajectory

similar to that found in CD-CS modes. This technique can be extended when

including component sizing parameters [19]. However, it is noteworthy that this

solution is the best achievable solution with a PF strategy and further improvements

are possible by adoption of a different control strategy. The advantage of using

this approach is, though it does not give the global optimal solution, it is possible

to determine the tuning parameters for a real-time implementable strategy and

maximise the capabilities of that strategy .

Several authors have considered DP as an effective approach to determine the

“optimal” control trajectory over time [39, 64]. DP is based on the Bellman’s

principal of optimality, a theoretical background on the subject is given in [41].

In case of DP the state SOC, the control action PICE are all discretised; thus many

possible solutions are considered. The performance index J is given as a function of

sequence of control decisions (π) of PICE for each discretised time step t, where Nt

is the total number of time steps. Therefore the performance index is given as :

J0(π) = φ(SOC(N)) +
∑N−1

0 ṁf (SOCk, Papu,k, tk) (2.2)

and the optimal policy is

π∗ = arg min J0(π) (2.3)

Typically in a PHEV the objective is to deplete the battery completely at the end of

the cycle so that it can be charged from the electric grid for the start of the next cycle.

Therefore it is assumed φ(SOC(N)) = 0. In [39], when the optimal control policy

was calculated over several drive-cycles, it was determined with DP, the CB mode

of operation achieved a relatively lower fuel consumption than CD-CS modes. That

is, the optimal control policy always caused the state SOC to decrease progressively

throughout the trip and the SOC was at its lowest value at the end of the trip.

Further, [64] compare PHEVs with different component sizes with DP based CB

approach. They conclude, downsizng of powertrain components of a PHEV reduces

the financial cost of the drive-train but does not have a significant influence on the

fuel consumption if a global optimal strategy is adopted.

One of the key points raised in [76] is the required fidelity of the model to

sufficiently capture the reductions in TTW emissions. Typically, when implementing

the DP algorithm, the model has to be discrete and the resolution of the states affects

the accuracy of the final solution. Universally, among the published literature the
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optimal trajectory is calculated for discretised values of time and SOC [76, 39, 64].

The cost functions used vary from optimising for fuel and other constraints such as

Engine ON-OFF time.

In order for the DP to function the cumulative cost of the cost function for each

discretised state is calculated backwards. A complete working of the approach is

presented in Chapter 7. The objective is to obtain a cost-to-go matrix which can be

used to determine the minimal cost path across time. For example, Figure 2.5 shows

the operation of a HEV over the ECE cycle, for a time duration of 196s, a target

terminal SOC of 0.7, a time step of 1 s, and an SOC discretisation of 0.01% of full

charge. The plant model used in this study consisted of only one state, which is the

SOC. It can be observed based on the number of states, the number of dimensions

of the cost-to-go matrix would increase.

Figure 2.5: Example cost matrix using DP [76]

The resolution of this matrix or grid is exponential to the number of states in

the system and proportional to the discretisation. Due to this reason a problem as

shown above can take several hours to solve depending on the amount of computing

power available [76].

DP has also been implemented stochastically by using Markov chains [60].

Markov chains give a probability distribution of various speeds from which the

power demand can be constructed. The advantage of this method is that for a

give drive-cycle the derived cost-to-go function can be implemented in real-time by

means of ‘look-up tables’.
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Some of the other optimisation techniques which have been implemented are

introduced here for completeness. Similar to the research done by [72] other

optimisation techniques can be adopted to tune the power-follower based control

strategy parameters [74] and [96].

Therefore, global optimisation methods are computationally heavy. Although

drive-cycle dependency can be avoided by the use of Markov chains, on reviewing

existing literature they have never been used in experimental setups. However,

they provide the best feasible result for a given drive-train and the result of this

research suggests a CB approach is more suited to maximise the performance of the

drive-train.

Real-time optimisation based controllers

Real-time optimisation is similar to global approaches, except the drive-cycle is not

known. Therefore the optimisation problem has to be reduced to a problem which

can be solved every time step. These controllers have altered cost functions to make

decisions based on past or predicted information and therefore they can be classified

as causal systems.

A series of papers have been published [28, 29, 31, 30] in which the drive-cycle is

predicted using various techniques including simple rules based on the speed limit

and NN approaches. On predicting the trip, DP is applied for obtaining the ideal

control trajectory across time. Finally, the trajectory is applied to the vehicle when it

is simulated across the drive-cycle. The authors [28] obtain varied results depending

on the accuracy of the trip model. Finally, a two scale DP technique is used in [27].

By two-scale, the authors advocate the use of two DP layers or loops. In the outer

loop, based on the trip predicted, a low resolution DP grid is applied to calculate a

high level SOC trajectory. After this calculation, relying on data from local traffic

information centres a finer grid DP is applied for the small section of the trip using

the high level SOC trajectory as a reference. The performance of the predicted DP

solution is close to the global optimal solution (11%). However, the authors have not

addressed the possibility of inaccuracies / non-availability of source data to predict

the drive-cycle.

Another frequently used strategy developed for real-time application is ECMS.

The strategy was first proposed for a parallel HEV in [68]. A detailed history

of ECMS is given in [33]. The ECMS method was developed to reduce the

global optimisation problem to an instantaneous optimal problem without use of

information regarding the future. The strategy is based on the CB approach to

regulate the SOC around a reference point while providing the required power and

achieving minimum fuel consumption. The strategy is based on the ideaology all
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energy eventually comes from the fuel therefore use of the battery power Pbatt can

be worked out to an equivalent amount of fuel used. ECMS is based on the concept

of optimising the fuel used including the equivalent amount of fuel which will be

lost in the past or future by charging the battery and vice-versa every time instant.

Therefore, it is a real-time optimisation based on amount of fuel used and equivalent

amount of fuel used to charge or discharge the battery. If J is considered as the

performance index then the optimisation problem can be written as :

min
SOC,PICE

J

J = ṁf (PICE(t)) + ṁequiv(Pbatt(t)) · ζ
where

ṁf is the fuel flow rate of ICE

ṁequiv is the equivalent amount of fuel used by battery

ζ is the equivalence ratio

(2.4)

subject to

Pdmd(t) = PICE(t) + Pbatt(t)

where

Pdmd(t) is the Power Demand at time t

PICE(t) is the Control action, Power from APU at time t

Pbatt(t) is the Power from battery

(2.5)

The term ṁf is the amount of fuel used by the ICE at that time instant. ṁequiv is the

equivalent amount of fuel lost or gained by charging and discharging the battery by

using the engine in the future. Obviously, the cost of using the battery would vary

depending on the amount of free energy recovered through regenerative braking in

a HEV or the amount of energy gained from the electric grid in the case of a PHEV.

Therefore, the second term is tuned based on past information using a term called

the equivalence ratio (ζ). The strategy has to be tuned such that the cost of using

the battery is sufficiently expensive, so that battery will not be drained before the

end of the trip. The strategy was further improved by a function where ζ was varied

based on SOC at that time [67] for a HEV. It was improved in [66] where the vehicle

was made to charge sustain using the battery SOC as a reference.

One of the cited drawbacks of the ECMS strategy is the inaccuracy in estimating

the equivalence ratio [62]. This issue is studied in detail in [62]. The authors suggest

an optimisation routine to obtain the equivalence ratio for a given drive-cycle. A

number of different approaches have been suggested each employing a different

combination of equations and look-up tables based on battery SOC to calculate

the equivalence ratio for different HEVs. A complete list is given in [33, 76] and is

therefore not repeated here.
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The ECMS is compared to DP solutions for a PHEV in [85]. The authors

conclude that for distances much longer than the AER and for vehicles employing

larger batteries, the ECMS and DP provide similar fuel economy and SOC profiles.

The authors determine that the DP operation is similar to a CS operation during

very long drive-cycles.

Recently, there has been much interest in real-time optimisation controllers and

their links with GPS/GIS technologies. It has been assumed on estimation of the

future power demand by means of a trip preview, it would be possible to calculate the

equivalence ratio (ζ) analytically [99, 100]. The first stage of the strategy is to use

an average speed value profile based on road-type to generate an equivalence ratio

map with distance and SOC on the x and y axis respectively. This lookup table can

then be used within a forward facing ECMS strategy with the appropriate ζ value.

The main drawback which is observed by the authors is the accurate calculation of

the ζ is determined by the resolution of the discretisation of the DP algorithm and

the accuracy of the predicted trip. A high resolution of 0.0001% SOC was adopted

for every 1 second for discretisation which led to a large computational load during

DP execution. To overcome this issue, the authors developed an iterative algorithm

where different values of ζ that are constant throughout the trip are used backwards

in time to calculate the change in SOC. Finally, the corresponding SOC to the start

of the trip is selected by interpolation of the value ζ. The authors claim that this

process is faster than the DP algorithm. However, it is important to note that in

such an implementation, the feedback path through SOC is removed and therefore

the controller cannot correct the value of ζ during execution of the simulation.

2.4 Review of Component Sizing Strategies

There is no recognised set of requirements for the sizing of components for a PHEV.

Typically, the component selection for a PHEV can be broken down into two

requirements that are given as :

1. Energy Requirements of the battery are primarily dictated by the needed

AER for the PHEV. The NEDC is usually chosen in Europe to calculate the

AER [87].

2. Power Requirements for the battery will depend on the peak power

encountered by the PHEV when it is being driven in EV mode. There is a

possibility of turning on the engine to meet peak power demands. In [64], it is

suggested that component sizing is possible with a CB approach with minimal

impact on fuel consumption. This could lead to down-sized components and

therefore a smaller financial cost of the powertrain.
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Requirements can also be addressed such as acceleration times, passing

manoeuvre times, gradeability capability of the vehicle.

An interesting consideration is that although the first prototype of a PHEV was

developed in 1996, a production intent vehicle was developed only in 2010. Due to

this reason, only a very few design studies exist and the requirements are typically

defined by emissions rather than typical manufacturer constraints such as cost and

driveability [78, 71]. Table 2.2 lists prototype vehicles built that are in the public

domain. An interesting point to note that is relevant to this study is the shift from

Nickel based batteries to Lithium based batteries.

Typically, component sizing algorithms can be broken into two groups, analytical

methods and optimisation based methods. Analytical methods make use of iterative

rule based algorithms to calculate the component sizes and optimisation based

methods make use of optimisation techniques to determine the component sizes.

2.4.1 Analytical Methods

A number of research publication have been presented by the Argonne National

Laboratory [25] and National Renewable Energy Laboratory [78, 71] on component

sizing. Although the powertrain architecture, cost projection, requirements and

technology vary, the underlying sizing methodology is the same. Both make use of

laboratory maps for the development of the PHEV models. Various scaling factors

are applied for resizing the components and finally a simple iterative routine is

used along with a power follower energy management strategy to make the vehicle

achieve a given AER when the vehicle is operating in EV mode. This component

sizing routine is available in the software Advisor and PSAT. A complete breakdown

of the working of the routine is provided in [78, 71].

2.4.2 Optimisation Routines

There are limited research publications that present a structured approach to

component sizing and control optimisation [6]. Furthermore, typically only a

particular subset of technology options is evaluated. In [95], chaos optimisation

is used to size the various components of the PHEV. Again, the base model that is

underneath for component scaling is given by the software PSAT. Therefore, this is

potentially a large new area of research which is critical to address the development

of PHEV.
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Table 2.2: List of prototypes of PHEVs

Vehicle Year EV range

(km)

Notes

UC Davis Joule 1996 105 (EV) 0.66L IC engine, NiMH battery

Audi Duo 1997 50 (EV) 1.9L IC engine, Pb-acid battery

PSA Dynavolt 1998 100 (EV) 0.2L IC engine, NiCd

Renault Scenic 1998 20 (EV) 1.6L IC engine, NiCd battery

UC Davis Coulomb 1998 97 (EV) 0.66L IC engine, NiMH battery

GM EV1 HEV concept 1998 65 (EV) 1.3L Diesel engine, NiMH battery

GM EV1 HEV concept 1998 65 (EV) Natural gas turbine, NiMH battery

WWU Viking 23 1998 113 (EV) 0.993L IC engine, NiCd battery

Fiat Multipla 1999 80 (EV) 1.6L IC engine, NiMH battery

UC Davis HEV1 1999 97 (EV) 0.57L IC engine, NiMH battery

UC Davis Sequoia 2000 94 (EV) 1.9L IC engine, NiMH battery

Suzuki EV Sport 2000 150 (EV) 0.393L IC engine, NiMH battery

Citroen Xsara Dynactive 2000 20 (EV) 1.4L IC engine, NiMH battery

UC Davis MD CVT

Suburban

2001 58 (EV) 2.2L IC engine, Pb-acid battery

UC Davis Yosemite 2002 79 (EV) 1.9L IC engine, NiMH battery

Renault Kangoo Electric

road

2003 60 (EV) 0.5L IC engine, NiCd battery

AC Propulsion PHEV Jetta 2003 64 (EV) 1.4L IC engine, Pb-acid battery

UC Davis Trinity 2004 64 (EV) 1.5L IC engine, Li-ion battery

DaimlerChrysler Sprinter

PHEV

2005 32 (EV) 2.3L IC engine, NIMH batteries

CS Energy Prius conversion 2006 71 (CD) 1.5L IC engine, LiFePO4 battery

Hymotion Prius conversion 2006 50 (EV) 1.5L IC engine, LiPolymer battery

Hymotion escape conversion 2006 80 (EV) 2.3L IC engine, LiPolymer battery

GM Volt concept 2006 64 (EV) 1.0L E85 IC engine, Li-ion battery

GM Saturn Vue concept 2006 >16 (EV) 3.6L IC engine, Li-ion battery

Ford PHEV Fuel Cell concept 2006 40 (EV) Fuel cell engine, Li-ion battery
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2.5 Conclusions

The studies presented in this chapter describe the work progressing in each area of

research. It is noteworthy that most research publications focus either on control

strategies or component sizing but do not consider a holistic approach to the design

of the PHEV. As discussed in Section 2.1, neural networks have been predominantly

used for the identification of the different road-types, however a consistent framework

for integration of this method into an energy management strategy is not addressed.

This area of research has been expanded in Chapter 4 where a NN is used to predict

the energy consumption of the vehicle across a trip.

The second area of research was the control strategy employed on the PHEV.

As reviewed, the traditional optimisation techniques such as DP give the best

solution but are not feasible for real-time application. However, there are several

instantaneous optimal solutions which can be implemented in real-time. But these

solutions have to be tuned for specific drive-cycles for best performance. Therefore,

the ideal trade-off would be to use a global optimal solution to generate a trajectory

which can then be used to tune the performance of the instantaneous optimal

solution. The application of such an approach is discussed in Chapter 7.

Finally, a relatively new area of research is the co-optimisation of the sizing

of the PHEV and the energy management strategy. Typically, even instantaneous

optimal solutions are avoided within a component sizing optimisation framework

due to high computational load. Some studies which attempt “co-optimisation” is

discussed in Section 2.4. A novel framework is described in Chapter 9 where the

predictive energy management strategy is compared to a rule-based strategy while

sizing the components of the PHEV.
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Chapter 3

Review of Available Data and

Drive-Cycles Employed

The aim of this chapter is to give a detailed introduction of the type of data available

for real-world usage analysis and modelling of the various powertrain components.

The real-world usage data employed as the foundation for this study was recorded

from two different data sources. The first source of data is from an EV trial

programme and is used to determine the energy consumption of a typical C segment

passenger car under different operating regimes in the real-world with different driver

behaviour. This data has been used to develop the backward model of the PHEV

which is subsequently used by the optimisation routine in Chapter 9. However,

within the EV trial programme it is not possible to identify individual drivers.

Therefore, individual driver profiles such as daily distance cannot be determined

from this dataset. The second source of data is used to analyse driver behaviour.

Specifically, to look at the typical operating regimes such as daily distance covered

by different commuters. In the last section of this chapter the various drive-cycles

used during this research is presented. The next two sections discuss the main

features of the two trials and the vehicles used within each programme.

3.1 The Smart Move 2 Electric Vehicle Trial

This trial was conducted within the UK in 2011 as part of the Smart Move 2 Electric

Vehicle Trial programme [9]. The evaluation programme was being managed by

Cenex (the UK’s Centre of Excellence for low carbon and fuel cell technologies) and

was being funded by the UK Department for Business, Innovation and Skills (BIS).

A summary of the relevant statistics for the evaluation programme are presented

in Table 3.1. The scope of this research has been restricted to the Smart ED from this

programme due to the limited data available from the Mitsubushi i-Miev. Whenever
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any of the vehicles were used, key vehicle parameters were automatically recorded

from the vehicle’s Controller Area Network (CAN) bus and uploaded to a central

database for analysis. Some of the key parameters which have been used in this

analysis are vehicle speed, battery voltage, battery current and vehicle mode. Vehicle

mode includes information such as whether the vehicle was in drive, neutral, park

or charging. It is noteworthy that during charging, the sample rate employed for

data collection was 0.017 Hz or 1 minute, whereas during vehicle drive a faster

sampling rate of 1 Hz was employed. This latter figure was deemed appropriate

for measuring the energy usage profile of the vehicle. However, it is not sufficient

to record those power flows associated with fast transient driving events such as

regenerative braking.

Trial program parameters Data

Number of vehicles 8

Types of Vehicles 7 Smart EVs and 1 Mitsubishi

i-Miev

Duration of Vehicle Test Program 6 Months

Total kilometres driven by Smart

EVs during program

4268 km

Number of days in demonstration

events

12 days

Table 3.1: Summary of Smart Move 2 Electric Vehicle Trail programme

3.1.1 The Vehicle (Smart ED)

The Smart ED is an EV designed for an urban environment. The layout of the

drive-train is given in Figure 3.1.

The Smart ED is a compact vehicle powered by a 16.5kWh Lithium-Ion Battery

with a peak power rating of 30kW . The top speed of the vehicle is limited to

100km/h (62 mph). The EMs were supplied by Zytec Automotive, the peak power

rating of the motor is 55kW and the continuous power rating of the motor 42.5kW .

However, the peak power of the drive-train of the smart is 30kW . This peak power

is much lower than a typical saloon (a standard C segment vehicle with an ICE

typically produces 75kW ). A typical saloon has a power to weight ratio of 50W/kg

while the smart with a kerb weight of 1036kg has a power to weight ratio of 29W/kg.

Since the Smart ED is a compact car and is underpowered compared to a standard

saloon, the ARTEMIS drive-cycle is also used as a reference which represents a more

representative drive-cycle for the vehicle.
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Figure 3.1: Smart ED [57]

Recording of the data is initiated based on the ignition key flag or the charging

cover flag on the CAN bus. The data has been made available on servers

for downloading as comma separated value files (CSV). A script was written in

MATLAB to post-process this data, remove erroneous files and to convert the CSV

files to MAT files for subsequent analysis. A summary of the data available in the

CSV file is given in Table 3.2, the schematic layout of the drive-train is given in

Figure 3.2 [9]. Some of the parameters are directly measured by sensors and others

are calculated by the on-board ECU.

Figure 3.2: Smart ED Layout [57]
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Table 3.2: Recorded parameters on the Smart

Parameter Unit Description

1 Segment ID

2 IMEI International Mobile Equipment Identity number used

to identify GSM device in logger

3 Time YYYY-MM-DD HH:MM:SS

4 Interval secs Time interval between current and previous data point

5 Latitude deg Decimal degree. Northern hemisphere is positive.

6 Longitude deg Decimal degree. Eastern hemisphere is positive.

7 Altitude m Height above mean sea level in meters

8 Ignition 0/1 Ignition status 0 = Off 1 = On

9 Temperature deg C Ambient temperature

10 Speed kph Vehicle speed calculated from motor speed

11 Energy

Transferred Key

On

kWh Total energy transferred from the battery during drive.

Starts at key on. Stops at Key off

12 Energy

Transferred

Charging

kWh Total energy transferred during charging. Charging

started - contactors closed. Charging finished -

contactors opened

13 SOC % State of charge of HV battery

14 Charging Lead 0/1 Battery being charged by HV battery charger

15 Battery Voltage Volts HV battery voltage as measured by the BMS at the

battery HV connection

16 Battery Current Amps HV battery current as measured by the BMS at the

battery HV connection. Negative current is energy

being delivered from the battery.

17 Motor Voltage Volts HV battery voltage as measured by the Drive-train at

the HV connector on the drive-train

18 Motor Current Amps HV battery current as measured by the Drive-train

at the HV connector on the Drive-train. This

signal includes motor demands and DC-DC converter

demands

19 Drive Battery

Temperature

deg C Maximum temperature within the HV Battery.

Accuracy upto a degree

20 Cooling Request % Cooling request from the battery to the EVCM. 0 % =

No cooling / 100% = maximum cooling. The cooling

of the system is provided by the AC system.

21 Motor Speed rpm Motor speed as measured by the Drive-train
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Table 3.2: Recorded parameters on the Smart

Parameter Unit Description

22 Motor Torque Nm Motor torque requested from the Drive-train

23 Auxiliary Power kW Power used for cabin heating/cooling and battery

cooling. This includes cabin heating and cooling plus

battery cooling demands.

24 Charger Voltage Volts AC Mains voltage as measured by the charger.

25 Charger Current Amps AC Mains current as measured by the charger.

3.2 The Mini Data Programme

The Mini Data programme focuses on the measurement and analysis of the driving

styles and journey profiles of 40 different drivers over a seven-day period. All of

the drivers reside within an urban, European environment. Driver selection was

conducted by an independent third party with the intent of ensuring a representative

demographic sample within the cohort. The vehicle employed for this study was a

commercially available C-segment passenger car. Direct measurements were made

on the usage of the vehicles either by adding new instrumentation or by recording

data from the vehicles CAN bus. In total, over 8400km of driving data were recorded

for analysis. Details on the evaluation programme and previous work which aimed

to size the energy storage requirements of a HEV/EV are given in [82]. The authors

acknowledge that this is a modest sample size and as a result is not statistically

significant. However, as will be discussed in Chapter 8, even with this limitation a

number of conclusions can be drawn based on the distance travelled per day. Figure

3.3 shows the total distance travelled by each driver during the seven-day period.

From the figure it is obvious that the use case scenarios are quite different. The

objective of this research would be to analyse the performance of the PHEV for a

set of legislative drive-cycles and these 40 drivers.
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Figure 3.3: Distance travelled per week during the Mini Programme

3.3 Drive-Cycles Used in the Thesis

The three different drive-cycles which are considered throughout the research are

discussed in this section. The various case-studies will involve the performance of the

PHEV over these three drive-cycles. It has been presented in [38] that drive-cycles

can be classified into two categories based on their formulation.

The first category of cycles is made up of a series of repetitions of a number

of vehicle operating conditions normally encountered when driving. These types

of cycles are known as modal cycles. The drive-cycles developed by the Economic

Commission of Europe and the Japanese Cycles represent this category. Figure 3.4

NEDC , represent the test cycles for Europe. Japan uses a similar cycle known

as Japanese 10-15 Mode Cycle. From the Figure it can be seen that there are a

number of repeating smaller cycles and constant speed sections. The NEDC is the

first drive-cycle considered for this research.

One of the reasons for adopting these simplified modal cycles is the ease of

operation of the dynamometer to perform emission tests on vehicles. This kind

of approach where the fuel consumption / emission is based on a number of

average operating speeds does not adequately describe the underlying distribution

of speeds and accelerations that are encountered in the real-world. This underlying

distribution will lead to higher acceleration levels which will imply higher power and

energy requirements. The work done in [23] suggests that these higher acceleration

levels will lead to increased fuel consumption and emissions in a conventional vehicle

by 20 to 40 percent. Furthermore, the NEDC cycle was formulated when the average

power output of the engine was lower, therefore the acceleration rates on the NEDC

are comparatively lower than the acceleration rates encountered in the real-world

[79].
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Figure 3.4: NEDC

The second category of cycles consists of an actual simulation of a typical road

route. These cycles can be classified as transient cycles. The United States (US) ,

Canada, Australia and Switzerland use these cycles within their legislative procedure

to establish emissions of the vehicle. Since the test cycle emulates real-world driving,

the test cycle has more speed variations when compared to modal cycles. The

speed and acceleration distribution of these drive-cycles are more representative

of real-world driving and hence tests performed with these drive-cycles give a

better representation of fuel consumption / emission figures [18]. An accurate

representation of a real-world driving scenario for a typical passenger car in Europe

would be the ARTEMIS drive-cycle. The drive-cycle is represented in Figure 3.5. A

background on the formulation of these representative cycles can be found in [2] and

[82]. Furthermore it has been argued in [23] that in urban conditions the driving

profile varies based on the vehicle, driving behaviour, road conditions and the level

of traffic congestion. All of these factors lead to large variations in emission levels

and fuel consumption. Due to these factors the ARTEMIS is another drive-cycle

used within this research for evaluation of the PHEV.

The third drive-cycle used in this research is one of the trips recorded during the

Cenex trial programme as discussed in Chapter 4. It was part of the training data

set employed for the NN. Figure 3.6 shows the drive-cycle. It is noteworthy that

compared to the data recorded in the EV trial programme which is from a compact

vehicle with limited range, the ARTEMIS drive-cycle is more representative of a

conventional saloon. This variation would be discussed further when comparing

these two real-world cycles.
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Figure 3.5: ARTEMIS urban, rural road and motorway cycles combined [2]
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Figure 3.6: Example of real-world drive-cycle from EV trial programme
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In conclusion, the standard modal drive-cycles can be useful as a tool to

benchmark vehicle performance. However, they do not necessarily depict the

performance of the vehicle in the real-world. Table 3.3 shows a comparison of

key parameters (speed, acceleration levels) among the various drive-cycles. The

average acceleration of the ARTEMIS cycle when compared to the NEDC cycle

varies by more than 8 % and the peak acceleration varies by more than 104 %.

This drastic variation in acceleration is one of the primary causes for variations in

emissions between the real-world and legislative cycles. Furthermore, compared to

the NEDC, it can be argued that the ARTEMIS cycle is a closer representation of

a typical real-world cycle for all vehicles in Europe. An interesting point to note is

that the average acceleration of the real-world cycle is lower than the NEDC. This

could be due to the factor that the EV had comparatively very low power compared

to a conventional vehicle.

Table 3.3: Comparison of key parameters of various drive-cycles

Parameters NEDC Real-world Artemis

Distance 10.93km 29.83km 73.02km

Top Speed 33.33m/s 28.04m/s 36.6m/s

Mean Speed 12.32m/s 15.64m/s 15.97m/s

Maximum Acceleration 1.04m/s2 3.23m/s2 2.86m/s2

Mean Acceleration 0.53m/s2 0.24m/s2 0.55m/s2
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Chapter 4

Framework for Real-World Data

Analysis

4.1 Introduction

The objective of this chapter is to present two different methodologies by which a

given drive-cycle can be analysed based on road-type, traffic congestion and driver

aggression. In the first part of the chapter the data is analysed at the trip level;

analysing average distance covered. The second part of the chapter presents the two

tools used for microtrip data classification. They are based on euclidean distance

and a NN approach. The training data for the NN is based on a one month study,

which is a subset of the Smart Trial programme described in Section 3.1. After

the formulation of the framework it is then further extended to predict the energy

consumption of the vehicle. The work is conducted such that this framework can

then be used as a part of a predictive control strategy which is described further in

Chapter 7.

4.2 Analysis of the Data at the Trip Level

As described in Section 2.1, the analysis of the data at the trip level is quite critical

to establish the needed AER of the PHEV. This requirement essentially dictates the

percentage of distance driven electrically and hence the amount of fuel energy which

can be offset [71]. During this research it has been assumed that the vehicles are

charged on a daily basis or at the start of each trip. Early adoption demonstrations

show users charge the vehicle overnight to reduce fuel consumption [45].

Figure 4.1 shows the cumulative distribution of the trips for the Smart ED and

also the Mini dataset. The Mini dataset has been included to compare an unlimited

range conventional vehicle to a range limited EV such as the Smart ED. Based on
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this, trip distance to cover the 90% of the average daily mileage the AER has to be

50km. It is based on the assumption that two trips of average trip distance 25 km

are undertaken per day, that is, one trip to work and one trip from work [11]. It is

interesting to note that it was suggested in [9], that range anxiety could be a reason

for the adoption of short trips in the case of an EV. However, from the comparison

of the Mini trial to the Cenex trial, it can be seen that the majority of the trips are

similar in terms of distance.

Figure 4.1: Cumulative distribution of trip length

4.3 Analysis of the Data Using Microtrips

On investigation of existing literature, as described in Section 2.1, the primary means

of analysing real-world vehicle usage data is to deconstruct the complete dataset for

a trip into smaller portions known as microtrips. The primary motivation is to

improve the road definition of the trip data. It has been envisaged that splitting

the data into microtrips facilitates a more robust prediction of parameters, such as

average energy consumption relative to the amount of time the vehicle spends in a
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particular mode of operation or environment. Within [82] a microtrip is defined as

the non-zero vehicle speed profile between two vehicle stops. Figure 4.2(a) shows

a section of a trip split into smaller microtrips. A concern raised in [82] is that

this method results in the under representation of motorway or highway sections.

This is because for highway conditions there may be large sections of the journey

in which the vehicle never stops. This problem is further compounded because the

vehicle may not stop when entering or exiting a highway or motorway. As a result,

different road types may be merged into a single microtrip. In order to overcome

this limitation a solution proposed by [1] in which each microtrip is then further

segmented as a function of time has been employed here. In this study a microtrip

is defined as the non-zero vehicle speed profile between two vehicle stops for a time

period of up to 30 seconds. Very short (start-stop) microtrips are accumulated into

adjacent microtrips until the 30 second time limit is reached. Figure 4.2(b) shows

the new microtrip split solution. The classification of these microtrips can be done

using two very different approaches.

• In the first approach, the data is clustered into similar homogeneous groups.

This is done by euclidean distance classification. It is noteworthy that

the groups that are finally identified may not coincide with any previous

classification.

• The second approach consists of identifying data and comparing them to a

pre-identified training data-set. For this approach a NN was formulated for

the identification of the different road-types.

4.3.1 Categorisation of Microtrips Based on Euclidean

Distance

This method is useful to identify clusters of microtrips that have similar

characteristics. The clustering approach has been implemented in MATLAB using

a clustering tool called k-means [56]. The algorithm is an iterative process with the

following steps :

Step 1: Random points in the dataset are selected as the centres of each cluster.

Step 2: The distance of each point to the centres is calculated. The cluster number

to the nearest centre is assigned for each point.

Step 3: The centres are adjusted by calculating the centroid of each cluster with

the corresponding points.
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Figure 4.2: Splitting to microtrips
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Step 4: Steps 2 and 3 are repeated until there is no net change in total distance

for each cluster.

Based on the work done in [2] it can be deduced that the two key factors which

are useful for the detection of roadtype are speed and acceleration. The approach

was adopted by [82] to classify the data of the Mini programme and develop a

methodology to size batteries for a HEV. The same classification groups and input

parameters have been used so that the data obtained from the Smart ED programme

can be compared to the Mini programme. The total dataset represents 4,268km of

driving. The parameters used for the study were :

• average speed of each microtrip

• average acceleration of each microtrip

• congestion index of each microtrip

Congestion index is defined as the ratio between the mean speed and standard

deviation of the mean speed. Further details of the congestion index are given in

Section 4.3.2. Before, classifying the data, the data for each parameter is normalised

to the maximum value of each parameter. Figure 4.3 shows the mean speed and

acceleration for each microtrip of the complete Smart ED dataset and the clusters

that they belong to.

Figure 4.3: Distribution of microtrips - classification based on Euclidean distance

Table 4.1 shows the centroid values for each cluster and for comparison of the

Smart ED dataset and the Mini dataset obtained from [82]. Figure 4.3 shows the
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classification of the various microtrips. The classification groups are selected based

on [82] for comparison to the Mini dataset. From Table 4.1 it is noteworthy that the

speeds are similar between the Smart ED dataset and the Mini dataset in the urban

environment. The maximum variation is found in the highway group. This can be

attributed to the top speed limitation of the Smart ED. However, when comparing

accelerations in Table 4.1 the acceleration of the Smart ED is much lower than that

of the Mini across all classification groups. This could be attributed to the fact that

the Smart ED is an underpowered vehicle. However, it also has to be noted from

Figure 4.3 there are microtrips which have accelerations above 0.65m/s2 which is the

maximum mean acceleration of all the categories. Therefore, the low acceleration

values in each group are definitely a function of the classification scheme as much

as the functioning of the vehicle in the real-world. Indeed on further investigation

it was determined that the initial centres chosen for the k-means algorithm affected

the final results. In order to further investigate the performance of the k-means

algorithm for classification two key metrics were compared. The first metric is the

ratio of the sum of the variance of each cluster to the total variance of the cluster.

This is shown in the following equation :

variance ratio =

∑k
j=1

∑n
i=1‖x

(j)
i − cj‖∑N

i=1‖xi − C‖
(4.1)

Where k represents the number of clusters, n represents the total number of

samples in each cluster, x is each sample, c is the centroid of each cluster, N is the

total number of samples and C is the centroid of all the samples. The resultant

variance ratio is shown in Figure 4.4. As it can be seen the variance reduces as

the number of clusters increase. However, this happens only until a specific number

of clusters, after which the introduction of additional clusters does not add any

valuable information to the classification. The selection of number of clusters from

this point is still ambiguous but for this research in order to compare with previous

work 12 cluster groups are chosen [82]. The other metric used is the entropy of the

cluster. The entropy of a cluster is given as

H(X) = −
n∑
i=1

P (xi) · log2 P (xi) (4.2)

The summation of entropies represent the quality of the classification. The lower

the total entropy, it means the clustering groups are well defined. However, in this

case on classification the lowest value of entropy was found to be a cluster group

of 1. There have been other metrics introduced which give better representation of

assessing the quality of the classification, however, that was not the intention of this

Thesis. The objective is to match the existing data to a pre-defined set training
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data-set therefore neural networks was adopted. The neural network is described in

detail in the next section.

Figure 4.4: Variance ratio for different number of clusters

On comparing the values to the other two drive-cycles, it can be seen that the

Mini is relatively closer to the ARTEMIS dataset than the Smart ED. However,

this variation could again be due to the selection criteria. Further, the classification

data may not have any relation to the real-world. For example, if the data was

heavily biased towards urban trips in the real-world, the classification scheme will

not be able to differentiate these nuances. There are limitations with this approach,

however for completeness it has been discussed here. In the next stage, to overcome

these limitations a NN framework was developed to classify the real-world data.
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4.3.2 Categorisation of Microtrips Based on Neural

Networks

Classification groups

In order to classify the data so that it can be related back to real-world geographic

profiles, the UK road-type classification scheme was adopted. Table 4.2 presents

the road type classification or groups employed within this research. For reference,

a short description of each road type is provided and a comparison is made to

analogous terms used within research papers published in both the US and mainland

Europe.

Table 4.2: Road type classification

Road-type

classification

Description Comparable

US

road-type

Comparable

EU

road-type

Motorway

or Highway

They are the main roads

connecting the important regions

of UK. They usually have a speed

limit of 70 mph.

Freeway Highway /

Motorway

A-Road Usually the road is as straight as

possible, and has a speed limit

of 60 or 70 mph. They are

usually dual carriageway, but can

be single lane.

Arterial

Roads

Main Road

B-Road B roads are numbered local

routes, which have lower traffic

densities than the main A roads.

They are typically less than 15

miles long. B roads can range

from dual carriageways to single

track roads with passing places.

Arterial

Roads

Secondary

Road

Urban Road These roads have a speed limit of

20 mph to 40 mph and are the

inner city roads.

Local

Roadways

Urban

In the UK the geographic information system (GIS) data for the entire road

network is available as Environmental Systems Research Institute (ESRI) shape

files [65]. For a given road section, the corresponding shape files contain specific

information on; road name, road type and its GPS-coordinates. As a result, by
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comparing the GPS data received from the different EVs while they are being driven

with the information contained within the Ordinance Survey database, it is possible

to identify the road-type for each microtrip. However, due to inaccuracies in GPS

data and software limitations, the comparisons were done manually. Although a

small dataset could be analysed in this way, a different tool was needed to facilitate

automation and comparison of the entire dataset. Therefore, a training based

pattern recognition tool was adopted. A training dataset in which different drivers

drove the car over a specific route in which the road-type was known in advance was

created. This training dataset was then used to “train” the NN to determine the

road-type.

In order to predict the real-world energy consumption of the EVs and PHEVs

it is necessary to ascertain not only the nature of the road type the vehicle is

travelling through, but also the level of congestion experienced [2]. As described

in the literature review, the traffic conditions and driver aggressiveness can cause

variations by as much as 20% [17]. Therefore, as a result, each microtrip is further

classified in accordance with the level of traffic congestion experienced. Partly due

to its subjective nature, the definition of traffic congestion varies greatly between

different research studies. For example [2] segments each road type into three

different levels of congestion, resulting in 12 unique groups overall. The method

of splitting the trip data is based on the relative congestion computed within the

dataset. In [61] another approach is adopted in which congestion levels are identified

by examining the similarity of each microtrip to drive-cycles published within the

US by the environmental protection agency (EPA).

In this research, the approaches recommended by [82] and [63] have been adopted.

Both authors advocate measures of congestion that are readily discernible from the

vehicle speed profile:

• Intersection based traffic events

• Vehicle congestion based traffic events

Within [63] the authors describe intersection based traffic events as those where

the speed of the vehicle reduces to one-third of its initial value or when the vehicle

comes to a complete standstill. This phenomenon often occurs during traffic queues

or at a road junction. In this research a measure of intersection based traffic events

(Ii) is proposed as the number of vehicle stops per one km of driving. The value of

Ii can therefore be calculated using the following expression:

Ii = γ · 1000

vx
(4.3)
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In Equation 4.3, vx denotes the distance travelled by the vehicle within the

microtrip and the number of recorded vehicle stops. A microtrip is designated as

a start-stop microtrip if the number of Ii exceeds 2 stops per km. Given that each

microtrip is based on a 30 second period, if the measured distance travelled is less

than 1 km, then a weighted number of vehicle stops is used in the calculation of Ii.

Within [82], for a given microtrip the authors choose to define traffic congestion

as the variation in vehicle speed from the mean vehicle speed. A Congestion Index

(Ci) is calculated as follows:

Ci =
vavg
σvavg

(4.4)

In Equation 4.4, σvavg defines the standard deviation of vehicle speed within a

microtrip and vavg defines the mean vehicle speed within the microtrip. The equation

is based on [82], where it is implied when operating on a motorway at high speed,

the speed is fairly constant and slight variation in speed would be considered as a

congested traffic. The threshold of Ci above which a microtrip is deemed to represent

congested traffic conditions is subjective. For this research it was determined that

the simplest method of splitting the categories was to determine the mean congestion

index of the entire dataset after removing the start-stop microtrips. The microtrips

having a congestion index higher than this mean value were defined as congested and

the rest were classified as free flowing. The mean value of Ci for the entire dataset

was determined as 0.32. However it is interesting to note that the mean value of

Ci for the training data set was much lower (0.14). This is primarily because the

training dataset was obtained in a rural section of the UK where the average traffic

conditions were low. Based on the two metrics of Ii and Ci, Table 4.3 summaries

the three different measures of traffic congestion employed in this study.

Table 4.3: Summary of congestion metrics and thresholds

Measure of Congestion Threshold

Congestion Index (Ci) Ci ≥ 0.32⇒ congested traffic conditions

Ci < 0.32⇒ uncongested traffic conditions

Intersection Event Index (Ii) Ii ≥ 2⇒ start-stop microtrip

Ii < 2⇒ congested or free-flowing microtrip.

Training the NN

Ten drivers were asked to drive along a prescribed route at three different times of

the day. The three different times of day (9:45 AM, 1:15 PM and 4:45PM) were

chosen so that the vehicle would be driven in varying traffic conditions. It was found

49



when completing the trips, generally the traffic was maximum on the 4:45 PM trip

and least in the 9:45 AM trip. The route shown in Figure 4.5 was chosen such that a

variety of different road types are encountered. The resulting thirty trips of known

road-type have been taken as a training dataset for the NN classification method.

A complete schedule of the usage of the Smart ED is given in Appendix 11.1. The

training data consists of 688km driving and 1691 microtrips.

Figure 4.5: Training trip made at Cranfield University

Figure 4.6 shows a sample speed profile and road type determination from the

ESRI shape files. The resulting distribution of microtrips is shown in Figure 4.7.

There is an uneven distribution of microtrips even if the route is the same because

among the thirty trips there was varying time durations due to traffic conditions

and three of the trips had to be discarded due to faults in the measurement of data.

Figure 4.8 shows the mean speed and acceleration distribution for all different

road types and traffic conditions of the training dataset. The mean values of

each cluster are shown in Table 4.4. The classification values are as expected for

different road types. The average speed increases as the road-type reaches motorway

conditions and the acceleration values increase with traffic increases. The trends in

this research are similar to the work done in [23] where a much larger dataset is

used.

The stop start congested motorway road-types occur primarily on ramps to the

motorway. On the motorway itself, it was found by observation that the Smart
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Figure 4.8: Distribution of microtrips for different road types and traffic conditions
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Table 4.4: Mean values for different road-types for Reference Data

Road

Category

Traffic

Congestion

Cluster

Number

Average

Speed

(m/s)

Average

Acceleration

(m/s2)

Congestion

Index

Urban

Stop and Go 1 3.48 0.91 1.02

Congested 2 8.26 0.51 0.26

Free Flowing 3 12.61 0.16 0.03

B Road

Stop and Go 4 3.74 1.06 1.01

Congested 5 10.49 0.50 0.19

Free Flowing 6 15.43 0.17 0.03

A Road

Stop and Go 7 3.32 1.09 1.18

Congested 8 12.23 0.63 0.19

Free Flowing 9 21.50 0.11 0.01

Motorway

Stop and Go 10 2.97 0.94 1.23

Congested 11 9.50 0.62 0.28

Free Flowing 12 25.12 0.06 0.01

ED with a top speed of 100km/h struggles to keep up with traffic flow, therefore

the congestion index is lower and all trips are classified as free flowing. Figure 4.9

shows the number of microtrips under different road types. As discussed in [82], the

threshold of classifying trips as congested is sensitive to the method of classification.

NN Classification

NNs have been used on a wide range of applications as a pattern recognition

technique in speech recognition, robotics, process control and telecommunications

[42]. The algorithms used mimic the working of a biological nervous system. A

theoretical background on the subject can be obtained in [42]. However, from an

application-oriented point of view, the algorithm can be implemented in MATLAB

using the NN Toolbox.

Typically the goal of a NN can be defined as a model which is able to map a

set of given inputs to a set of training output variables. In this case the microtrip

parameters such as the list presented in the literature review Section 2.1 is obtained

from the training dataset and used as input signals. The road-type data during the

trip are used as output variables. After training, the model will be able to identify

road-types for a set of microtrip input parameters.

Every NN is layered and is said to be made up of neurons. Figure 4.10 shows

the structure of a simplified NN. Each circle can be considered to represent a
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Figure 4.9: Number of microtrips for different road types and traffic conditions

neuron. The connections between each neuron are known as synapses. Each neuron

consists of a mathematical function which is localised to that neuron, that is, the

mathematical function is strictly dependent only on the input signal to that neuron.

Every layer of neurons comprises the same mathematical function. The connections

between neurons (synapse) can be altered by altering the weight of the input. Thus

the output of the neuron can be altered by altering the weight of the input (synapse).

By supervised alteration of these weights the desired output (training output) can

be attained. At a minimum, a NN is made up of three layers; the input layer, a

hidden layer and an output layer.

From this discussion it becomes clear that the architecture of the network has a

significant influence on the results obtained. The architecture could be feed-forward

and feed-back type depending on their construction. Further, based on the training

method adopted and the architecture of the network the NN are classified into

different types. A detailed discussion into the types of NNs and their construction are

beyond the scope of this research. However, a complete overview of the different NN

types are given in [42]. The type of network architecture adopted for this research is
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predominantly used for pattern recognition [42]. It is a feed-forward network with

a competitive learning algorithm. It is also known as a Self Organising Map [1].

The mathematics behind self-organising maps has not been dealt with in this thesis

due to detracting from the subject and time constraints, but a short overview of the

working is presented for completeness. Figure 4.11 shows the structure of the NN.

The weight matrix IW in Figure 4.11 is initialised by a random selection among

the training data. The elements of output S1 is the distance between the input

vector p and each row of the input weight matrix. The competitive transfer function

outputs one (winner) for the neuron containing the least euclidean distance between

IW and the training data. The weight matrix is altered based on the row which

produced the wining neuron. The weights are altered such that the distance of that

row to the input vector further reduces. Thus the competitive layer works similar to

k-means by forming cluster groups based on the weight matrix to reduce the overall

distance.

The linear layer forms the relationship between the winning neurons and the

training output. Both the competitive layer and linear layer at a minimum have

to contain the same number of target classification groups. Each class of the

competitive layer is assigned to a target class. It is possible to have more competitive

layer classes and depending on training they are assigned to respective target classes.

For example if neurons 1,2,3 in the competitive layer all learn for target class 2, the

linear layer outputs 1 if any of the neurons are activated.

The design of the NN for driving pattern recognition extends the work published
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by [23] and [1]. Within [23], the author identifies 40 parameters that can be

calculated, per microtrip, to quantify those vehicle and environmental attributes

that affect fuel economy. Within [1], the author employs a subset of these parameters

as the input vector to a NN with the aim of constructing different drive-cycles that

emulate specific driving environments.

Figure 4.11: Structure of NN

Figure 4.12 presents the overall experimental set-up that was used not only for

training the NN, but also for classifying the EV fleet data.
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Table 4.5 presents the 28 parameters identified in [1] that were calculated for

each microtrip from the training data set and employed as the input vector to

the NN. The input vector was first normalised in order to avoid bias within the

data set. When training the NN, it is important to avoid a phenomenon known

as over training. Over training may occur when the number of hidden neurons is

comparatively high and as a result, the network learns not only the basic mapping

associated with input and output data, but also the subtle nuances and even the

errors specific to the training set [42]. If too much training occurs, the network only

memorises the training set and loses its ability to generalise to new data. In order to

check for the influence of this phenomenon, 80% of the training data described was

used to train the NN with the remaining 20% being used to check for the presence

of the over training phenomena. The result of this test highlights an insensitivity

of the accuracy of the NN, for a hidden layer which has 10-40 neurons. Figure 4.13

shows the accuracy of the neural network for different amount of neurons in the

competitive layer. As it can be seen the increase in number of neurons does not

improve the classification behaviour.
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Figure 4.13: Classification accuracy based on number of neurons in competitive layer

The ability of the NN to predict the roadtype with the training data set is

shown in Table 4.6. The highlighted values on the leading diagonal of the matrix

denote those microtrips that have been properly classified. The low power rating

of the vehicle implies that there is little discernable difference between the vehicle’s

performance over both A and B roads. This is thought to be the primary reason for

the relatively poor performance of the NN. When A and B roads are combined,

the average prediction accuracy of the NN rises to 80%. Table 4.7 shows the

improvement in network performance when A and B roads are combined. It also
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has to be considered that the training dataset was obtained in a region of the UK

where traffic is fairly minimal. This leads to similar datasets for A and B roads.

Therefore, the author recommends a longer training dataset with roads which

show much more variation between A and B roads to correctly identify these two road

categories. The subtle dependency between vehicle performance attributes and the

validity of the training data set is discussed further during the prediction of power

demand in Chapter 7 and Chapter 8. Whereas it is favourable to limit the number

of neurons to maintain the networks ability to abstract new data, if the number of

the neurons is too low, then the initial random selection of the weighting matrix

significantly affects the deterministic nature of the NN. However, as the number

of neurons increases the random selection of initial weights has less influence on

the final result of the NN. Based on these contradictory requirements and through

experimenting with the training data set and the NN, 20 neurons were selected for

use within the hidden layer.

In summary, there are a total of 4 neurons for the output layer of the NN in

which each represents one of the four possible road types from the network, namely;

motorway, A-road, B-road and Urban.

Finally, the results of the training are given in Figure 4.14(a) and (b). Figure

4.14(a) shows the original training dataset which was input into the NN. Figure

4.14(b) shows the output of the NN. On visual inspection the NN recognises the

data similar to the training dataset.

Figure 4.14: Comparison of network output to training data
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Table 4.5: Parameters calculated for each microtrip

Parameter Denotation

Average Speed v avg

Standard Deviation of Speed v std

Maximum Speed v max

Average Acceleration a avg

Standard Deviation of Acceleration a std

Maximum Acceleration a max

Average Deceleration r avg

Standard Deviation of Deceleration r std

Maximum Deceleration r max

Relative Positive Acceleration 1/x
∫
v · a+dt x = total distance rpa

Number of Stops per km stp p km

Stop Duration per km sdur p km

% of time in speed interval 0-15 km/h v0 15

% of time in speed interval 15-30 km/h v15 30

% of time in speed interval 30-50 km/h v30 50

% of time in speed interval 50-70 km/h v50 70

% of time in speed interval 70-90 km/h v70 90

% of time in speed interval 90-110 km/h v90 110

% of time in speed > 110 km/h v110 200

Positive Kinetic Energy (
∑

(v2f − v2i ))/x when dv/dt > 0 pke

% of time when (va) < 0 va 0

% of time when (va) is 0-3 va 0 3

% of time when (va) is 3-6 va 3 6

% of time when (va) is 6-10 va 6 10

% of time when (va) is 10-15 va 10 15

% of time when (va) > 15 va 15

Total Duration (s) tdur

Total Distance (m) tdist
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Table 4.6: Classified microtrips for different categories

Data Output Data

Number of

micro trips

% Correct Urban B Road A Road Motorway

T
ra

in
in

g
D

at
a

Urban 486 70.00% 339 119 24 4

B Road 470 71.00% 79 344 35 12

A Road 344 24.00% 56 125 81 82

Motorway 141 86.00% 1 9 10 121

Table 4.7: Misclassified microtrips for different categories - Combined A and B roads

Data Output Data

Number of

micro trips

% Correct Urban A / B Road Motorway

T
ra

in
in

g
D

at
a

Urban 486 70.00% 339 143 4

A / B Road 814 72.00% 135 585 94

Motorway 141 86.00% 1 19 121

Once the NN had been trained it was employed to classify the entire data set

from the Smart Move 2 EV fleet evaluation. This equates to over 4,268 km of

real-world driving and 11,780 unique microtrips.

Figure 4.15 presents the complete classification of the data set into the 12

different groups of road type and traffic congestion levels. Table 4.8 quantifies the

mean values for EV acceleration and speed, in addition to the congestion index (Ci).

Table 4.8 compares the mean values of vehicle speed and acceleration observed

from the Smart Move 2 Trial, with those calculated from both the NEDC and the

ARTEMIS cycle. Unlike the euclidean method of classification from visual inspection

of Figures 4.16 and 4.17 the combined mean values of vehicle speeds and acceleration

for A and B roads correlate well with those found within the ARTEMIS drive-cycle.

For the ARTEMIS road and urban cycles, the mean values of vehicle speed are

5m/s and 16m/s respectively, whereas the mean values of vehicle acceleration are

0.75m/s2 and 0.58m/s2. Therefore the EV test data can be considered valid for

under urban and extra urban conditions on comparison to the ARTEMIS dive-cycle.

The difference in the motorway speeds is attributed to the low power rating of the

test EV fleet.

If a comparison is made between the Smart Move 2 fleet data and the

characteristics of the NEDC , it can be seen that the legislative urban conditions
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are far less demanding than those experienced in the real-world. This is particularly

the case for both A and B roads. It is noteworthy, that Table 4.8 only lists the mean

values of vehicle acceleration. The peak values of acceleration observed within the

measured data vary by more than 120% from those found within the NEDC. This

fact further highlights that the European drive-cycle does not properly emulate the

dynamic loads on the powertrain.

Unfortunately, the mini dataset could not be analysed using NN due to the lack

of a training dataset. It would be possible to apply the trained NN from the Smart

Move 2 trial onto the Mini dataset, however the accuracy of the results cannot be

validated.

Furthermore, the implications of additional load due to gradients cannot be

compared, primarily because of non-availability of data. There is scope for further

research in this area, however for the purposes of this thesis, gradient loads have

not been considered.

Figure 4.15: Classification of the Smart Move 2 dataset
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Figure 4.16: Comparison of NN classification to drive-cycles - average speed
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Figure 4.17: Comparison of NN classification to drive-cycles - average acceleration
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4.3.3 Energy Consumption

The energy consumption per unit distance (Wh/km) for each microtrip of the

complete dataset is analysed. Figure 4.18 shows the spread of energy consumption

for different roadtypes. The negative values result from cases where the vehicle

coasts down to a stop and the vehicle is stationary for the rest of the microtrip.

The spread of energy consumption decreases in the case of free flowing conditions.

This is because acceleration levels become quite low under these conditions. On the

motorway during congested conditions the average speed is low (16 m/s), this causes

a lower energy consumption within the vehicle. The spread of energy consumption

under congested conditions is attributed to driver behaviour [18]. For future studies

it would be beneficial to study the data further based on driver behaviour.

Variations between the legislative drive-cycle and real-world usage of the EVs

manifest themselves in potentially significant differences in the realisable efficiencies

and therefore the range of the vehicles. The EV trial programme sponsor conducted

tests with Millbrook to establish the legislative energy consumption values. One of

the Smart EVs was tested by Cenex on a dynamometer and its range measured over

the NEDC. It was found that the measured range was 136km that correlates well

with the manufacturers published figure of 135km. However, the average real-world

energy consumption across the entire evaluation programme was 116kW/km. Given

a usable battery capacity of 13.2kWh (80% of 16kWh) it can be seen that this

equates to an average vehicle range of just 114km, a 15% reduction in the vehicle’s

range as compared to the manufacturer’s cited figure. In reality the range achieved

within the vehicle would vary depending on the style of driving, the nature of the

road type and traffic congestion levels experienced. Figure 4.18 shows the energy

consumption variation for the different microtrips. On each box, the central mark

is the median, the edges of the box are the 25th and 75th percentiles, the whiskers

extend to the most extreme data points not considered outliers, and outliers are

plotted individually. As it can be seen from Figure 4.18, if the vehicle was deployed

within a highly congested urban environment such as a European capital city, then

the range of the same EV may reduce below 50km.
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Figure 4.18: Energy consumption for different categories
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4.4 Discussion

4.4.1 Repeatability of the Research

The numerical results presented here are derived directly from the Smart Move 2

evaluation programme and as such are constrained to the class of vehicle employed.

However, the NN framework designed for recognising the different road types and

varying levels of traffic congestion is generic and highly transferable to different

vehicle evaluation programmes in which different classifications of vehicles are used.

The key point regarding the repeatability of the research is the need to generate

a new training data set that is relevant to the target vehicle. It is important that

the attributes of the vehicle, namely weight, propulsion power, energy storage etc.

are comparable. Furthermore, the decomposition of the route into different road

types (urban, A and B roads, motorways) must properly reflect the capabilities of

the vehicle and its anticipated use. If this is not the case, it may not be possible to

uniquely identify the different conditions appropriate to the usage of the vehicle.

4.4.2 Applications of the Research

Vehicle Fleet Operators

One future direction for the research presented in this Chapter is to codify the NN

framework within a software tool that would enable end users to better predict

a more realistic EV range. The ability to formulate different scenarios in which

the electric range is a function of the different driving styles, traffic congestion

levels and road type has obvious advantages when compared to using just legislative

drive-cycles for vehicle range prediction. This is particularly pertinent for vehicle

fleet operators that may deploy EVs within a specific environment, such as inner-city

public transport or the use of urban delivery vehicles. It is argued that the framework

presented would not only provide a greater insight as to the real-world range and

energy efficiency of the EVs, but also highlight variations between different drivers

when the same vehicle is driven over the same route under similar congestion levels.

Transport Sector Forecasting

In addition to meeting the short-term requirements of vehicle fleet operators, the

proposed framework can also support those researchers involved in both medium

and long term scenario planning. Over the last ten years a number of studies

have formulated models for the introduction and market penetration of energy

efficient vehicles that include both EVs and PHEVs. These separate studies

have been collated and critically evaluated in a recent publication by [16]. The
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aim of this recent study is to build a total cost of ownership (TCO) model for

different architectures of EVs, PHEVs and conventional ICE powered vehicles. The

authors discuss the challenge of developing a representative value for the running

costs associated with vehicle ownership (MJ/km). This is primarily due to the

complexities of segmentation within the passenger car market and the different usage

patterns for different vehicles. As a consequence, within [16] a simple drive-cycle

analysis is adopted with a single weighting being applied to represent periods of

increased energy demand. As with vehicle fleet operators, given the generation of

appropriate training data sets, the same NN approach could be employed to more

accurately predict the tank-to-wheel energy demands of different EVs and hybrid

derivatives when deployed in different transport environments.

Energy Consumption Prediction

The research presented in this chapter is extended for the formulation of the energy

management control system in Chapter 6. A PHEV will typically have two primary

modes of operation, namely; a CD mode and a CS mode as described in Section

2.2. However, from studying existing literature [39] it was determined that the CB

mode of operation gives the best performance.

In order to implement a CB mode within a real-time energy management

controller, the system would need to know the journey route and the energy required

to complete the journey. From the data collated from the EV trial, a lookup table

of energy consumption values for different road-types has been formulated. The

lookup table consists of mean values and upper and lower limits representing the

25th and 75th percentile respectively. In its simplest form, the implementation of

the CB strategy would require the driver to enter their desired route. The control

system, using the look-up tables, would derive an estimate of the required energy

to complete the journey and this would be used as the SOC set-point trajectory

within the controller. However, a more robust method of implementation would be

to use the NN on-line, in which the speed of the vehicle is used to predict both the

road type and congestion levels. This technique would extend the well-established

concept of journey prediction [100].

In order to test the feasibility of this concept, a random journey was selected

from the trial database and fed into the NN as a 30 second moving window of data.

Based on this window of information the NN predicted the road-type and subsequent

traffic congestion levels. Figure 4.19 presents the predicted energy consumption

and the actual energy consumption measured in the EV. The figure also shows the

average energy consumption data from the lookup table. On integration of this

data over distance the predicted energy consumption can be calculated. The figure
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clearly shows that the predicted energy consumption follows the same trajectory as

the measured value and is well within the lower and upper 25% and 75% limits.

The same experiment was conducted on over 834 real-world journeys from the EV

trial. The results are presented in Figure 4.20, in which the correlation between the

actual and estimated energy consumption is presented. Overall, the accuracy of the

predicted energy consumption of the EV was 72%. The RMSE value in this case was

determined to be 982 Wh. However this figure increases to 82%, if consideration is

constrained to trips in which the total energy demand does not exceed 4kWh. The

root mean squared error (RMSE) value reduces to 874.14 Wh in this case. Since

90% of the trips recorded were under 4kWh, this represents a more realistic usage

scenario for the test urban vehicle. The reason for the drop in prediction in accuracy

is due to a number of reasons:

• Prototype vehicles were used for the trial, and their performances improved

over time.

• A number of different vehicles were used in the trial program with varying

performances.

• The vehicles were used from winter to summer during the test program.This

implies the batteries were subjected to temperature variations. The effect of

this temperature variation on the performance of the vehicle is not understood.
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Figure 4.19: Predict energy consumption of a trip

Figure 4.20: Energy consumption for all trips
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4.5 Conclusions

A novel framework has been presented where a NN is used to classify the transport

environment in which the EV is operating and as such estimate the energy

consumption per km of the vehicle. Experimental results, exploring the feasibility of

this concept, show a good correlation and accuracy in the order of 70% – 80% when

comparing predicted and measured energy consumptions for over 800 real-world

journeys. Furthermore, practical limitations are discussed and important criteria

are presented that would further improve and extend this method of predicting

vehicle energy consumption.

In particular, based on the second objective listed in Chapter 1, emphasis has

to be placed on the advantages of using an energy management control system of

a PHEV which uses a CB control strategy. The ability to estimate the energy

requirements of the vehicle over a given route is a pre-requisite for using a charge

blended control strategy. The advantages of such an approach is discussed in existing

literature in Section 2.3. Therefore, this framework would be an ideal candidate to

be used for a CB strategy for an PHEV. The design of the energy management

controller and further results are discussed in Chapter 7.
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Chapter 5

Development of EV Model

The second and third objectives of the thesis are the development of a CB energy

management strategy and sizing framework for a PHEV. In order to design and

evaluate various PHEVs, a set of scalable component model which forms the PHEV

must be developed. To achieve this, a prior set of baseline component models were

needed for scaling. This chapter introduces the EV powertrain model developed

from the data obtained during the Smart Move 2 Trial Programme which will then

be extended to a scalable PHEV model in Chapter 6. The secondary aim of the EV

model is to verify the accuracy of the component models with the real-world usage

data from the trial programme.

This chapter contains an initial summary of the modelling approaches. Then

each component is discussed in detail along with the accuracy of the model

developed at the component level. The modelling approach is similar to existing

modelling software such as ADVISOR or PSAT [92], which are currently used within

component sizing frameworks. However, it is noteworthy that the data adopted for

these models is from real-world usage data compared to the test data obtained from

laboratories. Typically, test data is determined from an experimental setup in a

controlled environment to ensure repeatability. The downside of such an approach

is that normally the researcher assumes the final intended operating regime and

applies the same in the experiment and this approach may not necessarily cover

the entire operating conditions of the vehicle. When modelling the vehicle with

real-world data this issue is addressed due to the large variation in operating regimes.

However, the limitation of such an approach is that the accuracy of the model can

be compromised due to these large variations in the environment and additional

unforeseen external circumstances. For example the auxiliary loads on the vehicle

had a significant influence on the energy consumption per km on the EV. Further

discussion about the accuracy of the model is presented in Section 5.10.

71



5.1 Modelling Approach

Powertrain Modelling approaches can be broadly classified into two different

categories depending on the layout of the model [92]:

• Forward Modelling Approach

• Backward Modelling Approach

In a generalised sense forward models are used with the intent of capturing fast

transient dynamics and aid in the development of a control system with real-world

implementation as the end goal [92]. They typically start from the energy / power

source and work “down” the powertrain until the force exerted by the wheel to

overcome the inertia of the vehicle is calculated. Finally, using the speed generated

by the vehicle and a driver model a new target is given to the energy / power source

for the next time step. In contrast a backward model is typically built to evaluate

the energy consumption of various drive-trains for comparison by determining the

energy and power requirements from the wheel up the powertrain to the energy /

power source.

5.1.1 Forward Modelling Approach

In a simplistic sense, vehicle models that include a model of a driver form a forward

facing model [92]. It is a closed loop system where the drive-cycle is the target

generator and the driver corrects the torque demands to the vehicle to match the

drive-cycle profile. In a forward model, typically a driver model is a proportional and

integral controller (PI) , which sends positive and negative torque demands to the

vehicle plant model so that the vehicle traces the reference drive-cycle. For example,

in a conventional vehicle where only the ICE is used to propel the vehicle the throttle

command translates to a torque demand which is sent to the engine controller. The

engine model produces the required amount of torque within the capabilities of

the engine, which is then fed to the transmission model. The transmission model

translates the torque depending on the gear ratio to the torque at the wheels. Finally,

by using the inertia of the vehicle and the road loads the vehicle speed is calculated

by integration. On calculation of the vehicle speed, the speed is calculated upwards

through the drive-train back to the engine model. The vehicle speed is fed as

feedback to the driver model. Figure 5.1 shows the layout of a typical forward

model for a conventional vehicle.

Forward facing models are typically dynamic models that accurately determine

torque and speed and manage to capture the limits of the system. They typically are

simulated using timesteps of 0.01s or less. Therefore, they are widely used to test
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Figure 5.1: Layout of a forward model of a conventional vehicle

scenarios which address driveability issues such as peak acceleration of the vehicle.

The layout of the model also helps in the development of hardware interfaces since

they adhere to the control signal and true speed and torque demands.

In a forward facing model, since it is a higher fidelity model it comparatively

requires a smaller simulation time step than a backward facing model. This results in

longer simulation time [92]. Due to the computational demand and longer simulation

time, these models are typically not used within an optimisation routine. Further,

for a fair comparison of different powertrains the driver model will have to be tuned

for every iteration of the optimisation run with different drive-train components

making the approach impractical for component sizing.

5.1.2 Backward Modelling Approach

In a backward facing model, it is assumed that the vehicle is powerful enough to

meet the drive-cycle speed trace. A driver model is therefore not required. From

the drive-cycle, the vehicle road load equation is applied to calculate the speed and

torque at the wheels. From the speed and torque at the wheels the speed and torque

to the engine is determined backwards through each component by using efficiency

models or maps for each component. Since, they use efficiency maps and do not

model the dynamic behaviour of the drive-train they can be described as quasi-static

models [92]. Finally, the fuel used or electric energy used is calculated. Typically,

these values are then used in a minimisation cost function for an optimisation

routine. Typically, this type of backward model runs with a large time step (≈ 1s)

which make them quick to compute. Essentially, the time step chosen depends on

the resolution of the drive-cycle. Figure 5.2 shows the layout of a typical backward

model for a conventional vehicle.

The drawback associated with the use of backward models is that they do not

address the issue of whether the given powertrain can meet the load demands of the

drive-cycle. Typically, three different solutions are offered in the literature to solve

this issue:
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Figure 5.2: Layout of a backward model of a conventional vehicle

Solution 1: It will be possible to constrain the optimisation routine to choose parameters

that are deemed as feasible.

Solution 2: The second method has been adopted in this research, constraints are applied

for each of the components and if those constraints have been exceeded the

simulation is halted and the powertrain is deemed as infeasible.

Solution 3: The third approach has been listed in [92], as a hybrid approach. In this

method the limits of each of the components are transmitted downstream

so that no component will require more torque or power from its upstream

neighbour than it can use. By this method, in the end a new speed trace

is calculated which takes into account the capability of the systems in the

drive-train. The drawback of this method is that when using optimisation

routines it does not give a true picture of the fuel used or electric energy

required. For example, a severely down sized model will project the best fuel

economy and electric energy required, but still not meet the load demands

of the drive-cycle. This implies that the two powertrains are not addressing

the same requirements, making the new down-sized powertrain impractical.

Figure 5.3 shows the layout of a backward model for a conventional vehicle.

The reference speed need not be equal to the vehicle speed.
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Figure 5.3: Layout of a hybrid model of a conventional vehicle

5.2 Model Objective

The objective is to build a model which is able to accurately capture the change

in SOC for a drive-cycle. As described in Equation ?? in the literature review, the

only state which is tracked in a HEV energy management problem is the SOC for a

given control input of PICE such that :

Pdmd(t) = Pbatt(t) + PICE(t) (5.1)

In this chapter based on the existing data available from the Smart EV trial an

model is built to calculate Pdmd and Pbatt. This model is then further expanded in

the next chapter to create a scalable PHEV in which depending on the changing

component sizes Pdmd, Pbatt, PICE and SOC is calculated.

5.3 Overall Model

This section deals with the development and verification of the backward model of

the pure EV from the Smart Move 2 Trial. The backward model will be expanded to

a scalable series PHEV model in Chapter 6. The layout and the components which

are modelled to represent an EV are shown in Figure 5.4. [34]. The assumptions for

each of the components are stated in their respective subsections.

The components which are modelled are given as :

• Vehicle model

• Integrated electric machine and transmission model

• Battery model
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Figure 5.4: Example electric vehicle

• Auxiliary power demands

• Charger model

5.4 Vehicle Model of Smart ED

The objective of this section is to build a pure EV model. The model was built based

on several look-up tables which were obtained from experimental data recorded on

a vehicle. The next sections describe the equations and the look-up tables formed

to match the recorded data. The input into the model includes.

• Vehicle speed v

• Mass of vehicle Mv

• Radius of the wheel rw

• Auxiliary power demands

• Battery Capacity Qb

• Initial state of charge SOCinit

The aim of the model is to verify if the EV drivetrain is able to accurately capture

the same change in state of charge of the battery for a given drivecycle. A discretized

model is built where the main input is the vehicle speed which is recorded with a

time step of 1s. The data available for building the model is shown in Table 3.1.

Whenever a recorded channel is used, the variable is shown with an asterix (*).
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Since the vehicle model adopted is a backward model, the objective of the vehicle

model is to determine the power experienced by the wheel in terms of wheel torque

and speed in order to trace the given drive-cycle. The first step is to identify

the resistive forces (Fr) acting on the mass of the vehicle for a given speed and

acceleration. The vehicle speed and acceleration is determined from data recorded

on the CAN bus (Table 3.2 Parameter 10). In order to achieve this a vehicle coast

down curve was experimentally obtained for the Smart ED by Millbrook Proving

Ground Ltd [9]. The coast-down curve is obtained by accelerating the vehicle to a

predetermined speed, turning it off and letting the vehicle ’coast’ to a halt based on

the drag losses. The vehicle is then fixed to a dynamometer and the amount of force

required by the dynamometer to achieve the same speed profile is measured. This

force is given as the coast down curve of the vehicle and it is the total drag force of

the vehicle. On curve fitting the drag force against the vehicle speed can be obtained

[9] Equation 5.2 presents a 3rd order polynomial that defines Fr as a function of

vehicle speed (v). This was obtained by using experimental testing in which the

vehicle was allowed to coast from various speeds while applying no drivetrain torque

[9]. The constant term of 146.8 N represents the tyre rolling resistance. The slope

of the terrain (α) could be calculated using the measured height data obtained from

the vehicles onboard GPS (Table 3.2 Parameter 7). However, during the simulations

performed due to faulty height data from the GPS during this research the value of

α was always considered to be zero. The implications of ignoring gradient loads are

described in Section 5.5.

Fr = 8 · 10−5 · v∗3 + 0.0241 · v∗2 + 0.1456 · v∗ + 146.8 · cos(α) (5.2)

For a given vehicle speed, the associated torque at the wheels (Tw) is calculated

using Equation 5.3, where rw defines the rolling radius of the wheel, grav is the

gravitational constant and Mv is the total vehicle mass. The values for rw and Mv

were measured as 0.2462m and 900kg respectively. The 900kg includes the weight

of the driver.

Tw = (Mv ·
dv

dt
+ Fr +Mv · grav · sin(α)) · rw (5.3)

5.5 Integrated Electric Machine and

Transmission Model of Smart ED

The Smart ED employs a 55 kW brushless DC machine. For the EV model,

the electric machine and the associated inverter have been considered as a single

integrated system. The values of electric machine terminal voltage (v∗em), electric

machine current (i∗em), the rotational velocity of the machine (ω∗
em) and electric
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machine torque demand (T ∗
em(dmd)) were recorded under a number of different

operating conditions during vehicle evaluation. The corresponding CAN messages

are listed in Table 3.2 as parameters 17, 18, 21 and 22 respectively. These values

were used within Equation 5.4 to calculate the efficiency of the electric drive system

and build the EM efficiency map shown in Figure 5.5. For operating points that are

repeating within the evaluation dataset the mean value is calculated. An important

feature to note is that for the negative axis the efficiency is suitably inverted and

regenerative braking strategy contour of the Smart ED is preserved.

ηem =
T ∗
em · ω∗

em

v∗em · i∗em
(5.4)

The Smart ED consists of a single stage reduction gearbox which has a final

Figure 5.5: Efficiency map of the Smart ED 30 kW Electric Machine

drive ratio (gfd) of 8.67 [57]. Therefore the torque of the electric machine Tem was

calculated from Tw using Equation 5.5. The objective of using such an approach is

to relate all the calculations back to the drive-cycle speed. In order to check the

validity of the road load equation and the gear ratio, comparisons are made between

the simulation and the recorded data. The speed and torque at the electric machine

shaft / gearbox input shaft are compared against measured data. Figure 5.6 shows

the speed and torque plots at the gearbox input shaft for one trip. The torque

obtained from the CAN data is the demand torque (T ∗
em(dmd)) sent to the electric
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machine, therefore it is expected to have been filtered. Further, the negative torque

during regenerative braking is limited in the case of the recorded data since it is the

demand torque from the control system compared to the simulated torque which is

calculated from the wheels.

Tem =
Tw
gfd

(5.5)

ωem = ωw · gfd (5.6)

Figure 5.7 shows the accuracy of the prediction of electric machine torque against

Figure 5.6: Comparison of simulated and measured motor torque

time which has been normalised for a dataset over two months. The average

accuracy per trip is 73%. The errors in the prediction of the load torque is primarily

because of inaccuracies and resolution of the topographic data stored by the GPS.

Unfortunately, the topographic data cannot be corrected. For a verification of the

electric machine map shown in Figure 5.5, the recorded speed and torque are fed

into the Simulink model and the power at the HV bus is compared to the recorded

power. The accuracy of this section of the model is 87%. The inaccuracies in the

model are assumed to be due to variations among the prototype vehicles and since

temperature differences are not captured.
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Figure 5.7: Accuracy of simulation of electric machine torque

Figure 5.8: Accuracy of simulation of electric machine power
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5.6 Auxiliary Power and High Voltage Electric

Bus

The auxiliary power is depicted as the power lost through the DC-DC converter

and link between the high and low voltage systems in the EV in Figure 5.4. This

value is calculated by the vehicles on-board ECU shown in Table 3.2 parameter

23. Usually this load is neglected in the case of legislative tests on the vehicle. In

the case of an EV, all driver comfort systems (air conditioner, heater matrix, radio

etc) and vehicle electricals (Headlights, Indicators etc.) are drawn from the battery.

As a simple study on the additional power requirements needed for auxiliary loads,

various devices were turned on in the vehicle for a minute and the steady state

power requirement for that device was recorded from parameter 23 in Table 3.2.

The average power consumption of various auxiliary loads are given in Table 5.1.

As an extreme circumstance when turning on the air compressor the auxiliary power

is around 4.5 kW and the peak power is around 7 kW. This power consumption is

similar to the power needed for cruising at low speeds. Therefore axillary loads

do have a significant impact on the energy utilisation and vehicle range. For the

purposes of the simulation an average of 1kW is assumed for the model. For a

given auxiliary power (Paux) the current at the battery terminals (ib) using battery

terminal voltage (vb), vem and iem is given by :

ib =
vem · iem + Paux

vb
(5.7)

Table 5.1: Auxiliary power loads on the vehicle

Auxiliary Load Average Power (W )

Key On Load 220

Park Light 50

Head Lights 180

High Beam 320

Fan Speed 1 50

Fan Speed 2 90

Fan Speed 3 140

Air Conditioner On - 22 degrees - Fan Speed 1 2180

Air Conditioner On - 26 degrees - Fan Speed 1 2650

Air Conditioner On - 18 degrees - Fan Speed 4 4160

Air Conditioner On - 22 degrees - Fan Speed 4 4690

Air Conditioner On - 26 degrees - Fan Speed 4 4890
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5.7 Battery Model of Smart ED

As described in the literature review, the battery model contains the only state in

the system and it is the SOC. The SOC is defined as the ratio of amount of charge

remaining in the battery. Therefore during model execution, SOC is quantified using

the generic method of coulomb counting. In this method the change in amount of

charge (current) is calculated by integrating the current every time step. Obviously

the initial condition of the battery SOC SOCinit and Qb the capacity of the battery

expressed in Ah should also be known. Based on this the SOC at time t can be

calculated based on the following equation:

SOC(t) =
SOCinit ·Qb · 3600−

∫ t
0
ib · dt

Qb · 3600
(5.8)

The model is a discrete model with a time step of 1s, therefore if N is the total

number of time-steps the SOC at discrete time step t is :

SOC(t) =
SOC(t− 1) ·Qb · 3600−

∫ t
t−1

ib · dt
Qb · 3600

(5.9)

In order to ascertain the real-world operating efficiency of the HV battery a Rint

type equivalent circuit model was used. This method is widely reported within the

literature and comprises of an open circuit voltage (voc) in series with a charge and

discharge resistance (Rb) [32] as shown in 5.9.

Figure 5.9: Battery Model

The term voc is the voltage of the battery when there is no losses present, that

is the voltage when there is no current flowing from the battery. The value for voc

was estimated based on v∗b , battery temperature and SOC for the Smart data-set.

All three of these values were recorded on the CAN bus on the vehicle. The points

in the test data when the i∗b is equal to zero for 3 seconds and averaging the v∗b
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for that temperature and SOC the voc of the battery has been determined. Figure

5.10 shows the result of this exercise and presents the estimated value of voc as

a function of measured battery temperature and SOC. The data below 20% SOC

becomes unreliable since during the testing programme only a small number of test

cases were recorded with low SOC. For a given value of ib which is the sum of EM

current and auxiliary current, the battery terminal voltage can be calculated using

Equation 5.10.

Measuring the battery resistance for the vehicle was not possible because the

vehicle’s battery was sealed for safety reasons and it was not possible to reach

the terminals. However, the battery resistance was calculated to be 0.52Ω. This

was done by trail and error. For large collection of the journeys recorded different

resistance values were attempted on Equations 5.10 and 5.9. It was verified if the

resistance value caused for the same amount of current drawn (available on CAN),

the change in SOC matched the change recorded by the battery management system.

The accuracy of this data cannot be confirmed because the working of the battery

management system is not known and the resolution of the CAN data is prohibitive

for comprehensive comparison. However, the trend of constant resistance can be

clearly seen by comparing the open-circuit voltage based current to terminal voltage

based current in Figure 5.11. Figure 5.11 is obtained based on Equation 5.11, where

voc is obtained from the map and ib and vb are obtained from the CAN bus.

vt = voc − ib ·Rb (5.10)

ηb =
voc · i∗b
v∗b · i∗b

(5.11)

Similar to the EM map, the validity of the battery map is checked by simulating

the change in battery SOC for a given battery power input and comparing to the

recorded data of the same for a period of 2 months. The mean accuracy of the

change in battery SOC per trip is 88%. It is believed that the accuracy could be

improved if temperature variation could be accurately captured. However, data

such as position of temperature sensors and cooling methods were not available.

Therefore this variation has not been considered as part of this research.
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Figure 5.10: Open circuit voltage of battery

Figure 5.11: Battery efficiency for different SOC
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Figure 5.12: Accuracy of simulation of battery component

5.8 Charger

After every simulation run, it is possible to calculate the amount of electric energy

required at the plug to charge the vehicle back up to maximum SOC. This is done by

applying a constant amount of power into the battery (220 V 15 A) with a charger

efficiency of 90%. This calculation is primarily used to calculate the electric energy

consumption in Wh/km as stipulated in Regulation 101 [87]. Further information

on the application of Regulation 101 is discussed in Chapter 8.

5.9 Model Summary

A complete summary of the equations are given in this section. The model is a

discretised model of time t = 0, 1, 2, 3, 4... seconds. The discretisation interval of

1s is chosen because the drive-cycle data available is 1s and energy management

problems which track fuel consumption and SOC are fairly low dynamics.

The road tractive force Fr(t) of the EV is given as :

Fr(t) = 8 · 10−5 · v3(t) + 0.0241 · v∗2(t) + 0.1456 · v(t) + 146.8 · cos(α) (5.12)
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from the tractive force the wheel torque can be calculated as:

Tw(t) = (Mv ·
dv

dt
+ Fr(t) +Mv · grav · sin(α)) · rw (5.13)

where Mv is mass of vehicle which is 900kg and rw is the wheel radius which is

0.2462m. The wheel speed can be calculated as:

ωw(t) =
v(t)

rw
(5.14)

Based on the wheel speed and torque the electric machine speed and torque can be

calculated as :

Tem(t) = Tw(t) ∗ gfd (5.15)

ωem(t) =
ωw

gfd
(5.16)

where gfd is the final drive gear ratio of 8.67. Now that the electric machine torque

and speed are known the electric machine power can be calculated as :

Pem(t) =
Tem(t) · ωem(t)

ηem(Tem, ωem)
(5.17)

The efficiency of the machine ηem is a look-up table based on Figure 5.8. The total

power demand Pdmd can be calculated as :

Pdmd(t) = Pem(t) + Pacc(t) (5.18)

In the above equation Pacc is the auxiliary power demand which is averaged to 1kW .

In this case because it is a pure EV model Pdmd is equal to Pbatt. The current at

the battery is obtained by solving the equation shown below.

Rb · ib(t)2 − voc(SOC(t− 1)) · ib(t) + Pdmd(t) = 0 (5.19)

where Rb · it(t)2 is the battery efficiency losses and R is the resistance of the battery

0.52Ω, voc(SOC(t− 1)) is the open circuit voltage of the battery which is a function

of the SOC. It is assumed the change in SOC is a relatively slow dynamic and the

previous state can be used for the calculation of the voc. When the current ib is

known the SOC of the battery at time t can be calculated as :

SOC(t) =
SOC(t− 1) ·Qb · 3600−

∫ t
t−1

ib · dt
Qb · 3600

(5.20)

Where Qb is the capacity of the battery. At the beginning of the drive-cycle time

t = 0, the SOC is stored as the initial SOCinit.
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5.10 Verification and Limitations of the Complete

Model

In order to verify the complete EV powertrain model, it was run across all the trips

recorded and the variation in SOC was compared between the simulation and the

actual data. The mean accuracy for all the trips recorded is 68%. Figure 5.13 shows

the simulated change in SOC and the actual change in SOC recorded for all trips

over a six month period. The frequency of trips where the SOC change is more

than 40% is low and they have not been included in the Figure. Although the mean

accuracy number is low (68%), it shows the amount of variability in performance of

the vehicle in the real-world.

Figure 5.13: Verification of the EV Model

The inaccuracy arises from 5 key areas:

• The beginning and significant contributor to the inaccuracy in the model

is ignoring the gradient loads. As stated before this leads to EM torque

estimation errors as much as 27%. Further, since the model is a backward

facing model, the error in estimation at the first point (at the wheels) which

leads to large deviations by the end (at the battery).
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• Another key consideration is that only the torque demand is available in the

recorded dataset. The variation between the torque demand and actual torque

experienced by the electric machine is not known. Due to the control strategy

adopted in the Smart ED for functions such as regenerative braking cannot be

fully determined. This leads to variations in the energy usage at the electric

machine which is then further compounded at the battery.

• The variation in performance of a battery due to temperature is significant.

However more data is needed to perform a complete analysis and development

of a thermal model. Further the goal is to develop a base model which can then

be scaled in chapter 6. And the inclusion of additional complex systems such

as a thermal management system, whose scaling parameters are not known,

would defeat this objective.

• It was observed that there was a relation between ambient temperature

and auxiliary loads. This relationship was explored further in [9]. The

ambient temperature during three different case studies was recorded. The

corresponding ratio of power to drive the vehicle to the power used by the

auxiliaries was calculated. The results are shown in Figure 5.14. In the case

of the first study (Indesit), they were a large number of low speed trips with

high cabin heating load. Further, variations which affect the ratio between

the power consumptions was not discussed such as trip length, duration of

journey.

• Another factor to be considered is the payload. There is no mechanism to

determine the number of persons travelling in the vehicle. This would affect

the vehicle inertia and increase the load experienced by the wheels during

acceleration. Finally, the various vehicles used in the trials where all prototype

vehicles and due to this, minor variations in calibrations and performance are

assumed to exist.
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Figure 5.14: Influence of ambient temperature during Smart ED case-study by Cenex

[9]

5.11 Conclusion

The chapter describes the methodology employed for the development of the base

EV model. The primary motivation for the EV model is to develop a set of base

components which can then be scaled and used within an PHEV in chapter 6.

Particular emphasis was placed on developing a “simplified model” with low fidelity

such that it can then be used within an optimisation framework. Although, the

complete vehicle model had an overall accuracy of only 68%, it has to be placed

in the context of real-world data obtained during a vehicle trial programme. As

described in the previous section a large number of limitations exist since the vehicles

were prototypes and some of the data was not accurate / unavailable. However, on

comparison to existing tools such as PSAT which are accepted modelling software,

the same fidelity has been used. Further, by obtaining the mean values for the

various maps the environmental variations are captured and smoothed. Finally, it is

noteworthy that the framework developed in this research and the trends observed

are valid and improvements in model accuracy / fidelity would give a more accurate

trend. The implications of the accuracy of the model and the future work direction

is described in chapter 10.
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Chapter 6

Scalable Plug-in Hybrid Electric

Vehicle

In order to evaluate the performance of various energy management techniques and

the component downsizing opportunities associated with their use, an important

pre-requisite is the design of a PHEV powertrain model. The layout of a typical

series PHEV is shown in Figure 6.1 [33]. The on-board charger, battery (Batt),

electrical machine (EM), Inverters (INV), Transmission (Trn), DC/DC converter

and wheel have all been modelled based on the EV Model developed in Chapter

5. For each of the powertrain components, the discussion is to scale key system

parameters as part of the optimization study to enable component sizing.

Figure 6.1: Plug-in hybrid electric vehicle schematic
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6.1 Modelling Objective and Tasks

The scalable parameters chosen for the PHEV model are engine volumetric size

(Vd), peak power of electric machine (Pem(peak)) and the number of parallel battery

strings (np). The sequence of steps for the creation of the model and execution over

a drive-cycle is given in Figure 6.2 as:

• Stage 1 consists of loading the baseline data obtained from the EV trial.

• Stage 2 represents the generation of a scaled set of PHEV components.

• Stage 3 relates to loading the different drive-cycles and updating the mass of

the PHEV based on the respective component mass values.

• Stage 4 is the execution of the model for a selected control strategy and

drive-cycle.

• Stage 5 verifies that the component constraints are maintained throughout

the simulation. The remainder of the Chapter defines in greater detail, the

methods and equations involved at each stage of the process when generating

and executing a scalable PHEV model.

After execution for a given control algorithm which is discussed in chapter 7, the

results such as the fuel used or the CO2 emitted are returned to the optimisation

framework. The final result of the optimised set of components depends on the

formulation of the cost function. The optimisation framework and the associated

cost functions are discussed in detail in Chapters 8 and 9 respectively.

The tasks involved to convert the EV model from Chapter 5 to a scalable PHEV

model are given as:

• Development of a scalable ICE model.

• Development of a scaling process for the electric machine model developed

based on the EV.

• Development of an appropriately sized electric machine connected to the ICE

to form the auxiliary power unit (APU).

• Develop equations which relate parameters of each component to their

respective masses and financial cost.

The cost function, free parameter set and search routine are given in chapter 8,

which describes the optimisation framework.
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Figure 6.2: Flowchart of execution of the simulation
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6.2 Scaling of the Vehicle Model

The function of this component within the PHEV model is to determine the torque

and speed at the wheels. The component execution is very similar to the EV model

discussed in Chapter 5. The equations of interest are 5.2 and 5.3. The model

employs the same radius of the wheel rw, however the mass of the vehicle Mv has

to be adjusted for the varying component sizes. The value of Mv is calculated

before the execution of the model at Stage 3 of the simulation and is represented

in Equation 6.1. It is the summation of the chassis mass (Mc), and the respective

mass contributions from the electrical machine (Mem), battery (Mbat), and the ICE

(MICE). The mass contribution functions are given for each sub-model in the relvant

section. The mass of the vehicle chassis is assumed to be constant at 700 kg:

Mv = Mc +Mem(Pem(peak)) +Mbat(Pbat(peak)) +MICE(PICE(peak)) (6.1)

6.3 Scaling of Electric Machine and Transmission

For the PHEV model the same final drive ratio has been adopted as the Smart ED to

calculate Tem and ωem (Equation 5.5). The power supplied or drawn by the electric

machine is given by Equation 6.2. The relationship between ωem, Tem and ηem is

given by the Smart ED efficiency map in Figure 5.5 and has been normalised. In

order to employ the model within the optimization study, Equation 6.3 shows how

the torque (Tem) of the efficiency map can be scaled as a function of the peak power

requirements of the subsystem (Pem(peak)). This equation is represented as the EM

scale function at Stage 2 of the simulation:

Pem =

Tem · ωem · ηem, ifTem < 0

Tem·ωem

ηem
, ifTem > 0

(6.2)

Tem = Tem(base) ·
Pem(peak)

30, 000
(6.3)

In the above equation 30 kW is the maximum power of the conventional Smart ED

machine. This approach has been successfully applied in a number of comparable

optimization studies reported in the literature [95] and [92]. When scaling the

torque and efficiency characteristics of the electrical machine, the same regenerative

braking strategy observed from Figure 5.5 is maintained. It is acknowledged that

the regenerative braking strategy would affect the amount of available “free” energy

but, sufficient knowledge of the braking system such as front to rear braking ratio

or the percentage of regenerative braking for a given driver demand is not known.

Therefore, a detailed study into the optimisation of the regenerative braking strategy
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is considered beyond the scope of this research. Finally, using manufacturers

published data, the mass of the electrical machine and inverter system are updated

using a linear function of peak power (gem) [57]:

Mem = gem(Pem(peak)) (6.4)

6.4 Scaling of the Battery Model

The equations shown in 5.8 and 5.10 are used to calculate the SOC of the battery

by Coulomb counting. The same set of equations are used in Stage 4 of the model

execution. However, it is noteworthy that the power drawn or absorbed by the

battery now also depends on the power produced by the ICE. Therefore Pbat can

be calculated based on Equation 6.5. Similar to the Smart ED model developed

in Chapter 5, Paux is taken to be 1 kW. Within the PHEV model, the energy

management strategy must control the engine power (PICE) to ensure that the

power constraints and SOC range of the battery are not exceeded.

Pbat = Pem + Paux − PICE (6.5)

As part of the model execution sequence described in Figure 6.2, Equations 6.6 -

6.9 present how the battery is scaled by altering the number of parallel strings (np).

This set of equations is executed at Stage 2 of the simulation as the battery function

employed to create the voc map. The number of cells in series (ns) is maintained

constant to ensure compatibility with the electrical machine:

Rb = Rcell ·
ns
np

(6.6)

voc = voc(cell) · ns (6.7)

Qb = Qcell · np (6.8)

Mb = Mcell · np (6.9)

It is noteworthy that the mass of each cell (Mcell) includes not just the cell mass

but also a weighting term of 2 times to account for the mass compounding effects of

introducing large battery systems [3]. For example, the additional weight associated

with packaging, thermal management and the electrical isolation of equipment.

94



6.5 Internal Combustion Engine

The development of a generalised, scalable, ICE is a challenging research problem

due to the number of variations available on the market. Therefore, for the purposes

of this study a naturally aspirated four cylinder spark ignition engine model has been

adopted as the baseline model. One of the main reasons for this selection is that

it represents the technology that is commonly available on the market today. As

discussed in [32] there are various levels of fidelity that can be adopted for modelling

the engine. Typically for a backward model, the fuel consumption of the ICE can be

represented by a fuel consumption map or a brake specific fuel consumption (BSFC)

map [33]. The fuel consumption map defines the amount of instantaneous fuel used

to produce a certain amount of torque at a particular speed. An accepted method of

scaling internal combustion engine model is by means of using Willans Lines which

are described in the next section [32].

Willans line Modelling Approach

The Willans line modelling approach was first proposed by [73], and later developed

in [32]. The aim of this section is to develop a model that can be scaled, based

on a few design parameters and sufficiently capture the changes in efficiency of the

engine based on these design parameters. The total efficiency of the engine can be

expressed as Equation 6.10, where Te and ωe represent the torque and speed of the

engine respectively and Pfuel represents the indicated power / enthalpy power. On

calculation of Pfuel, the fuel flow (ṁf ) is calculated based on Equation 6.11.

ηe =
Te · ωe
Pfuel

(6.10)

ṁf =
Pfuel
Hl

(6.11)

The primary motivation for creating a scalable engine model is to establish the

efficiency of the engine based on two quantities, piston mean effective pressure (pme)

and mean piston speed (cm). Irrespective of engine size, these two parameters are

similar for the same engine technology. When the engine is running in a steady state

condition, the two non-dimensional parameters can be calculated based on equations

6.12 and 6.13, where N , Vd and S are the number of strokes, engine volumetric size

and stroke length respectively.

pme =
N · π
Vd
· Te (6.12)

cm =
S

π
· ωe (6.13)
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By introducing one more term, fuel mean effective pressure pmf , the efficiency of the

engine based on these two parameters can be calculated by the use of expressions

6.14 and 6.15 where the values for (e) and (ploss) are a function of mean piston speed

(cm) and (pmf ).

ηe =
pme
pmf

(6.14)

pme = e · pmf − ploss (6.15)

The term e captures the thermodynamic efficiency of the engine. The term ploss

encapsulates all the mechanical losses in the engine. As discussed in [32], it is

sufficient to conduct experiments to obtain these two curves (e and ploss) to capture

the efficiency of the engine at various operating points. Further, by changing the

value of Vd, the size of the engine can be suitably adjusted. Figure 6.3 shows the

efficiency (ηe) of the engine for various values of pme and cm. Typically in high load

conditions a real engine will run rich (more fuel is injected than the stoichiometric

ratio), causing the efficiency to drop. This detail is not accurately captured by the

use of the Willans line approach. However, in the model adopted this has not been

addressed, since the engine in the PHEV always operates on the BSFC line. For the

purposes of Thesis only the volumetric size of the engine is altered for scaling the

engine. Figure 6.4 shows the fuel flow for a 0.710L engine.

Figure 6.3: Efficiency of the engine based on pme and cm
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Figure 6.4: Fuel flow of a 0.710l engine

To verify the baseline engine model, the engine model was connected to the

smart drive-train model with an automated manual transmission. The gear ratios

and shift points were obtained from [54] and [87]. Figure 6.5 shows the fuel flow

from the engine for running across the NEDC. The fuel consumption was found to

be 5.49 L/100 km. Manufacturers published data for the vehicle cites a value of 5.64

L/100 km, 2% greater than the estimated value. On this basis, the ICE model is

deemed to be of sufficient accuracy to be used within an optimisation framework.

The mass of the engine is calculated based on the work published in [32]. This

was done by comparing several engine technologies and their corresponding weights.

The proportion relating volumetric size to mass is given as 67.6kg/L.

Identification of best operating line

In the second part, the map of an EM is formulated using the scaling procedure

described in Section 6.3. The peak power of the machine is selected such that the

EM has sufficient power to match the peak power point along the BSFC line. In

order to identify the BSFC line the fuel consumption map is converted to an engine

efficiency map and combined with the electric machine efficiency characteristics.

The equation to convert fuel consumption to engine efficiency is given in Equation

6.16.

For each power point, the combination of speed and torque values which give the
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Figure 6.5: Fuel flow (petrol) for Smart drive-train on the NEDC

highest efficiency are identified. Finally for the best operating speed, torque points

corresponding to the fuel consumption is determined from the previously derived

map. Figure 6.6 shows the BSFC line and the speed, torque points which produce

that BSFC line for the same 0.710L engine.

ηBSFC(ωapu, Tapu) = min(ηeng(ωe, Te) · ηem(ωe, Te)) (6.16)
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Figure 6.6: Operating line for best specific fuel consumption

6.6 Financial Cost Model

The financial cost of each powertrain component is calculated at Stage 2 of the model

execution. Several financial cost metrics have been proposed within the literature

to quantify and evaluate different technology options within the automotive sector.

As discussed in [78], these include the procurement cost of components, their

operating cost and the residual cost or value that may be realized at the vehicle

end of life (EOL). The primary aim of this research is to quantify the financial

cost of powertrain components installed within the PHEV at the point of sale to

the consumer. Research published by the National Renewable Energy Laboratory

(NREL) in 2010 [70] quantifies system cost for the HV battery, electrical machine

and ICE.

Equation 6.17 defines the installed cost of the battery pack as a function of

peak power (Pb) and energy (Eb). Conversely, Equations 6.18 and 6.19 define the

financial cost of both the electrical machine and the ICE as a function of their

respective peak power requirements. A full derivation of the financial weightings

was completed in [70] and will therefore not be repeated here. However, it is

noteworthy that the authors include factors such as market segmentation, vehicle

class, and the expected profitability within their analysis. Validation of the empirical

relationships is provided, where the authors verify the financial cost equations for

existing commercially available EVs and HEVs:

Battery Cost =
$22.00

kW
· Pb +

$700.00

kWh
· Eb + $680 (6.17)
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Motor Cost =
$21.70

kW
· Pm + $480 (6.18)

Engine Cost =
$14.50

kW
· Pe + $531 (6.19)

Pb = Peak Power of battery Eb = Energy Capacity of battery

Pm = Peak Power of motor Pe = Peak Power of engine

6.7 Model Summary

A complete summary of the equations are given in this section. The model is a

discretised model of time t = 0, 1, 2, 3, 4... seconds. The discretisation interval of

1s is chosen because the drive-cycle data available is 1s and energy management

problems which track fuel consumption and SOC are fairly low dynamics.

The objective of the model is to calculate the amount of fuel used, the trajectory

of the SOC and financial cost of the powertrain for a given size of electric motor,

battery and engine to complete a drivecycle. The parameters chosen for scaling

these components are :

Pem(peak)= Peak power of elecrtic machine (kW)

np =Number of parallel strings of the battery

Vd = Volumetric displacement of the ICE (l)

(6.20)

Therefore for a given size of Pem(peak),np and Vd, the mass of the vehicle Mv which

is the sum of the powertrain components and the chassis mass is given as :

Mv(Pem(peak), np, Vd) = 700 + (3 · Pem(peak) − 100) + np · 9 + Vd · 67.6 (6.21)

The road tractive force Fr(t) of the PHEV is given below. It is the same equation

as the EV. It is assumed the wind resistance and the rolling resistance of the vehicle

which contributes to the road tractive force should be similar for the same class of

vehicle.

Fr(t) = 8 · 10−5 · v3(t) + 0.0241 · v∗2(t) + 0.1456 · v(t) + 146.8 · cos(α) (6.22)

from the tractive force the wheel torque can be calculated as:

Tw(t) = (Mv ·
dv

dt
+ Fr(t) +Mv · grav · sin(α)) · rw (6.23)

The wheel speed can be calculated as:

ωw(t) =
v(t)

rw
(6.24)
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Based on the wheel speed and torque the electric machine speed and torque can be

calculated as :

Tem(t) = Tw(t) ∗ gfd (6.25)

ωem(t) =
ωw

gfd
(6.26)

where the same final drive gear ratio gfd of 8.67 as the EV is used. Now that the

electric machine torque and speed are known the electric machine power can be

calculated as :

Pem(t) =
Tem(t) · ωem(t)

ηem(Tem, ωem, Pem(peak))
(6.27)

The efficiency of the machine ηem is the scaled version of the look-up table shown

on Figure 5.8. The torque axis is scaled proportional to the peak power. At this

point the total power demand can be calculated as :

Pdmd(t) = Pem(t) + Pacc(t) (6.28)

The auxiliary power demand of 1kW is carried over from the EV model. At this

point the contol input β at time t needs to be considered. The control input can

range from 0-1 and it sets the ratio of power between the engine and the ICE. Based

on the control input β the engine power and the battery power can be calculated as

:

PICE(t) = Pdmd(t) · βPbat(t) = Pdmd(t) · (1− β) (6.29)

Obviously during simulation, the value of β needs to be chosen such that the peak

power of the engine or the battery is not exceeded. During the component sizing

optimisation algorithms described in Chapter 9, these constraints are included by

penalising the minimisation function. The current at the battery is obtained by

solving the equation shown below.

Rb · ib(t)2 − voc(SOC(t− 1)) · ib(t) + Pbat(t) = 0 (6.30)

where Rb · it(t)2 is the battery efficiency losses and R is the resistance of the battery

which is calculated as shown below. The number 8.84 is the amount of resistance of

a single series string of batteries.

Rb =
np

8.84
(6.31)

voc(SOC(t− 1)) is the open circuit voltage of the battery which is a function of the

SOC similar to the EV model. When the current ib is known the SOC of the battery

at time t can be calculated as :

SOC(t) =
SOC(t− 1) ·Qb · 3600−

∫ t
t−1

ib · dt
Qb · 3600

(6.32)
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Where Qb is the capacity of the battery. At the beginning of the drive-cycle time

t = 0, the SOC is stored as the initial SOCinit. The amount of fuel used can be

calculated based on the best operating line derived from the Willans line model

described in Section 6.5.

ṁ = Best operationg line(Vd, PICE) (6.33)

Finally the cost of the powertrain can be calculated based on Section 6.6

6.8 Discussion and Conclusions

As discussed in Chapter 5, the parametrisation of the electrical components of

the PHEV model was done using experimental data obtained from a fleet of EVs

operating in the real-world. This model was then extended with scalable components

so that it can be evaluated within an optimisation framework. At this point, it has

to be understood that the design space has become quite large and the model will

not be able to sufficiently capture variations in efficiency of the system based on

external factors such as temperature. However, the author’s assertion is that the

underlying trend would be the same as the results presented in the thesis.

Data for the scalable model of the ICE were obtained from previously published

research [32]. While the results presented in [32] have been experimentally validated,

engine technology has advanced in recent years [10]. As a result, if models of such

systems were included within the optimisation routine, then it is conceivable that

the use of ICEs would be more efficient leading to further downsizing within the

battery and electrical machine.

The method of component scaling within the optimisation framework employed

within this study is widely accepted within the literature [73, 95]. Many studies have

provided experimental validation of the functions used. Within the optimization

framework presented here, the primary consideration for component scaling was

component mass as a function of the respective power requirements. The assumption

was made that this relationship is linear. However, in practice the inclusion of

secondary mass compounding effects and the use of ancillary devices may well result

in a non-linear relationship between component peak power and mass. The assertion

is made that irrespective of the exact nature of the function, the validity of the

final optimisation framework holds true. It is within the context of this thesis, to

understand the methodology and the trends within the technology. As discussed in

Chapter 10, further research may wish to explore this relationship to a higher level of

detail. In addition, consideration may also be given to other system attributes such

as component volume, particularly with respect to the battery that may constitute

a pertinent design constraint.
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The financial cost equations presented in this thesis represent the installed cost

of the main powertrain components. While the report highlights the underlying

trend between the respective components, it is noteworthy that absolute values may

vary between manufacturer and component technology.

In conclusion a framework has been built by which various PHEV can be designed

based on three key parameters: the engine volumetric size (Vd), peak power of

electric machine (Pem(peak)) and the number of parallel battery strings (np). The

developed PHEV model can be simulated over a given drive-cycle for a given control

strategy. The strategies employed are discussed in detail in Chapter 7. Finally, this

framework is used to calculate the value for various cost functions such as TTW

emissions and the evaluation of Regulation 101 in Chapters 8 and 9.
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Chapter 7

Control Strategies

The aim of this chapter is to evaluate the various control strategies used as part of

this study. As described in the literature review in Section 2.2, a PHEV will typically

have two primary modes of operation, mainly a charge depleting mode (CD) and

a charge sustaining mode (CS). Within a CD mode the vehicle operates as a zero

emissions vehicle and the battery is depleted until it reaches a lower threshold.

Conversely within a CS mode, the ICE or equivalent is used to maintain the battery

SOC within the required range. For a given journey that exceeds the zero emissions

range of the vehicle, a number of publications describe a PHEV operating initially

in its CD mode until the battery has depleted and then transitioning to the CS

mode until the vehicle has reached its destination. However, research published

in [39] advocates a third mode of operation, the charge blended (CB) mode in

which both the ICE and the electrical subsystems are optimally used throughout

the entire journey. Because the ICE is able to operate in its most efficient region

for comparatively longer, simulation results presented in [39] demonstrate an overall

reduction in TTW emissions for the journey.

The instantaneous power split between the electrical subsystems and the ICE is

calculated using the established ECMS of local cost function optimization. However,

the ECMS is extended by means of integrating it with a PI controller in order to

obtain the required SOC trajectory for the battery throughout the trip. In order to

benchmark the performance of this new approach, the resulting powertrain efficiency

is compared against that achieved with both a global optimal solution approach

(Dynamic Programming) and a rule-based approach (thermostat strategy) in which

the ICE is only activated during the CS mode of vehicle operation.

The different control strategies considered are therefore:

• Dynamic Programming (DP).

• PI-ECMS following a linear line based on journey distance (PI-ECMS-LIN).
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• PI-ECMS following a NN based predicted trajectory (PI-ECMS-NN).

• PI-ECMS following the trajectory given by DP. (PI-ECMS-DP)

• Thermostat Strategy (THERMO)

For all the various control strategies, the same vehicle model has been utilised.

The vehicle parameters are given in Table 7.1 for reference.

Table 7.1: Vehicle parameters for evaluation of control strategies

Parameters Value

Engine size 5.5x10−4m3(0.55l)

Peak engine power 36kW

Electric machine power 50kW

Number of parallel strings 12

Battery energy capacity 11.76kWh

Initial SOC 90%

Target final SOC 20%

The performance metric chosen for comparison is the TTW emissions of the

vehicle because it is the objective of the legislative requirements such as Regulation

101 [87]. This term is directly proportional to the vehicle’s fuel consumption.

In order to compare the vehicles performance for different journey distances, the

drive-cycles are repeated several times. The results for the different control strategies

are presented in chapter 8. The drive-cycles employed have been previously discussed

in Section 3.3.

7.1 Dynamic Programming

7.1.1 Background

The method of dynamic programming (DP) , developed by Bellman [41] has been

predominantly used in existing literature as discussed in chapter 2.3 for the purposes

of benchmarking control strategies. The DP approach is a powerful tool to find

the optimal solution of a nonlinear dynamic problem for a given set of boundary

conditions. Although, it can obtain the ideal control trajectory, it is a very

computing intensive task and therefore its real-time application is limited [31].

Further, the drive-cycle has to be known apriori to calculate the global optimal

solution hence it is not deemed to be practical for real-time implementation.
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To apply DP in control, the states of the system and time have to be discretized.

After discretization, a control trajectory has to be calculated such that one state

transforms to another state at each time step. The key principle around DP is

that the optimal control for each of the remaining states does not depend on the

previous ones or control decisions. Bellman has called this property the principle of

optimality [5]:

“An optimal policy has the property that whatever the initial state

and the initial decisions are, the remaining decisions must constitute an

optimal policy with regard to the state resulting from the first decision.”

Therefore, there exists a recursive relationship which has to be executed

backwards in which the cost of each decision at time t is calculated, provided the

cost has already been calculated for stage t + ∆t. The optimal cost is given as the

minimum value of the sum of costs at t and t+ ∆t.

In this chapter DP is used in order to find the maximum achievable fuel economy

to compare the performance between the different real-time controllers. Using this

DP process and a NN based power demand prediction algorithm, an ideal trajectory

is generated for PI-ECMS-NN.

7.1.2 Formulation of the DP Problem

In order to apply DP the system dynamics are written in discrete time form, and

the state and control input is also discretised. Based on the resolution chosen

for discretisation the solution space can be quite large, but a finite solution exists

which gives the optimal trajectory of control decisions. Consider a control policy

of π decisions which chooses the split in power between the engine and the battery

through the drive-cycle of total time tend. The total control policy is the reduction

in the amount of fuel used across the drive-cycle, which can be written as :

J0 = φ(SOCfinal) +

t0∑
tend

ṁf (SOCk, PICE,k, tk) (7.1)

and the optimal policy is

π∗ = arg min
π
J0(π) (7.2)

The cost-to-go Jk(π) is defined as the cost incurred in moving from the time step k

to the end of the optimal horizon, following the control decisions pi. DP is applied

in an iterative fashion every time step k, from tend to t0 as follows :

J∗
k (SOC) = J∗

k+1(SOC) + min
uk⊂Uk

ṁf (SOCk, PICE,k, tk) (7.3)

106



if a particular SOC needs to be reached at end of the trip the initial step in DP is

given as φ(SOCfinal) and it is as follows :

φ(SOCfinal) =

{
1010 ifSOC 6= SOCfinal

0 ifSOC = SOCfinal
(7.4)

Since DP is a computationally intensive process and the system has to be executed

backwards, the PHEV model developed in chapter 6 had to be simplified for efficient

calculation. Irrespective of the control decision the power demand of the driver does

not change for a given drive-cycle. In other words the power drawn by the electric

machine can be calculated and stored in advance. This calculation is based on

equations 5.3, 5.4 and 5.5 listed earlier. For convenience the EM power Pem is

called the power demand (Pdemand). It is calculated for every 1s interval since the

drive-cycle has a resolution of 1s.

Now that the power demand has been calculated, the control variable has been

assumed as PICE. Therefore, on knowing the PICE, assuming the engine is always

working on the BSFC line, the fuel consumed can be calculated from Figure 6.6.

Further, since PICE is known battery power, Pbat can be calculated by :

Pbat = Pdemand − PICE + Paux (7.5)

For a given Pbat value, the change in SOC is calculated based on equations 5.8 and

5.10. During each time step and each SOC state, the integrators in the model are

repopulated with initial values to calculate the change in SOC. Although Simulink

has the capability to process discrete states, this specific requirement of calculation

at every time step and SOC state of DP would lead to opening and closing the

Simulink model frequently. This would result in additional memory overhead and

makes it computationally unnecessarily inefficient . Therefore, it was found that

converting the Simulink model into Matlab scripts led to faster execution. In order

to verify the new script model, the change in SOC and Pdemand were compared

between the two forms of the same model when executing over the NEDC. The

results of the simulation is shown in Figure 7.1.

The only model state which needs to be calculated every time step is the SOC of

the battery. SOC was descretised with sufficient resolution, to capture the change in

SOC for the range of control inputs. Finer resolution leads to a more accurate result

but requires a longer calculation time. It was determined in existing literature that

the minimum level of resolution needed is 0.001% [14]. However with such a high

level of resolution it was impractical to simulate large drive-cycles due to simulation

time and the memory limitations of the computer. Several techniques were suggested

in [41, 14] to reduce simulation time which are discussed below:
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Figure 7.1: Comparison of M-file model to Simulink model
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7.1.3 Calculation

The execution of the DP algorithm is shown in Figure 7.2. The execution of the DP

algorithm is split into four steps :

Start

Initialise Cost grid and 
Control grid with 

fictional high cost value
and zeros respectively.

Set cost grid point
cost_grid(Tend,20% SOC) = 0

i = 90

t = Tend

t =0

i = 20

t = t-1

Papu = 0,1,2,3..Papu(max)
ΔSOC = fn(Pd,Papu,i)

cost_grid(t,i) = min(fn(Papu) + cost_grid(t+1,i+ΔSOC))
control_grid(t,i) = Papu → cost_grid(t,i) is minimum

i = i-1

Y

Y

N

N

stop

Load drivecycle
calculate Pd
Pd = fn(v)

t = 0
SOC(0) = 90

g(0) = 0
Papu(0) = 0

t =Tend

t = t+1

Papu(t) = control_grid(t,SOC(t))
SOC(t+1) = SOC(t) + fn(Pd,Papu(t),SOC(t))

g(t) = fn(Papu(t))

Y

N

Step 1

Step 2

Step 3

Step 4

Figure 7.2: Flowchart for DP algorithm

Step 1: The first step of the DP process is to initialise two large matrices with

dimensions of 100 points on the Y axis and one point per second. Figure 7.3

shows the cost grid for a resolution of 100 divisions and 100 seconds. The first
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matrix is called the cost grid and it stores the cost associated for each decision

at a particular state and time. During initialisation, individual elements within

the cost grid are stored with artificially high values. The end point at the last

time step where the SOC is targeted to finish the cost value is assumed as zero

(cost(T, 20%SOC) = 0). The second matrix is called the control grid and it

stores the corresponding control decisions.

Figure 7.3: Discretisation of dynamic programming cost grid

Step 2: The second step of the DP execution is the use of two nested loops. The

outer loop is configured such that the time index is executed in reverse from

T-1 to 0. The inner loop is configured such that it executes from 20% SOC to

90% SOC.

Step 3: The third step or the inner execution step is to determine the cost for that

particular SOC state and time. Since the objective is to reduce TTW emissions

which are directly proportional to the fuel consumed, the cost function is taken

as the amount of fuel used throughout the trip. The cost at each SOC state and

time k can be calculated as the cumulative minimum of all control decisions

at time k. This cost is represented as equation 7.6. The final minimum cost

value is stored in the cost grid and the control decision taken at each point is

stored in the control grid. The function which relates power used by the ICE

to fuel consumed is given in Figure 6.6. This process is repeated for each grid

110



point and the cumulative cost is stored. Figure 7.4 shows the surface plot for

one such cost matrix with a resolution of 100 and 10 repetitions of the NEDC

(12000 seconds).

J∗
k (SOC) = J∗

k+1(SOC) + min
uk⊂Uk

ṁf (SOCk, PICE,k, tk) (7.6)

Step 4: In the final step, after obtaining the cost and control grid, the simulation

is run forwards with an initial SOC. Each decision at time t, depends on the

value stored in the control grid for that particular SOC. This set of control

decisions gives the global optimal solution across time.

Although computing power has increased dramatically over the years, it is not

possible to have grid resolution fine enough to account for every control decision.

Therefore, several techniques were adopted to speed up computation.

7.1.4 Calculation Domain

Consider a single run of the DP process over the NEDC, with a resolution of 0.01%

for battery SOC and the model is executed with a time rate of 1s. Assume the

controller has a resolution of 50 different operating points which means, the APU

with a peak power of 40kW has a resolution of 800W . Every DP run for the

formulation of the cost matrix involves 10000 × 1200 × 50 calculations. The time

saving and efficient memory handling, ideas from [41, 14] have been adopted. These

techniques are listed below:

• In this research it has been assumed that the range of operation of the battery

is from 90% to 20%. Therefore, the battery SOC outside this range is not

considered. If the model is led to operation outside this range an artificially

high cost is included with the cost function calculation to penalise the use of

this region.

J∗
k (SOC) =


1010 SOC < SOCMIN

J∗
k (SOC) SOCMIN ≤ SOC ≤ SOCMAX

1010 SOC > SOCMAX

(7.7)

• Based on the performance limits of the various powertrain systems, the control

vector calculated for every grid point can be reduced. For example, if the

battery limit is to be exceeded for a particular APU power the change in state

for that control point is not calculated.

max(PICE(min), Pdemand − Pbat(max)) ≤ PICE (7.8)
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PICE ≤ min(PICE(max), Pdemand − Pbat(min)) (7.9)

• The control strategy itself can be considered as an additional constraint. When

the vehicle is braking, the power demand is negative and fixed, based on

the regenerative braking strategy. In these conditions the change in SOC is

calculated for one control point corresponding to the negative power demand.

The constraints are mathematically expressed in Equations 7.7, 7.8 and 7.10.

PICE =

PICE = 0, Pdemand ≤ 0

PICE = PICE, Pdemand > 0
(7.10)

• Finally, the step which led to the maximum benefit is the use of interpolation

[41]. When calculating the cost for a particular grid point at time t, even if

there is no value stored for a grid point at t+ ∆t for a particular control input

due to poor resolution, the neighbouring grid point values are interpolated. It

was found that by using this method it is possible to reduce the grid resolution

considerably.

Based on all these additional conditions the simulation time can be reduced. To

illustrate the earlier example with a SOC resolution of 0.1%, assuming 10% of the

computations violate one of the constraints and assuming 50% of the time the vehicle

is either stationary or braking, the number of computations reduces to 800×45×600.

For a SOC grid resolution of 100 divisions and 20 control point evaluations, a 2.27

GHz, 4 core processor was able to complete 10 NEDC repetitions in the region of 3

hours.

7.1.5 Discussion

The reason for the best performance of DP is analysed further in the case of 10

repetitions of the NEDC. Figure 7.4 shows the cost grid computed with DP for 10

repetitions of the NEDC. As it can be observed from Figure 7.4 in the case of the

start of the trip (t=0) the cost value is at the minimum when the battery is fully

charged at 90% SOC. This is because in the case of a lower SOC starting point

the control trajectory is influenced by not having the same amount of “free” energy

from the electrical grid. Figure 7.5 shows the corresponding control matrix. As

before, in the case of low SOC conditions the ICE would have to charge the battery

to complete the drive-cycle leading to large PICE values.

The power demands across the trip when executing the model forward from 90%

SOC are shown in Figure 7.6. In order to understand the Figure better, a snippet of
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Figure 7.4: Dynamic programming cost grid

Figure 7.5: Dynamic programming control grid
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the 3rd repetition of the NEDC is shown in Figure 7.7 for reference. It is noteworthy

that rather than operating the ICE at the component’s best efficiency point which

is 18kW, the control trajectory is actively attempting to avoid charging the battery.

On further investigation it was identified that the efficiency path from the ICE to

the battery and then to the wheels is lower than the path from the ICE to the

wheels directly. There have been several studies such as [32] which use a rule based

control strategy that operates the ICE at the component’s best efficiency point. The

advantage of such a rule based strategy is that it can be applied in real-time and

it is simple to implement. However it is argued that these controllers would have a

degraded performance within these regions of vehicle operation.

Figure 7.6: Dynamic programming power over 20 repetitions of NEDC

An important factor which has to be taken into account is that the grid resolution

may affect the global optimum result. In order to understand the impact of the grid

resolution, a study was undertaken in which 20 NEDCs are repeated for the given

PHEV, with different grid resolutions. The impact of which is shown in Figure 7.8.

Due to interpolation, it is possible to achieve a DP solution with a very low grid

resolution of 20. However, as the grid size is increased the TTW emissions decrease

by as much as 7% when the resolution is 200. This is because when the grid resolution

is low the APU does not respond quickly to changes in SOC. The SOC traces for

different grid resolutions are shown in Figure 7.9. As it can be seen with a resolution

of 20, the PHEV has to charge sustain from 4000s to complete the drive-cycle. Figure

7.10 shows that the APU power delivered for SOC grid resolutions 20 and 200. To
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Figure 7.7: Dynamic programming power over 3rd repetition of NEDC

understand the effect of different resolutions, the 6th NEDC repetition is shown in

Figure 7.11. It can be observed that the APU is delivering power for longer periods

causing the increase in fuel consumption and the corresponding increase in TTW

emissions. It was found that with further improvement in grid resolution, beyond

200 the global optimal result does not change by more than 0.1%. Therefore a grid

resolution of 200 was selected for further simulations.

115



Figure 7.8: Dynamic programming result for different grid resolutions - TTW

emissions

Figure 7.9: Dynamic programming result for different grid resolutions - SOC
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Figure 7.10: PICE for different grid resolutions and 10 NEDC repetitions

Figure 7.11: PICE for different grid resolution and the 6th NEDC repetition
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7.2 Equivalent Fuel Consumption Method

The ECMS of local cost function optimization was first proposed by [69] for a

HEV and later refined and extended within a number of research publications

[62, 28, 29, 31, 30]. For a given value of driver demand power Pdmd, optimization

of the energy consumption within the PHEV is achieved by selecting the optimal

instantaneous power split (β) between the APU (PICE) and HV battery (Pbat) while

adhering to the minimum and maximum power constraints within the PHEV. The

local optimiser evaluates the sum of fuel (g) used by the ICE and the equivalent

amount of fuel (gequiv) used to charge and discharge the battery at a future time.

The local optimisation problem is written as:

min
β

ṁ(PICE(β)) + ṁequiv(Pbat(β)) · ζ

subject to PICE = β · Pdmd
Pbat = (1− β) · Pdmd
PICEMIN

≤ PICE ≤ PICEMAX

PbatMIN
≤ Pbat ≤ PbatMAX

where

β is a ratio which determines the amount

of power from ICE and battery

ζ is an external tuning parameter which needs

to be set to maintain a constant SOC

(7.11)

The term ṁ represents the instantaneous mass flow rate of fuel from the ICE

and ṁequiv represents the equivalent amount of fuel used by the battery to deliver

Pbat. Finally ζ defines the charge-sustaining penalty function. The value of ζ can

be expressed as a penalty term which influences the use of the battery. Figure 7.12

shows the cost curve for a power demand of 10kW and different values of ζ. As the

value of ζ increases the cost of using the battery increases causing the minimum

value of β to become greater than 1. In this case the ICE is charging the battery.

As described in the Literature Review in Section 2.3, the value of ζ is typically

expressed as a static lookup table which is a linear or sigmoidal function of the

SOC. This is done so that the HEV will charge sustain within a particular SOC

range. An important consideration is the zero power point of the ICE or ζ = 0. In

this research the value of ζ is calculated from an outer proportional plus integral

(PI) control loop. The output from the integral term of the controller is saturated

between the values of 0 and 10 in order to avoid potential instability through the
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occurrence of integral windup. However, it is noteworthy that for the drive-cycles

evaluated the controller limits were never exceeded.

Figure 7.13 presents the structure of the improved PI-ECMS control system.

Having an outer control loop based on SOC trajectory gives an improvement of

4%-7% compared to the base ECMS strategy.

Figure 7.12: Cost function values for different values of ζ

Figure 7.13: Layout of PI-ECMS controller

In order for this technique to be successfully applied to a PHEV as part of a CB

energy management strategy, the desired set-point trajectory of SOC across the trip

(SOCref ) must be known in advance.
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7.2.1 PI-ECMS Following a Linear Line Based on Journey

Distance (PI-ECMS-LIN)

The authors in [39] state that the performance of a CB controller is maximum

when the battery energy is completely used at the end of the trip. The theory was

verified by the authors using DP to find the ideal trajectory. Based on this fact a

linear trajectory was developed based on journey distance. Figure 7.14 presents the

reference trajectory, in which SOC is a linear function of journey distance.

Figure 7.14: Linear SOC trajectory based on distance

Comparison of ECMS and PI-ECMS

In order to compare the ECMS controller to the PI-ECMS controller, consider the

repetition of 10 NEDC runs as a case-study. In the case of the PI-ECMS controller,

the SOCref is a linear trajectory based on distance. The ECMS controller is designed

to charge sustain at 30% SOC. The engine ON-OFF periods and the corresponding

power demands are shown in Figure 7.15 (a) and (b) for the ECMS controller and

(c) and (d) for the PI-ECMS controller respectively. As it can be observed from

Figure 7.15(a) and (c), the engine is ON for longer periods with the PI-ECMS

controller. However, on comparing Figure 7.15 (b) and (d), in the case of PI-ECMS,

PICE never exceeds the driver power demand. Due to this the overall efficiency of

the powertrain across the drive-cycle is improved. The TTW emissions in the case

of PI-ECMS (69.76gCO2/km) when compared to ECMS (77.55gCO2/km) has an

improvement of 10%.
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Figure 7.15: Comparison of ECMS and PI-ECMS
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7.2.2 PI-ECMS Following a NN Based Predicted Trajectory

(PI-ECMS-NN)

In the second case, it has been assumed that with current and future GPS and

tracking technology the road-type covered for particular distances would be known

in advance. As a case study one NEDC is presented. Based on the road-type and

distance covered it is possible to build a predicted power demand based on average

power and speed of the drive-cycle employed. The three drive-cycles chosen for

analysis are different in terms of speed and acceleration. Therefore, the average

powers were calculated as three different usage profiles. The values for the various

road-types are shown in Table 7.2. On comparing the different drive-cycles in

Figure 7.16 and 7.17 the variations in power demand are clear. This is true

specifically in the motorway section. The real-world route has particularly low

power demands due to the fact that the original vehicle was under-powered and

had a low top-speed. It is important to note that the power values are specific for

this particular vehicle configuration and would have to be recalculated based on the

PHEV model generated.
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Figure 7.16: Average speed values used for prediction in PI-ECMS-NN
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Figure 7.17: Average power values used for prediction in PI-ECMS-NN

Figure 7.18 shows the predicted road-type and the corresponding average speed

for one NEDC. In order to predict the power demand across time, the first step

is to integrate the average speed values with respect to distance to calculate time.

Finally, based on this new time vector and populating the corresponding average

power values the new power demand is predicted. This is shown in Figure 7.19. Since

the estimated power demand is based on average values, the peaks of instantaneous

power demands are not matched. However, it is important to note in terms of

energy used, as shown in Figure 7.20, that the trends are very similar. This fact

is significant since this enables the ECMS controller to achieve a battery depletion

rate that finishes exactly at the end of the trip.

By running a DP algorithm for this predicted power demand an ideal battery
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Figure 7.18: Predicted average speed values based on road-type

Figure 7.19: Predicted power demand across time
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Figure 7.20: Predicted energy demand across time

SOC trajectory can be generated as the set-point for the ECMS controller. However,

in order to implement a realistic scenario, the DP algorithm would have to generate

the SOC trajectory within the first few minutes of the journey. In order to achieve

this the SOC grid resolution was reduced to 100 i.e: 1% SOC and the time axis

was interpolated every 10s. With this setup 10 repetitions of the NEDC were

completed in 3.5 minutes on a standard desktop machine. It is conceivable, when

implementing such a system in the real-world that the PHEV would be able to

download the ideal trajectory over the internet or through some form of intelligent

transport infrastructure.

7.2.3 PI-ECMS Following the Trajectory Given by DP

(PI-ECMS-DP)

As a final variation of the ECMS, the ideal trajectory from a DP simulation is used

as the target set-point for the controller. This value can be used to evaluate the

performance of the PI-ECMS feedback loop. Further discussion on the performance

of this controller is provided in chapter 8 and will therefore not be repeated here.

The trajectory was included as a benchmark of the ECMS controller’s performance

against the DP’s in order to evaluate the best performance of the ECMS controller

if the ideal trajectory is known. The gains of the PI controller were obtained from

experimentation to match the performance of the DP solution. However, the most
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appropriate values for the gains were also drive-cycle dependent. Nevertheless, the

overall variation in TTW emissions from the DP trajectory were less than one

percent, as discussed in chapter 8. Therefore, the tuning of these values can be

ignored.

7.3 Thermostat Control Strategy

A rule based thermostat controller has been used for comparison. Specifically when

implementing a component sizing framework in chapter 9, it is not possible to

implement DP due to the prohibitive computational load. The thermostat controller

turns on the engine when the battery reaches 20% SOC and turns off the engine

at 30% SOC. The upper threshold point can be tuned to improve the performance

of the controller. By this method the controller achieves the two typical operation

modes for the vehicle, the CD mode and the CS mode. The controller operated

the engine at the best efficiency point of the engine except when the limits of the

battery have been exceeded. Figure 7.21 shows the working of the controller for the

real-world route.

Figure 7.21: Operation of the controller over one of the recorded drive-cycles
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7.4 Conclusions

The objective of this chapter was to describe the various control strategies used in

this thesis. As described in chapter 2, the global optimal solution was determined

using the DP method. This method will then be used as a benchmark for comparison

in chapter 8. A novel control strategy was proposed based on the established ECMS

controller. The addition of an outer PI loop to the instantaneous optimal controller

enabled the addition of a journey predictive target based on SOC. The key finding

would be to determine the ideal SOC trajectory across a journey to minimise the

fuel consumption across a trip. This SOC trajectory was obtained using several

methods, including a linear line method based on journey distance (PI-ECMS-LIN)

and a NN based predictive method (PI-ECMS-NN). Finally, a traditional thermostat

based method is also described for evaluation. This method due to its simplicity

and reduced computational load will be used as the benchmark for the component

size optimisation algorithim in chapter 9. The evaluation of these controllers and

the comparison of the advantages and disadvantages of each are described in chapter

8.
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Chapter 8

Evaluation of a PHEV

The aim of this chapter is to evaluate the various control strategies proposed and the

“best” solution is adopted within the optimisation framework. The three different

drive-cycles proposed in Section 3.3 are used to consider duty-cycle variations. The

PHEV parameters previously stated in Table 7.1 are used for comparison of the

various control strategies. As discussed in chapter 2, establishment of a gCO2/km

for a PHEV becomes very difficult, since the value is very closely linked to the driver

usage pattern. For example, consider two different usage patterns. In one case, the

PHEV has an AER which is larger than the commute distance of the driver and

the driver charges the vehicle everyday. The TTW gCO2/km will be zero, since the

ICE is never used. But, in the second case, the PHEV may have the same AER but

the commute distance of the second driver is larger than the AER and the driver

does not charge the vehicle everyday. This implies that the gCO2/km will be higher

since he would have to make use of the ICE for his daily commute.

In order to evaluate the performance of the controllers the drive-cycles are

repeated for increasing distances. By interpolating these distances for a given weekly

usage profile it is possible to determine the average gCO2/km for each driver. The

dataset for the weekly usage profile is taken from the Mini Dataset described in

Section 3.2. These results are compared to the legislative test result of gCO2/km.

The legislative standard used is from the United Nations Economic Commission for

Europe and is termed as Regulation 101. The methodology of how it is applied to

the simulation is given in Section 8.2. A more in-depth study of Regulation 101, is

presented in Section 8.2.

8.1 Evaluation over Drive-Cycles

For each of the three drive-cycles, the TTW emissions and the relative performance

of the controller to the solution provided by DP is shown. Table 8.1 shows the
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Table 8.1: Repetitions of different drive-cycles

drive-cycle Number of repetitions Total Distance (km)

NEDC [2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 35 40] 437.2

Real-World [1 3 5 7 9 11 13 15] 420.6

ARTEMIS [1 2 3 4 5 6] 438.12

number of repetitions covered for each of the drive-cycles.

Figures 8.1 and 8.2 show the performance of the controllers over the NEDC.

During the first two repetitions of the NEDC, there are zero TTW emissions.

Therefore, these cycles are within the AER of the PHEV. For the next repetition

of the NEDC (6 repetitions) the gC02/km varies by only 6 gCO2/km between the

DP and the thermostat, but in terms of percentage it varies by more than 15%.

This is influenced by the relatively shorter distance, which amplifies the percentages

of the gCO2/km when compared to longer distances. The PI-ECMS-DP has a

mean increase of 1.7% gCO2/km for the various repetitions when compared to the

DP solution. Therefore these results indicate that given the ideal SOC trajectory,

it is possible to achieve the global optimal solution in real-time. The algorithm

PI-ECMS-NN is a DP solution that is based on average power values, and the fuel

consumption is within 3.5% compared to the DP solution. It is envisaged that

if the controller is implemented in real-time (where the table of power values per

road-type can be updated), this controller’s performance would further improve.

All the controllers perform better than the traditional thermostat, which has a

mean increase of 13% compared to the solution provided by DP. It is noteworthy

that PI-ECMS-LIN performs within 1.5% to PI-ECMS-NN. Hence, it is possible to

improve the performance of a controller by simply knowing only the distance of the

trip.

On comparing Figure 8.3 and 8.1, it was observed that the average gCO2/km for

this particular PHEV configuration is lower for the real-world route when compared

to the NEDC. This is primarily attributed to the regenerative braking opportunities

available during the real-world route. Again it can be observed from Figure 8.4 that

the trends are similar to the thermostat controller and benefits from 17% to 5% can

be realised.

Finally, the TTW emissions for the ARTEMIS drive-cycle are shown in Figures

8.5 and 8.6. The TTW emissions have increased by approximately 10% compared

to the NEDC. It is interesting to note that due to the high power demands there is

no AER for the vehicle. The performance of the PI-ECMS-DP when comparing to

the DP solution is within 0.15%. This implies that with specific tuning of the PI

controller for a given drive-cycle, it is possible to achieve the global optimal solution.

130



Figure 8.7 shows the different SOC trajectories for 5 repetitions of the ARTEMIS

drive-cycle. It is important to note that the linear SOC trajectory is made to be

linear with distance and not linear with time.

In conclusion, the ECMS based controllers are close to the global optimal solution

(1%− 5%). Therefore, on implementation of these controllers in the real-world they

would be able to achieve the maximum capabilities of the system for the given

usage profile. It has to be noted that the difference in performance between DP

and PI-ECMS-DP solutions, though they have the same reference SOC trajectory,

is due to the tuning of the gain values of the PI controller. A high value for

these two constants makes the controller react aggressively causing unnecessary

charging events (power flows from the APU to the battery). A very low value for

the gains means the controller is not able to follow the SOC trajectory accurately

giving a sub-optimal performance. It was possible to tune the values such that

the PI-ECMS-DP is able to achieve the global optimum, however it was found

these values where sensitive to the distance of the trip and the characteristics of

the drive-cycle. Therefore, as a realistic tuning scenario the values where tuned

manually such that they worked across the different drive-cycles compromising the

performance to within 2% of the DP solution.

The results presented imply that there is only a very marginal difference between

the PI-ECMS-LIN and PI-ECMS-NN. For the NEDC this could be attributed to

the fact that the drive-cycle is quite short (11km) and repetitive. This difference

is also not seen in the ARTEMIS cycle which is a relatively long cycle (73km).

The difference between the control strategies is less than 1%. On considering

component sizing in chapter 9, where computational load is a significant priority,

the PI-ECMS-LIN controller has therefore been adopted.
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Figure 8.1: TTW emissions - NEDC
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Figure 8.2: Percentage improvement - NEDC
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Figure 8.3: TTW emissions - Real-World drive-cycle
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Figure 8.4: Percentage improvement - Real-World drive-cycle
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Figure 8.5: TTW emissions - ARTEMIS drive-cycle
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Figure 8.6: Percentage improvement - ARTEMIS drive-cycle
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Figure 8.7: SOC trajectories for different control strategies (5 repetitions of

ARTEMIS)

8.2 Regulation 101

For the purposes of implementation of Regulation 101, the vehicle parameters

implemented are given in Table 7.1. The procedure of how Regulation 101 is applied

is given below.

1. The vehicle is first run in pure electric mode to establish the AER of the

vehicle. In this case the drive-cycle is repeated until the battery is completely

depleted to the minimum SOC (20%) from maximum SOC (90%). The value

is recorded as (De). In this case it was determined as 74 km.

2. In the second run the vehicle is in operation as a hybrid vehicle and it is run

over the same drive-cycle once, from the maximum SOC (90%). It establishes

the geqCO2/km (M1) and fuel consumption L/100km (C1) for that cycle.

After the cycle is completed the amount of electric energy needed to charge

the vehicle back to (90%) is noted and is recorded as E1. The values calculated

for the PHEV under investigation are M1 = 0geqCO2/km, C1 = 0L/100km

and E1 = 199.37Wh/km. The fuel consumption is zero because the vehicle

is able to complete the cycle as a pure EV. Figure 8.9 shows the run and the

APU power throughout the cycle is zero.
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Figure 8.8: Establishment of All-Electric Range of Vehicle

Figure 8.9: Second stage of establishing consumption figures based on Regulation

101
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3. In the third run the vehicle is evaluated over the same drive-cycle in hybrid

mode. However, the initial SOC is the minimum SOC of the battery (20%).

Figure 8.10 shows the vehicle running over the NEDC with a low SOC. The

APU turns on at the start of the drive-cycle when there is a low SOC and

turns off when SOC reaches 30%. A new set of figures M2, C2 and E4 are

established. In this case, at the end of the cycle, the battery is recharged

to the maximum SOC (E2). Then, E4 is the difference in electric energy

consumption between charging the battery from minimum SOC (E3) and E2.

The values calculated for the PHEV model under investigation are M2 =

124geqCO2/km, C2 = 5.2L/100km and E4 = 0Wh/km. In this scenario,

the vehicle is performing much lower than a typical EV or a conventional

ICE powered vehicle since the PHEV is carrying a heavy empty battery pack.

It is noteworthy that the fuel consumption during this cycle has a strong

relationship with the supervisory control strategy implemented on the vehicle.

As discussed in chapter 2, there could potentially be significant improvement

in vehicle performance by improving the supervisory control strategy.

Figure 8.10: Second stage of establishing consumption figures based on Regulation

101

4. Finally, the various figures are calculated based on the formulas 8.1, 8.2 and

8.3. The value Dav is stated as 25km [87]. Regulation 101 considers this

to be the average distance the vehicle will be driven with a low SOC and

in hybrid mode. In this case, since the PHEV has a considerably large

AER (De is 70km). The overall emission figures are small when compared

to a conventional vehicle. The vehicle will be rated with 31.35gCO2/km

carbon dioxide emission, 1.33L/100km fuel consumption and an electric energy
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consumption of 149.2Wh/km.

M =
M1 ·De+M2 ·Dav

De+Dav
(8.1)

31.35 =
0 · 74 + 124 · 25

74 + 25

C =
C1 ·De+ C2 ·Dav

De+Dav
(8.2)

1.33 =
0 · 74 + 5.2 · 25

74 + 25

E =
E1 ·De+ E4 ·Dav

De+Dav
(8.3)

149.2 =
199.37 · 74 + 0 · 25

74 + 25

In the regulations, there are further conditions such as maintenance methods

and procedures for discharging the batteries. However, the above method manages

to capture some of the most important procedures for establishing the fuel economy

figures. As discussed below, it becomes apparent there are a number of different

ways in which it is possible to trade electric range and fuel consumption within a

PHEV design.

8.3 Regulation 101 Response Surface

To understand the effects of component selection on the vehicle’s fuel economy over

Regulation 101, various parameters are shown as contour plots. Different engine

sizes and battery sizes were considered to form the response surface. Although it

does not cover the entire solution space of all the design parameters (size of the

drive EM, size of the EM in the APU, number of series cells in the battery and

the final drive gear ratio can be altered in the model but are not considered for

this optimisation) it provides a valid trend of the implications of sizing components

within the context of Regulation 101. Since the response surface can be depicted as

a surface for only two parameters, the engine size of the APU and the number of

parallel strings of the battery are altered to plot the response surface. The engine

size is varied from 500cc to 1200cc in steps of 200cc and the battery energy capacity

is varied from 5kWh to 25kWhh in steps of 1kWh. The EM is fixed at 40kW
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so that the EM is always powerful enough to meet the driver demands. The fuel

consumption and energy consumption figures were calculated based on Regualtion

101 and the results for different powertrain configurations are shown in Figures 8.11

to 8.15.

Regarding Figure 8.11, if considered from bottom to top, as the battery energy

capacity increases the gCO2/km decreases. However, the differences are quite

marginal after the battery size increases over 16kWh. The initial steep drop for

battery sizes up to 10kWh is the decrease in the value of M1 in Regulation 101. For

battery sizes beyond 10kWh, M1 is 0. After 20kWh the gCO2/km is fairly constant

with increasing battery energy capacity and the same engine size. Therefore, from

a pure legislative point of view, a battery size of more than 20kWh is not needed.

Two PHEV cars with different market categories are the Fisker Karma and the

Chevrolet Volt. They have a battery capacity of 20.1kWh and 16kWh respectively.

The legislative cycle could have had an influence in the selection of the drive-train

components.

Figure 8.11: gCO2/km emissions from tank to wheel for different vehicle

configurations

An important consideration to be made is that Regulation 101 does not favour a

CB approach. Because, of the way the test procedure is structured it is split into a

CD mode and CS mode, hence the advantages of a CB approach cannot be observed.
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It is interesting to note that there are quite a large number of combinations that

can produce the same gCO2km
−1. Therefore, there could be choices in which the

peak vehicle power can be increased with a bigger engine (900cc - 1200cc) with no

appreciable difference in the fuel economy. This flexibility could be exploited by

vehicle OEMs for different user requirements.

The electric energy consumption is shown in Figure 8.12. As the battery energy

capacity increases, the electric energy consumption increases. This is primarily due

to the increase in mass of the vehicle.

Figure 8.12: Electric energy consumption for different vehicle configurations

The AER is shown in Figure 8.13 as is proportional to the battery energy

capacity. It is fairly insensitive to engine weight increases.

The final two graphs 8.14 and 8.15 show the cost and the mass of the various

powertrain combinations. The financial cost represents the cost of the powertrain,

and as can be expected, the cost is biased towards the battery and increases sharply

with increase in battery size. The mass equations penalise batteries more than ICE

which can be observed in Figure 8.15.
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Figure 8.13: AER for different vehicle configurations

Figure 8.14: Cost for different vehicle configurations
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Figure 8.15: Mass for different vehicle configuration

8.4 Evaluation in the Real-World

To compare the potential performance of the PHEV in the real-world to the

Regulation 101 cycle, the Mini programme data is used. The PHEV chosen

for comparison contains the same case study parameters in Table 7.1. For that

particular PHEV configuration, it was determined that the Regulation 101 result

was 31.35gCO2/km. From Figure 8.3, based on interpolation the gCO2/km for

each individual trip can be calculated for comparison. The driver aggressions, usage

profile is assumed to be similar to NEDC. Based on the total gCO2 emitted the

gCO2/km per week can be calculated. Figure 8.16, shows the spread of gCO2/km

per week for 40 drivers of the Mini programme. As it can be observed, the CB

approach is very close to the DP solution. The thermostat solution performs 16%

worse off when compared to the CB approach when calculated across the week.

It is interesting to note that the Regulation 101 when considered across the week

performs worse off by more than 35%
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Figure 8.16: Performance of the PHEV in the real-world

Figure 8.17: Performance of the PHEV in the real-world - percentage variation
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Table 8.2: Comparison of performance of control strategies with AVL data

DP PI-ECMS-LIN THERMO Regulation 101

Average gC02/km 19.51 20.20 22.24 31.35

Variation from DP N/A 3% 12% 38%

Variation from Reg 101 38% 36% 29% N/A

8.5 Conclusions

The various control strategies which were developed in chapter 7 were evaluated for

a number of different case studies in chapter 8. It was determined that the journey

distance is one of the key factors which affects the performance of the controllers.

On comparison of traditional thermostat method to the global optimal solution the

fuel consumption reduces by as much as 15%. The novel control strategy proposed

in chapter 7 was consistently within 5% of the DP solution. The PI-ECMS-LIN

strategy performs within 1.5% of the PI-ECMS-NN. Therefore, PI-ECMS-LIN was

assumed to have the ideal trade-off between computational load and predictive

capabilities. This strategy is then used within an optimisation framework in chapter

10. The thermostat controller was on average 17% worse off than the PI-ECMS-LIN

method. The research presented in chapter 10 shows the potential benefits of

downsizing due to the adoption of a journey predictive energy management strategy.
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Chapter 9

Component Sizing of PHEV

9.1 Introduction

The objective of this chapter is to present the optimisation framework by which

component downsizing can be realized. It can be achieved by adoption of an

advanced control strategy. The first part presents the case study and the framework.

The second part of the chapter focusses on the analysis of the results for a range of

different vehicle usage profiles.

9.2 Case-Study for Component Sizing

Three different drive-cycles were employed as part of the analysis; the NEDC, the

ARTEMIS cycle and a real-world cycle previously discussed in Section 3.3 and in

Table 9.1. For each drive-cycle, four optimisation studies have been undertaken

using the PHEV model presented in chapter 7 and comparing the various control

strategies from chapter 8. For each optimisation run, the AER of the PHEV was

changed from 48, 64, 80 and finally 96 km (30, 40, 50 and 60 miles). Each of these

AER values are classified as Design Cases 1, 2, 3 and 4 respectively. As discussed

in 2.3, when considering the application of a CB strategy within a PHEV, the

term AER is no longer applicable. Within the context of the results presented in

this research, the baseline for comparison between the different energy management

approaches is the equivalent CO2 production over the drive-cycle.
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Table 9.1: Characterization of the different drive-cycles

Parameters NEDC Real-World ARTEMIS

Distance 10.93 km 29.83 km 73.02 km

Top Speed 33.33 m/s 28.04 m/s 36.60 m/s

Maximum Acceleration 1.04 m/s2 3.23 m/s2 2.86 m/s2

Number of repetitions 10 7 2

Total distance covered 109.32 km 208.81 km 146.04 km

9.3 The Optimisation Algorithm

The optimisation algorithm employed in this chapter is a local optimiser. This

method has been adopted due to the fact that it is iteratively possible to work out

the optimal solution. As described in the literature review in chapter 2 commercial

software such as PSAT and Advisor have a prescribed rule-based algorithm to

determine the best feasible size. However, the iterative algorithm does not extend

to optimising the control strategy. A local optimal solution which is present

within MATLAB as the function; fminsearch and represents a derivative-free local

optimisation routine is selected. For a given set of initial values of the free

parameters, the optimiser makes use of a neighborhood search method to identify

the local optimal solution. From a review of existing literature, this algorithm has

not been previously employed for optimising the powertrain components within a

PHEV. However, within the broader context of automotive design, the algorithm

has been successfully used for parameter estimation to predict capacity degradation

within a battery [81] and for identifying the optimal transmission ratios within a

hydraulic hybrid vehicle [13].

A full description of the optimisation routine underpinning fminsearch and the

method for detecting convergence is provided in [47]. The optimisation method

employs the Nelder-Mead simplex algorithm. A simplex is defined as a set of n + 1

points, where n represents the number of parameters to be optimised. For example,

in the case where n = 2, the simplex forms a triangle around the initial solution. For

a given cost function, the optimisation routine evaluates each point on the simplex

to identify if it represents a better performing solution. If one is found, then a new

simplex is created around that individual. Convergence is reached, when the size of

the simplex has been sufficiently reduced and a better performing individual cannot

be identified within the local search space [47].
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9.3.1 The Optimisation Framework

As shown in Figure 9.1, in order to quantify the component downsizing opportunities

associated with the use of a CB energy management approach within a PHEV, a

three stage optimisation process has been employed:

FIX AER

Find smallest feaslible
component size

Assign smallest
component sizes

Run Simulation

Pem > 
Pem(max)

Pd > 
Pice + Pbatt

Increase EM size

Increase ICE size

AER < 
target AER

Increase Batt size

Return
component sizes

Use fminsearch with AER cost function (J1)
with initial start point

Use fminsearch with CB cost function (J2)
with initial start point as result ofAER simulation

STOP

Display AER and
Cost reduciton Results

Yes

No

Yes

No

Yes

No

Figure 9.1: Overall component sizing procedure

Stage 1: Firstly, for a given AER and drive-cycle, the PHEV model developed

in chapter 7, is executed within an iterative loop. Initial conditions for the energy

capacity of the HV battery, the peak power rating of the electrical machine and

volumetric size of the ICE are defined as; 9 kWh, 10 kW and 0.5 L respectively. For

each execution of the model, if a component constraint is exceeded, the simulation

terminates and then restarts with an increased component size. If the PHEV is able

to meet the power requirements of the drive-cycle, and the HV battery is depleted

to the lower threshold, the simulation terminates and the parametrisation set for the

powertrain is deemed to represent the smallest feasible set of components for that

drive-cycle and target AER. For this initial simulation the upper threshold of the

thermostat strategy is fixed at 30% SOC. It is noteworthy that a similar approach
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is adopted within the commercially available PSAT simulation environment for the

sizing of EV and HEV powertrain components.

Stage 2: In the second stage the objective is to find the optimal component sizes

with CD control strategy. Each vehicle combination is denoted as X with these

parameters as an array.

• Engine volumetric size (V d);

• Electric machine power (Pem(peak));

• Battery number of strings in parallel (np);

• Upper threshold calibration for the thermostat controller (SOCUP ).

The cost function to be optimized is given as.

min
X

J2

subject to 0 ≤ PICE ≤ Pice(peak)

Tem ≤ Tem(scaled)

Pb(min) ≤ Pb ≤ Pb(max)

where X is the vector of free parameters given by

X = [Vd, Pem(peak), np, SOCUP ]

and the cost function J2 is defined by

J2 = fn1(AER(X)) + fn2(CO2(X))

where

fn1 and fn2 mappings are shown in figure 9.2

(9.1)

The results from Stage 1 provide the initial conditions for each of the above

input parameters. For each iteration of the optimiser, the PHEV model derived

in Section 3 is executed to ascertain the vehicles AER and CO2 emissions. These

values are then weighted by parabolic functions fn1 and fn2 within J2 which are

presented in Figure 9.2a and 9.2b. The weighting of the two parameters of the

cost function were calibrated such that the optimisation returned the desired AER.

If any of the constraints are violated an artificially high number is returned to

the optimiser to deem the set of inputs as infeasible. For the final set of PHEV

powertrain components, Equations 6.17 6.18 and 6.19 were used to calculate the

financial cost of the powertrain.

For a given drive-cycle and target AER, the output from Stage 2, is a re-optimised

set of PHEV powertrain components, including the upper threshold calibration for
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(a) Parabolic equation fn1 (b) Parabolic equation fn2

Figure 9.2: Cost function curves fn1 and fn2 for component sizing

the thermostat strategy. When comparing the results from Stage 1 and Stage 2,

it is noteworthy that the optimised set of PHEV powertrain components does not

necessarily equate to the smallest feasible component sizes. For example, it has been

observed that the optimisation routine may return a larger electrical machine, to

facilitate greater levels of regenerative braking during the drive-cycle.

Stage 3: For the same drive-cycle and AER, the final stage (Stage 3) of the

optimisation framework is to quantify if further PHEV component downsizing can

be realized through the use of a CB energy management strategy. The optimisation

routine is seeded using the resultant values from Stage 2. Once again, for each

data-set of engine volumetric size, number of parallel strings and EM peak power,

the PHEV model is executed with the improved ECMS (PI-ECMS-LIN) approach.

The same constraints are applied as Stage 2. With the CB approach, a linear

line defines the target SOC profile across the drive-cycle. The ECMS defines the

instantaneous optimal power split between the ICE and the HV battery. For each

PHEV solution, the resultant CO2 emissions and the financial cost of the hybrid

powertrain are calculated, using Equations 6.17 6.18 and 6.19. In order to solve J3,
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the weighting functions fn3 and fn4 are applied within the cost function J3:

min
X

J3

subject to 0 ≤ PICE ≤ Pice(peak)

Tem ≤ Tem(scaled)

Pb(min) ≤ Pb ≤ Pb(max)

where X is the vector of free parameters given by

X = [Vd, Pem(peak), np, SOCUP ]

and the cost function J3 is defined by

J3 = fn3(CO2) + fn4(cost)

where

fn1 and fn2 mappings is shown in figure 9.3

(9.2)

(a) Parabolic equation fn3 (b) Parabolic equation fn4

Figure 9.3: Cost function curves fn3 and fn4 for component sizing

The constraints applied to the optimisation are as previously defined by

Equations 9.2. A plot of the parabolic functions, fn3 and fn4, are presented in

Figure 9.3a and 9.3b. The relatively high weighting of fn3, ensures that the required

target CO2 values are achieved, thereby facilitating an equitable cost comparison

to be made between those PHEV solutions that employ the traditional thermostat

strategy and those that have been re-optimised using the improved ECMS approach

to energy management.
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9.4 Results

The results of the optimisation study are shown in Table 9.2. As stated in Section

9.2 four different case studies are considered with AERs 30, 40, 50 and 60 miles

respectively. For each of these case studies the three different drive-cycles NEDC,

Real-world and ARTEMIS are considered. In Table 9.2, the case studies are arranged

as columns and drive-cycles are arranged as rows. For illustration, the Design Case

2 with the NEDC is discussed in detail.
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Execution for Design Case 2 and NEDC Drive-cycle

1. The first stage of execution is the iterative algorithm to determine the

smallest feasible component sizes which would complete the drive-cycle with

the traditional thermostat control strategy. The working of this algorithm is

shown in Figure 9.1. The algorithm was executed with the upper threshold

fixed at 30. The output of that iterative algorithm returned an engine size of

525cc (17.5kW) , 38 kW EM and 17 strings in parallel (16.6 kWh).

2. The second stage of execution is to use the component sizes from the previously

executed iterative algorithm as the initial condition for optimisation with

fminsearch. Equation 9.1 is used as the cost function and as before the

objective was to obtain the lowest gCO2/km with 40 miles AER. The main

difference is that one of the control parameters is also one of the input

parameters for the optimisation, therefore the best performing individual with

a “tuned” thermostat controller is obtained. Figure 9.4 shows the convergence

for the optimisation. In the first two iterations the AER was exceeded due

to the simple sizing strategy executed in Stage 1, which caused a high cost

function value. From Figure 9.5 it is observed that after obtaining the correct

AER the algorithm then optimises for fuel consumption. The optimised values

for the thermostat as shown in Table 9.2 is engine size of 507cc, EM size of 41

kW and battery energy capacity of 15.82 kWh. An important consideration

when execution of Design Case 1 was the energy and power ratio of the battery

was linked, causing the AER of 30 miles to be exceeded by 1.5 miles.

Figure 9.4: Fminsearch algorithm with cost function J2

3. The final stage of execution is the optimisation of the powertrain components

with the CB strategy. The optimised values from Stage 2 are used as inputs
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Figure 9.5: Fminsearch algorithm with cost function J2 - expanded

to the simulation. The improvement of the cost function value through the

iterations is seen in Figure 9.6. As shown in Table 9.2, with CB strategy the

new component sizes are engine size of 531cc, 36kW EM size and 15.22 kWh

battery. Therefore, from Stage 2 to Stage 3, the engine size has increased by

5% but the battery size has reduced by 4%. The implication of this reduction

in battery size is that it is possible to reduce the financial cost of the drive-train

by 3% by adopting a CB strategy.

Figure 9.6: Fminsearch algorithm with cost function J3

9.4.1 PHEV Powertrain Cost Reduction

Figure 9.7 presents the total financial cost of the PHEV powertrain for the different

CO2 thresholds corresponding to the AERs of 48, 64, 80 and 96 km (30, 40, 50

and 60 miles) respectively. As it can be seen, the financial cost of the powertrain
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increases as the aggressiveness of the drive-cycle increases. Inline with [82] within

the context of this research, aggressiveness relates to the levels of vehicle acceleration

and braking experienced within the drive-cycle. For the same energy management

strategy, the PHEV powertrain cost can increase by as much as 15% when comparing

the two solutions; one optimised for the NEDC and the other optimised for the

more aggressive, ARTEMIS cycle. In all instances as the required AER for the

PHEV increases so does the financial cost of the powertrain. For twice the AER the

financial cost of the powertrain increases by a factor of 1.5. Furthermore, Figure 9.8

clearly shows that the HV battery system dominates the financial cost of the hybrid

powertrain.

Figure 9.7: Cost reduction drive-train for CB strategy

Figure 9.8: Component cost reduction for CB strategy

When comparing the impact of the energy management strategy on the financial
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cost of the powertrain, Figure 9.7 highlights that optimisation of the powertrain

using the improved ECMS, consistently delivers cost reductions in the order of 3%

to 7%. Table 9.2 quantifies the financial cost reductions that may be achieved at

the component level.

9.4.2 Downsizing of the HV Battery

Figures 9.9 and 9.10, present the downsizing opportunities within the HV battery

both in terms of energy capacity and power capacity. Given the dominant cost of the

HV battery system, there is a high degree of correlation between Figures 9.8, 9.9 and

9.10. When considering the different drive-cycles; (NEDC, Artemis and Real-World)

for design Case 2 and CO2 thresholds of 55, 71 and 77 g CO2/km the size of the

HV battery system may be reduced by up to 3.7%, 4% and 10% respectively. The

reduced requirement for energy storage onboard the vehicle, stems directly from the

improved ECMS philosophy and the optimal use of both the ICE and the battery

for the duration of the journey.

Figure 9.9: Battery power for different options

9.4.3 Optimisation of the Electrical Machine and ICE

Figure 9.11 presents a reduction in the power requirements of the electrical machine

through the use of CB energy management strategy. With respect to Table 9.2 for

a given drive-cycle and CO2 threshold, reductions in the order of 3% to 7% may be

realised.

As a result of the optimisation, it is noteworthy that the peak power requirement

of the electrical machine may not necessarily be the same as the HV battery. When

both the ICE and the battery are delivering power to the wheels, the ICE can
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Figure 9.10: Battery energy for different options

Figure 9.11: Variation of EM power for different options

assist the battery during periods of high power demand. If the PHEV employs a

thermostat control strategy, this can only occur when the vehicle is operating in a

CS mode. However, within a CB approach the ICE is continually able to augment

the power demands placed on the electrical subsystems.

With respect to regenerative braking, depending upon the aggressiveness of

the drive-cycle, it has been observed that the optimisation framework may select

an electrical machine with a larger peak power rating. Under these conditions

the potential to recapture energy under vehicle braking outweighs the relative

disadvantages associated with a larger and heavier electrical machine.

157



For a volumetric capacity of 0.5 L, the optimisation framework continually limits

the size of the ICE to smaller values. Across the different drive-cycles and design

options only a marginal increase in the ICE is suggested by the optimiser. Figure

9.12 shows the constant value of ICE power across the different design cases.

This limitation in ICE size is due to the high penalty in emissions for its increase

in size. It is interesting to note the total power to the optimiser is a constraint

and different combinations of EM, battery and ICE are able to meet this power

limit. However, because it is a backward facing model and the dynamic response

of each of these components are not considered it would need further investigation

to confirm if this down-sizing is feasible. Further, the reduced power requirements

of NEDC has a negative effect on real-world performance. The vehicles would have

to be resized for meeting special conditions such as gradeability. The Artemis cycle

is more representative of a real-world cycle and the power demand to complete this

cycle means larger battery power as seen in Figure 9.9.

Figure 9.12: Variation of ICE power for different options

9.4.4 Balance between ICE and Battery

One of the interesting points to be noted is the balance in size of the ICE and

the battery. As mentioned in the previous section the ICE increases in size as the

power demand increases. The increased power demand is due to the aggressiveness

of the cycle. The battery however does not correspondingly increase in size based on

power demand, this is due to the consideration of the cost of the powertrain. The

optimiser increases the battery size only if there is a benefit in the TTW emissions

of the vehicle. This is seen with the increase in battery size as the AER increases.
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9.4.5 Gradient Implications

As discussed in the previous section, the total power demand required to complete

the cycle does not change. Therefore the down-sized vehicle would also be able to

complete the drive-cycle. However, the overall peak power capability of the vehicle

maybe reduced. This could have an effect on the grading performance of the vehicle.

The height data for the real-world route is shown in Figure 9.13. The data was

obtained from the on board GPS logger but the accuracy of this data is not known,

however, it can be used to draw some conclusions for variations in performance

based on height data. Figure 9.14 shows the wheel torque and wheel power needed

to complete the real-world route with and without the gradient loads for 1046 kg

mass vehicle. As can be seen around 600s the power demand is significantly higher,

this was later found to be the on-ramp onto the motorway.

Clearly the down-sized vehicle will not be able to complete this drive-cycle due

to the higher power demand. However, if this new power demand was considered

and if the components were to be sized for the PHEV, the new ECMS strategy

would reduce the component sizes and meet the new power demand compared to the

conventional thermostat strategy. There is further scope to study the implications

of the ultimate performance of the vehicle and component down-sizing.

Figure 9.13: Height data for Cranfield Route
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Figure 9.14: Wheel power and torque of PHEV with and without slope data

9.5 Conclusions

Contained within this chapter is an optimisation study in which the use of

a CB control strategy is used to reduce the financial cost of key PHEV

powertrain components. In order to properly evaluate the downsizing opportunities,

comparisons are made against PHEV designs that employ a traditional thermostat

strategy, in which the component sizes and controller switching thresholds have

been optimised to deliver a specific AER over a drive-cycle. The results presented

support those published in comparable studies which highlight that the CB approach

facilitates a more energy efficient design of PHEV. For a target CO2 value

and drive-cycle, the co-optimisation of the PHEV components and the ECMS

strategy has resulted in between 3% and 14% reductions in the energy and power

requirements of the HV battery. Since the HV battery represents the single largest

contributor to vehicle mass and powertrain cost, it is proposed that potential cost

reductions in the order of 3% 9%, would further support the adoption of PHEVs.
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Chapter 10

Conclusions

The thesis presented a design process for the evaluation of a journey predictive type

energy management strategy for a PHEV. The aim was to evaluate the potential

benefit of predictive journey information on fuel economy and powertrain financial

cost. It was found that this approach gave lower TTW emissions compared to

standard rule-based controllers. Further, this benefit could then be translated to

financial cost reduction of key powertrain components through a process of systems

optimisation and downsizing.

The work presented in this thesis focusses on the intersection of three research

areas. A summary of the novelty and contribution to science is presented in Table

10.1.

10.1 Real-World Usage Analysis

The real-world usage analysis was performed using the Smart ED dataset from the

EV evaluational programme and as such the results are constrained to the class of

the vehicle employed. Two different approaches were evaluated.

• The first approach made use of a homogeneous classification scheme based

on euclidean distance. This method was previously proposed in [23] and

[82]. The classification method was applied to the Smart ED dataset and

compared to the results presented in [82]. However, it was found this method

is effective only if there is a large data-set with equal representation of the

various road categories. Further, since the classification scheme is not based

on any pre-established categories it becomes difficult to compare the final

results to previous publications.

• The second approach made use of a NN. The NN was used to identify the

four road categories and a set of rules was proposed to identify the traffic
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conditions within the sub-categories. From comparison of the real-world

classification to existing drive-cycles it was determined that the framework and

dataset is transferable to other vehicle classes within an urban environment.

Further, the NN framework can be re-trained for different vehicle classes and

is highly transferable. The NN framework was extended by means of an

energy prediction algorithm. Experimental results, exploring the feasibility

of this concept, show a good correlation and accuracy within 20% to 30%

when comparing predicted and measured energy consumptions for over 800

real-world journeys.

10.2 Scalable PHEV Model

In order to evaluate the downsizing opportunities available due to the adoption of a

more effective energy management strategy, a scalable backward PHEV model was

developed. Parametrisation of the electrical components within the PHEV model

was done using data obtained experimentally by Cenex from a fleet of EVs operating

in the real-world. One of the main limitations associated with the data-set is the

restricted power range over which data was recorded. The accuracy of the base

model was verified by comparison of the real-world change in SOC to the simulated

change in SOC. The drop in overall accuracy of the model (68%) could be primarily

attributed to the erroneous height data which did not allow accurate estimation of

the torque at the wheels.

Data for the scalable model of the ICE was obtained from previously published

research [32]. The model was verified by building a conventional Smart drive-train

and comparing the fuel consumption to the published legislative rating.

10.3 Energy Management Control System

To investigate the overall additional improvement potential available by control

strategy, DP was used in order to find the global optimal solution for different

drive-cycles and varying lengths.

It was identified that the fuel economy benefits by DP was by as much as 15%

on comparison to standard rule-based algorithms such as the thermostat approach.

A novel control strategy was proposed based on the established ECMS to include

journey predictive capabilities within the controller. A feedback path based on

distance and SOC were included which improved the performance of the base

controller. Various derivatives of the controller were studied and it was found that

overall the ECMS based controllers were within 5% of the DP solution.
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The NN based solution for the prediction of energy consumption across a trip

was integrated into the control system to identify the best SOC trajectory. This

controller (PI-ECMS-NN) was within 3.5% of the DP solution and it is envisaged

that by further online tuning of this controller, the performance can be further

improved.

A simpler strategy to PI-ECMS-NN was PI-ECMS-LIN for which only the

journey distance had to be known a priori. Only with this information PI-ECMS-LIN

performs within 1.5% PI-ECMS-NN. Therefore, this controller was adopted as a

suitable compromise so that the components could be sized within an optimisation

framework. Therefore, a novel control strategy was proposed which performs within

5% of the DP solution and benefits by as much as 17% can be realised on comparison

to a traditional thermostat controller.

An interesting addition to the study was the evaluation of the PHEV over

Regulation 101. The ideal component configuration to obtain the best fuel

consumption over the legislative procedure was done using GA. One of the main

drawbacks discussed was the non-applicability of a CB strategy for Regulation 101.

The PHEV performance during Regulation 101 was compared to 40 drivers operating

in the real-world for a two week period. It was determined that the TTW emissions

vary significantly based on user behaviour and in this case the Regulation 101 was

on average 38% worse off than the DP solution. A key conclusion is that across the

40 drivers the TTW emissions of PI-ECMS-LIN are within 3% of the DP solution.

10.4 Component-Sizing and Optimisation

A new optimisation framework was proposed which enabled the reduction of the

financial cost of key PHEV powertrain components by adoption of a CB control

strategy. In order to properly evaluate the downsizing opportunities, comparisons

are made against PHEV designs that employ the thermostat strategy, in which the

component sizes and controller switching thresholds have been optimized to deliver

a specific AER over a drive-cycle. The results presented support those published in

comparable studies which highlight that the CB approach facilitates a more energy

efficient design of PHEV. For a target CO2 value and drive-cycle, the co-optimization

of the PHEV components and the ECMS strategy has resulted in between 3% and

14% reductions in the energy and power requirements of the battery. Since the

battery represents the single largest contributor to vehicle mass and powertrain

cost, it is proposed that potential cost reductions in the order of 3%–9%, would

further support the sustainable market introduction of this variant of low carbon

vehicle.
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Table 10.1: Claim of novelty

Area of

Novelty

Research to date Novelty

Energy

prediction

across trip

Studies have acknowledged the

importance of energy prediction.

However, to date the solutions

built are based on probabilistic

approaches or based on readily

available information such as speed

limits. Some research publications

assume they would be available in

the future with the development of

transport infrastructure.

A NN based framework is

proposed to analyse existing

data and determine the

road-type in Chapter 4. This

methodology was extended to

predict the energy across a trip.

The NN based framework has

applications in the transport

sector, as fleet management

tools, journey predictive energy

management controllers and

online range estimators which

would aid the adoption of EVs.

Journey

predictive

ECMS

Several strategies have been

proposed to improve the

performance of the ECMS

controller. They include the

use of complex sigmoidal functions

to constant values to represent the

equivalence ratio.

Several approaches have been

studied in detail in Chapter 7

and 8. A novel control strategy

was developed using journey

distance as a key variable.

Performance was found to be

close to the DP solution.

Component

size

optimisation

Few studies were published with

a rule-based sizing approach. No

comprehensive study has been done

with an optimisation framework.

An optimisation framework has

been proposed in Chapter

9 which addresses the

advantages of use of journey

predictive energy management

strategy. Components could be

down-sized with no significant

increase in TTW emissions.
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10.5 Further Work

Further work would be the investigation of the performance of such a controller

in a forward model with the additional dynamics of the drive-train included. In

particular, the ICE is assumed to operate instantaneously and this could have

implications on the final solution. Some initial studies were done in [37] where

the emissions of the PHEV increased by 2% with the additional dynamics of engine

inertia and manifold air.

Throughout the research the thermal aspect had been ignored due to

non-availability of useful data. A parameter varying model of the battery and

integration of cold-start maps of the ICE into the ECMS strategy would be a key

addition to improve the performance of the controller in the real-world.

Regenerative braking affects the amount of “free-energy” available and hence has

a significant effect on the TTW emissions. Unfortunately, with the given dataset it

was not possible to determine the strategy employed and hence the true potential

of the system could not be exploited. An interesting area of research would be to

identify the further downsizing opportunities with a more aggressive regenerative

braking strategy.

On determining the ideal SOC trajectory PI-ECMS is very close to the DP

solution. Possible alternatives rather than a mean-value lookup table based solution

to predict the energy across the trip could achieve further improvements of the

control system.

Finally, it was determined that with the correct tuning of the gains of the PI

controller and knowing the ideal SOC trajectory the PI-ECMS could achieve the DP

solution. For very high gains the error in SOC trajectory gets reduced at the expense

of excessive use of the ICE and the fuel consumption increases. Similarly for very

low gain values the deviation becomes significantly large leading to sub-optimal

performance. An interesting area of research would be to identify the possible

alternatives to the PI controller which has more intelligence and could self-tune

to achieve the best trade-off point.
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