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Abstract. This paper introduces a unified concept and algorithm for the fractional-
step (FS), artificial compressibility (AC) and pressure-projection (PP) methods for solv-
ing the incompressible Navier-Stokes equations. The proposed FSAC-PP approach
falls into the group of pseudo-time splitting high-resolution methods incorporating
the characteristics-based (CB) Godunov-type treatment of convective terms with PP
methods. Due to the fact that the CB Godunov-type methods are applicable directly
to the hyperbolic AC formulation and not to the elliptical FS-PP (split) methods, thus
the straightforward coupling of CB Godunov-type schemes with PP methods is not
possible. Therefore, the proposed FSAC-PP approach unifies the fully-explicit AC and
semi-implicit FS-PP methods of Chorin including a PP step in the dual-time stepping
procedure to a) overcome the numerical stiffness of the classical AC approach at (very)
low and moderate Reynolds numbers, b) incorporate the accuracy and convergence
properties of CB Godunov-type schemes with PP methods, and c) further improve
the stability and efficiency of the AC method for steady and unsteady flow problems.
The FSAC-PP method has also been coupled with a non-linear, full-multigrid and full-
approximation storage (FMG-FAS) technique to further increase the efficiency of the
solution. For validating the proposed FSAC-PP method, computational examples are
presented for benchmark problems. The overall results show that the unified FSAC-PP
approach is an efficient algorithm for solving incompressible flow problems.
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1 Introduction

This paper introduces a unified solution concept of the fractional-step (FS), artificial com-
pressibility (AC) and pressure-projection (PP) methods for solving the incompressible
Navier-Stokes equations. The development of the unified FSAC-PP method [1] is car-
ried out within the framework of Godunov-type methods [1, 2]. Due to the fact that the
characteristics-based (CB) Godunov-type methods are applicable directly to the hyper-
bolic system of the AC formulation and not to the elliptical FS-PP (split) methods, thus
the straightforward coupling of CB Godunov-type schemes with PP methods is not pos-
sible. To take advantage of the accuracy and convergence properties of CB Godunov-type
schemes, and increase the stability and efficiency of the classical AC method at (very) low
and moderate Reynolds numbers, the FSAC-PP approach is proposed.

The AC method was developed by Chorin [3] introducing a perturbed continuity
equation based on a pseudo-time derivative for the pressure. This equation has no phys-
ical meaning until the steady-state solution is achieved [4]. The AC method has good
numerical features for stationary flows, but for unsteady and/or low Reynolds number
flows, the stability condition of the dual-time stepping procedure and the choice of the
AC parameter can become too restrictive, thus leading to slow convergence rates [4].

For solving unsteady, incompressible flows, Chorin [5] and Temam [6] introduced
the FS-PP method based on the orthogonality theorem of Ladyzhenskaya [7], which is
also known as the Helmholtz-Hodge or Hodge decomposition [3, 5, 8–11]. According to
this theorem, a vector field can be decomposed into a solenoidal (divergence-free) part
and an irrotational part. The first FS estimates an intermediate velocity field neglecting
the pressure gradient term from the momentum equation. The second FS projects the
predicted intermediate velocity field into a divergence-free (exact projection), or numeri-
cally nearly divergence-free (approximate projection) vector field relying on the solution
of a pressure-Poisson equation. Kim and Moin [12] proposed an application of the FS-PP
method to the solution of the three-dimensional, time-dependent incompressible Navier-
Stokes equations. Perot [13] accomplished a detailed analysis on the FS-PP method to
overcome the first-order temporal accuracy of the flow field solution by using a general-
ized block LU decomposition of the governing equations for the primitive variables.

In the last 20 years, researchers have also made efforts to combine various high-
resolution schemes with FS-PP methods for single- and variable-density flows [8, 14].
Bell et al. [8] developed a second-order, exact projection method in conjunction with
Godunov-type methods [15] for the unsteady, incompressible Navier-Stokes equations.
For variable-density incompressible flows, Bell and Marcus [9] established a second-
order projection method, and Almgren et al. [10] introduced a conservative and adaptive
projection method. Eberle [16] developed a CB scheme method for the three-dimensional
compressible Euler equations, and the scheme was further extended by Drikakis et al.
[17] for solving the incompressible Navier-Stokes equations. This scheme was also ex-
tended to three-dimensional incompressible flows [18, 19] in conjunction with a non-
linear, FMG-FAS algorithm, as well as to variable density flows [20–22]. Recently, Za-
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mzamian and Razavi [23] further investigated the numerical behaviour of a multidi-
mensional, characteristics-based (MCB) upwind scheme on different benchmarks. In
this paper, a CB Godunov-type scheme is employed for the discretization of the con-
vective terms by using interpolation formulae from first- up to ninth-order at the cell
interfaces [24–26]. The employed CB Godunov-type scheme is derived as being single-
directional in space [17, 20], and the arrangement of primitive variables is considered to
be collocated on the structured computational mesh.

Within the framework of Godunov-type methods for incompressible flows, the in-
tercell CB velocity components of the non-linear convective terms and the intercell CB
pressure can be derived from the hyperbolic system of the AC formulation by applying
the Riemann method [1, 18–20]. The proposed FSAC-PP approach solves the perturbed
continuity equation explicitly to estimate an initial pressure field for a CB Godunov-
type treatment of the convective terms. Furthermore, the explicit solution of the per-
turbed continuity equation provides initial values to the implicit solution of the PP step
in the dual-time stepping procedure. In the next pseudo-time splitting step, the pro-
posed FSAC-PP approach estimates an intermediate velocity field by employing a CB
Godunov-type scheme dropping out the pressure gradient term from the scalar momen-
tum equations. Since the intercell pressure difference in the CB Godunov-type veloc-
ity components can be determined by the explicit solution of the perturbed continuity
equation, therefore there is no theoretical barrier to drop out the pressure gradient term
from the scalar momentum equations, as in the classical FS-PP method of Chorin [5] and
Temam [6]. As a consequence, instead of the CB Godunov-type reconstruction of the
pressure gradient term, the pressure field is approximated by solving a pressure-Poisson
equation implicitly. In other words, the proposed FSAC-PP approach retains the inviscid
CB Godunov-type counterpart of the AC method for the velocity components, then the
velocity field is updated along the characteristics via the solution of a pressure-Poisson
equation in each pseudo-time step. In this way, the FSAC-PP method unifies the dual-
time stepping procedure of the AC formulation with the FS-PP (split) method in order
to accelerate the satisfaction of the incompressibility constraint for the explicitly solved
perturbed continuity equation. It is observed that the inclusion of the implicit PP step
in the fully-explicit dual-time stepping procedure of the AC method can improve the
convergence properties of the FSAC-PP algorithm, compared to the classical AC method.

Although, to our knowledge, there is no previous publication dealing with the pro-
posed FSAC-PP formulation in conjunction with a CB Godunov-type method for incom-
pressible constant density flows, it should be mentioned that Tang and Sotiropoulos [27]
proposed a time-accurate approach on non-staggered grids using a second-order accu-
rate, hybrid FSAC method to advance the efficiency of the original AC method. Their
algorithm does not fall into the class of high-resolution Godunov-type methods, and in
their case, the projection of the velocity field was carried out via a dual-time stepping of
the AC formulation instead of solving a pressure-Poisson equation. Within the frame-
work of finite element (FE) methods, there are important contributions by Zienkiewicz
and his co-researchers [28–31] introducing the characteristic-based split (CBS) algorithm
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which relies on the characteristic-Galerkin method as a unified approach for compress-
ible and incompressible flows. The fully explicit version of their procedure employs
the features of the AC and FS (split) methods using explicit formulations to compute
the pressure field and update the velocity components along the characteristics. The
semi-implicit version of the CBS algorithm [32] is the application of Chorin’s [5] and
Temam’s [6] FS-PP split concept with the implicit solution of a pressure-Poisson equa-
tion in the context of FE methods. Nithiarasu [33, 34] developed a fully-explicit CB split
FE method, known as the CBS-AC scheme, which takes advantage of both standard AC
and velocity correction approaches. Nithiarasu et al. [35–38] further extended the fully-
explicit and semi-implicit versions of the CBS scheme to different applications as a uni-
fied approach to fluid dynamics problems [36]. In the present work, the proposed FSAC-
PP unified solution concept for incompressible flows is different from the previous works.
The unification of Chorin’s AC and FS-PP methods [3, 5] and the solution algorithm are
carried out differently compared to the other approaches discussed above. Furthermore,
the finite volume (FV) CB Godunov-type method requires a different mathematical for-
mulation and numerical treatment than the FE characteristic-Galerkin procedure.

The objectives of this paper are to: a) provide a numerical framework for accurate and
efficient simulations at (very) low and moderate Reynolds number flows; b) overcome the
numerical stiffness of the classical AC approach in certain flow regimes; c) incorporate
the accuracy and convergence properties of CB Godunov-type schemes with PP methods;
and d) further improve the efficiency of the standard AC method. Numerical results have
been presented from the validation of the FSAC-PP method for benchmark problems.
The computational examples have been discussed for a pressure-driven laminar flow
in a straight microfluidic channel, and a two-dimensional stationary laminar and three-
dimensional unsteady turbulent flow problem in a lid driven cavity.

2 A unified FSAC-PP method for incompressible flows

In this Section, we develop a numerical procedure unifying the classical AC and FS-PP
methods of Chorin [3, 5] in conjunction with a CB Godunov-type discretization scheme
[17] for solving stationary and unsteady incompressible flow problems [1, 2].

The three-dimensional, unsteady, incompressible Navier-Stokes equations by using
conservative form of the convective term, are written with vector notation as

∇·u=0, (2.1)

∂u

∂t
+∇·(u⊗u)=g−

1

ρ
∇p+υ∇2u, (2.2)

where t is the physical time, u is the velocity field, g is the gravity field, p is the hydro-
dynamic pressure, ρ is the fluid density, and υ is the kinematic viscosity of the fluid. To
non-dimensionalize the equations, the following dimensionless quantities are introduced
for time, spatial coordinates, velocity components, and pressure field, where L, u∞, ρ∞
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are constant reference quantities for characteristic length, velocity component and fluid
density, respectively, and Re is the Reynolds number as

t∗=
tu∞

L
, X=

x

L
, Y=

y

L
, Z=

z

L
, U=

u

u∞

, V=
v

u∞

, W=
w

u∞

, P=
p

ρ∞u2
∞

, Re=
LU

υ
.

By using these quantities and neglecting any external force field, the non-dimensionalized
governing equations in a conservative form with vector notation are written as

∇·U=0, (2.3)

∂U

∂t∗
+∇·(U⊗U)=−∇P+

1

Re
∇2U. (2.4)

The numerical solution of the system of equations (2.3)-(2.4) is a difficult task in terms of
the satisfaction of the divergence-free (incompressibility) constraint (2.3); furthermore an
additional equation for the pressure does not exist. There are two classical solution ways
for this system: 1) a hyperbolic-type standard AC method proposed by Chorin [3], and
2) an elliptical-type FS-PP (split) method introduced by Chorin [5] and Temam [6].

2.1 Artificial compressibility (AC) method with characteristics-based (CB)
Godunov-type treatment of the inviscid terms

For stationary incompressible flows, Chorin [3] introduced a perturbed continuity equa-
tion, which contains a pseudo-time derivative for the pressure that has no physical mean-
ing until the steady-state solution is achieved [4]. This method can also be used for
unsteady flow problems by introducing pseudo-time derivatives for the velocity compo-
nents in the scalar Navier-Stokes equations [20]. For unsteady incompressible flows using
the dual-time stepping procedure, the AC formulation of the dimensionless hyperbolic-
type perturbed system of governing equations can be written in a vector form as

1

β

∂P

∂τ
=−∇·U, (2.5)

∂U

∂τ
=−

∂U

∂t∗
−∇·

(

Ũ⊗Ũ
)

+
1

Re
∇2U−∇P̃, (2.6)

where Ũ and P̃ indicate the CB Godunov-type treatment of the inviscid terms, β is the AC
parameter relating to the numerical convergence, and τ is the locally computed pseudo-
time step. The characteristic velocity components and pressure are given [17, 20] by

Ũ=











Ũ

Ṽ

W̃











=













U0+
X̃
2s R

V0+
Ỹ
2s R

W0+
Z̃
2s R













, (2.7)
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P̃=
1

2s

{

λ1P2−λ2P1−β
[

X̃(Ũ−U1)+Ỹ(Ṽ−V1)+Z̃(W̃−W1)
]

+β
[

X̃(Ũ−U2)+Ỹ(Ṽ−V2)+Z̃(W̃−W2)
]

}

, (2.8)

where sub-indexes “1” and “2” relate to the “Left” and “Right” hand side reconstructed
intercell velocity and pressure values by using a high-order polynomial interpolation. To
write the characteristic velocity components of the transport CB Godunov-type scheme
(2.7) in a short form, an auxiliary function is introduced as

R=P1−P2+λ2

[

X̃(U0−U1)+Ỹ(V0−V1)+Z̃(W0−W1)
]

−λ1

[

X̃(U0−U2)+Ỹ(V0−V2)+Z̃(W0−W2)
]

. (2.9)

By applying the Riemann method [39] for constant density flows [17,19,20], the coefficient
matrix of the scalar system of governing equations (2.5)-(2.6) has distinct eigenvalues

λ0=ŨX̃+ṼỸ+W̃Z̃, λ1=λ0+s and λ2=λ0−s, where s=
(

λ2
0+β

)1/2
is the artificial speed

of sound, and X̃, Ỹ, Z̃ are metric coefficients [17,20]. For low-speed incompressible flows,
the AC parameter may be defined [2] as

β≫

(

1+
4L

Re

)2

−1. (2.10)

For computing the convective flux term in the momentum equation (2.6) relying on
Eq. (2.7), the Godunov-type discretization is employed to compute the velocity compo-
nents U0,V0,W0 corresponding to the eigenvalue λ0 as

U0=













U0

V0

W0













=
1

2













U1+U2+sign(λ0)(U1−U2)

V1+V2+sign(λ0)(V1−V2)

W1+W2+sign(λ0)(W1−W2)













, (2.11)

where

sign(λ0)=

{

−1, λ0>0,
1, λ0<0.

(2.12)

The Godunov-procedure consists of three main steps [2]: 1) high-order interpolation
to approximate the “Left” and “Right” values of characteristic variables at the cell inter-
faces, 2) solution of the local Riemann-problem to obtain physically reasonable inviscid
fluxes, and 3) characteristic flux differentiation to compute cell-averaged values. It is
important to indicate, when the classical AC method is used in conjunction with a CB
Godunov-type treatment of the inviscid terms, that Eq. (2.8) can be employed to com-
pute the pressure gradient terms in the Navier-Stokes equations. Unlike when the sub-
sequently proposed FSAC-PP approach is used, the cell-averaged pressure values are
obtained by solving a pressure-Poisson equation in each pseudo-time step.
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2.2 Formulation of the fractional-step (FS) pressure-projection (PP) method

For unsteady incompressible flows, Chorin [5] and Temam [6] introduced an FS-PP method
based on the Helmholtz-Hodge or Hodge decomposition [5–11]. Relying on this decom-
position, a pressure-Poisson equation can be constructed [5, 6] by considering the pres-
sure as a potential function of the irrotational velocity field. For numerical solutions, it is
assumed that the correct pressure field is unknown in the scalar Navier-Stokes equations
at time level n, thus the continuity equation (2.3) is not satisfied as

∇·U(n) 6=0, (2.13)

but it is assumed that the continuity equation (2.3) is satisfied at time level n+1 as

∇·U(n+1)=0. (2.14)

In the first FS, an intermediate velocity field Û is estimated dropping out the pressure
gradient term from the scalar Navier-Stokes equations. The dimensionless momentum
equation (2.4) via time-splitting can be written in a semi-discrete vector form as

Û−U(n)

∆t∗
=−∇·(U⊗U)(n)+

1

Re
∇2U(n), (2.15)

thus the intermediate velocity field is expressed by

Û=U(n)+∆t∗
[

−∇·(U⊗U)+
1

Re
∇2U

](n)

. (2.16)

In the second FS, the pressure field is computed by taking into account the divergence-
free constraint (2.14), thus the divergence of the

U(n+1)−Û

∆t∗
=−∇P(n+1) (2.17)

semi-discrete equation is a pressure-Poisson equation at time level n+1 [5, 13] as

∇2P(n+1)=
1

∆t∗
∇·Û. (2.18)

To update the velocity field based on Eq. (2.17) satisfying the continuity equation (2.14),
the second FS projects the intermediate velocity field (2.16) into a divergence-free (exact-
projection) or numerically nearly divergence-free (approximate-projection) vector field
via the solution of the pressure-Poisson equation (2.18) as

U(n+1)= Û−∆t∗∇P(n+1). (2.19)
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2.3 A unified FSAC-PP approach within the framework of high-resolution
characteristics-based (CB) Godunov-type methods

In this subsection, for stationary and unsteady incompressible flows, the proposed FSAC-
PP approach [1] unifies the fully-explicit AC and semi-implicit FS-PP methods of Chorin
[3, 5] within the framework of high-resolution CB Godunov-type methods [1, 2]. This
unified approach falls into the group of pseudo-time splitting high-resolution methods
incorporating the CB Godunov-type treatment of convective terms with PP methods.

To unify the fully-explicit AC formulation with the semi-implicit FS-PP method, we
drop out the CB pressure gradient term from the governing equations (2.5)-(2.6). Thus the
dimensionless, dual-time stepping, perturbed system of the governing equations without
the pressure gradient term can be written in a semi-discrete vector form as

P(n)−P(n−1)

∆τ
=−β(∇·U)(n) , (2.20)

Û−U(n)

∆τ
=−

∂U(n)

∂t∗
−∇·(Ũ⊗Ũ)(n)+

1

Re
∇2U(n), (2.21)

where Û=
[

Û V̂ Ŵ
]T

is the vector of an intermediate velocity field, and Ũ is the CB
Godunov-type velocity flux vector re-writing Eq. (2.7) in a form as

Ũ(n)=U
(n)
0 +

X̃

2s
(P1−P2+R∗)(n) , (2.22)

where the U
(n)
0 vector components corresponding to the eigenvalue λ0 are computed

based on Eqs. (2.11) and (2.12), X̃=
[

X̃ Ỹ Z̃
]T

is the spatial vector of metrics, and

R∗=λ2

[

X̃(U0−U1)+Ỹ(V0−V1)+Z̃(W0−W1)
]

−λ1

[

X̃(U0−U2)+Ỹ(V0−V2)+Z̃(W0−W2)
](n)

(2.23)

is an auxiliary function to write Eq. (2.22) in a short form. Since the transport CB Godunov-
type scheme (2.22) is derived from the hyperbolic system of AC formulation (2.5)-(2.6)
involving the pressure gradient term, therefore we can see in Eq. (2.22) that the inter-
cell pressure values P1 (“Left”) and P2 (“Right”) will appear in the convective terms
∇·(Ũ⊗Ũ)(n). As the intercell pressure difference (P1−P2)(n) of the CB Godunov-type
flux vector (2.22) can be determined by the explicit solution of the perturbed continuity
equation (2.20) remaining consistent with the AC method [3] as

P(n)=P(n−1)−∆τβ(∇·U)(n) , (2.24)

therefore there is no theoretical barrier to drop out the pressure gradient term from the
momentum equation (2.6) as in the classical FS-PP method of Chorin [5]. Thus the first
step of the FSAC-PP algorithm is to estimate an inital pressure field via the explicit solu-
tion of the perturbed continuity equation (2.24) in each pseudo-time step. In this way, the
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convective flux terms ∇·(Ũ⊗Ũ)(n) can be recovered by employing a CB Godunov-type
scheme (2.22) with the inclusion of high-order intercell flux interpolations and the solu-
tion of the local Riemann problem at pseudo-time level n. For the velocity components,
the FSAC-PP approach retains the inviscid CB Godunov-type counterpart of the hyper-
bolic AC formulation (2.22), but the characteristic computation of the pressure gradient
term relying on Eq. (2.8) is excluded from the dual-time stepping procedure.

After estimating an initial pressure field P(n) relying on the explicit solution of the per-
turbed continuity equation (2.24) and computing the right hand side of the fractional mo-
mentum equation (2.21), an intermediate velocity field can be estimated in each pseudo-
time step by remaining consistent with the FS-PP method [5] as

Û=U(n)+∆τ

[

−
∂U

∂t∗
−∇·

(

Ũ⊗Ũ
)

+
1

Re
∇2U

](n)

, (2.25)

where the Laplacian viscous flux terms can be discretized by employing second- or higher-
order accurate central approximations. In the present work, a second-order central dif-
ference scheme is employed for the viscous flux terms.

The temporal accuracy of the pseudo-time marching for solving the governing equa-
tions (2.20)-(2.21) can be improved further by applying an explicit Runge-Kutta pseudo-
time integration scheme [20, 40]. In this paper, the first-order temporal accuracy of the
pseudo-time marching is advanced by employing an explicit fourth-order scheme, thus
improving the solution of the intermediate velocity field [1] as























































ÛRK,1= Û
(n)
RK,

ÛRK,2= Û
(n)
RK+

∆τ
2 RHS(ÛRK,1),

ÛRK,3= Û
(n)
RK+

∆τ
2 RHS(ÛRK,2),

ÛRK,4= Û
(n)
RK+∆τRHS(ÛRK,3),

ÛRK = Û
(n)
RK+

∆τ

6

[

∑
i=1,4

RHS(ÛRK,i)+2 ∑
i=2,3

RHS(ÛRK,i)

]

,

(2.26)

where the ÛRK =
[

P/β Û V̂ Ŵ
]T

vector stands for the stages of the pseudo-time

advancement, and RHS(ÛRK) represents the right hand side of the system of governing
equations (2.20)-(2.21) in each integration step.

After performing a pseudo-time advancement to estimate a highly accurate interme-
diate velocity field Û, the pressure field is updated in each pseudo-time step by taking
into account the incompressibility constraint, ∇·U(n+1) = 0. In the dual-time stepping
procedure via pseudo-time splitting, the divergence of the

U(n+1)−Û

∆τ
=−∇P(n+1) (2.27)
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semi-discrete equation is a second-order elliptical pressure-Poisson equation [5, 13] as

∇2P(n+1)=
1

∆τ
∇·Û, (2.28)

the pressure field is thus approximated by solving implicitly a pressure-Poisson equation
in each pseudo-time step instead of the characteristic Godunov-type reconstruction of the
pressure gradient term in the momentum equation (2.6). The initial values for the implicit
solution of a pressure-Poisson equation (2.28) are obtained by the explicit solution of the
perturbed continuity equation (2.24) to provide the consistency of the solution. Similarly
to the FS-PP method [5], it is assumed that the implicit solution of the pressure-Poisson
equation (2.28) provides an approximately divergence-free velocity field at each pseudo-
time step. Therefore it is expected that the pseudo-pressure term will gradually tend to
be zero within a very small threshold value in the perturbed continuity equation (2.20).

The velocity field is updated along the characteristics via the implicit solution of the
pressure-Poisson equation (2.28) in each pseudo-time step as

U(n+1)= Û−∆τ∇P(n+1). (2.29)

In order to satisfy the continuity equation (2.3), the FSAC-PP procedure at each pseudo-
time step has to be repeated until the pseudo-pressure term in the perturbed continu-
ity equation (2.20) and the pseudo-time derivatives in each scalar fractional momentum
equation approach very small values (near the machine-zero in computing terms) [1]. In
other words, when the continuity equation (2.3) is satisfied, the pseudo-pressure term in
the perturbed continuity equation (2.20) becomes equal to a very small threshold value
defined by the user as the machine-zero value. For the steady-state solution, the conver-
gence criterion in each pseudo-time step is defined by

max

(

β
∣

∣

∣
∇·U(n+1)−∇·U(n)

∣

∣

∣
,

∣

∣

∣

∣

∣

U(n+1)−U
(n)

∆τ

∣

∣

∣

∣

∣

)

≤ ε. (2.30)

When this criterion is satisfied, the continuity equation (2.3) will also be satisfied. Note
that the perturbed continuity equation (2.20) is also appropriate for controlling the pseudo-
time stepping procedure, because when the right hand side of Eq. (2.20) becomes equal to
zero, the steady-state solution of the system is achieved. Due to the velocity field update
along the characteristics at each pseudo-time step, the difference between the divergence
of the velocity fields in pseudo-time levels n+1 and n will decrease. Therefore

max
(

β
∣

∣

∣
∇·U(n+1)−∇·U(n)

∣

∣

∣

)

≤ ε (2.31)

is a strict criterion providing the compatibility with the classical AC method [1], hence
satisfying the perturbed continuity equation (2.5). Since the continuity equation (2.3) is
satisfied iteratively due to the PP step and velocity field update along the characteristics
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at each pseudo-time step, the pseudo-pressure term in the perturbed continuity equation
(2.20) will tend to be zero step by step. Note that it is necessary to perform sufficient
sub-iterations for the implicit solution of the pressure-Poisson equation (2.28) to avoid
possible oscillations in the pressure field solution. For unsteady flows, when the steady-
state solution is achieved in the pseudo-time stepping process, the solution has also to be
advanced in real-time in order to continue the dual-time stepping procedure [20, 21].

As a summary, the proposed FSAC-PP unified algorithm consists of seven main steps
(see the flowchart of the algorithm in Fig. 1):

1. The perturbed continuity equation (2.20) is solved explicitly to estimate an initial pressure field
in each pseudo-time step of the dual-time stepping procedure by remaining consistent with the
AC method [3]. The pressure and velocity fields are equal to the initial values of the problem at
the first real-time step (t∗=0).

2. The Godunov-procedure is performed to compute the CB Godunov-type convective velocity flux
vector (2.22) and the right hand side of the fractional momentum equation (2.21) relies on the
pressure field estimated in Step 1. The intercell primitive variables can be approximated by
applying first-, second-, third- or even higher-order interpolations (e.g. fifth- and ninth-order
WENO schemes [24–26]). We note that any appropriately chosen order of interpolation can be
employed.

3. An intermediate velocity field (2.25) is estimated via pseudo-time splitting in conjunction with
a CB Godunov-type scheme computed in Step 2 by dropping out the characteristic pressure
gradient term from the dual-time stepping procedure.

4. The temporal accuracy of the pseudo-time marching process is improved further by applying an
appropriately chosen explicit (e.g. fourth-order) Runge-Kutta pseudo-time integration scheme to
estimate a high-accurate intermediate velocity field.

5. A pressure-Poisson equation (2.28) is solved implicity to update the pressure field instead of
the characteristic computation of the pressure gradient term in the momentum equation. The
initial values for the implicit solution of a pressure-Poisson equation (2.28) are obtained in each
pseudo-time step by the explicit solution of the perturbed continuity equation (2.20) to provide
the consistency of the numerical solution with the classical FS-PP method [5, 6].

6. The velocity field is updated along the characteristics via the implicit solution of the pressure-
Poisson equation (2.28) in each pseudo-time step.

7. For unsteady flows, when the steady-state solution is achieved in the pseudo-time stepping
process, the solution is advanced in real-time. Explicit time-marching schemes are recommended
from first- up to higher-orders of accuracy.

2.4 Pseudo-time stepping strategy

The discretized system of governing equations is solved via a dual-time stepping nu-
merical procedure, therefore a pseudo-time stepping strategy is required for stability
reasons. The accuracy and convergence properties of CB schemes were investigated by
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FSAC-PP Unified Algorithm for Solving the Incompressible Navier-Stokes Equations
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Figure 1: Flowchart of the proposed FSAC-PP unified algorithm for incompressible flows.
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Shapiro and Drikakis [22] based on an eigenvalue analysis to estimate the locally com-
puted pseudo-time step size. The relationship between the pseudo-time step and charac-
teristic condition numbers provides the stability of the numerical procedure [20] as

∆τInviscid
i,j,k =

CFLInviscid

[maxm=1-4(|λ1|,|λ2|)m]i,j,k
, (2.32)

∆τViscous
i,j,k =

CFLViscousRe

4[maxn=1,2,3(dln)]i,j,k
, (2.33)

where CFLInviscid and CFLViscous are the Courant-Friedrichs-Lewy (CFL) numbers of the
inviscid and viscous fluxes, respectively, and dln represents the cell dimension accord-
ing to the coordinate directions. The CFL numbers are characteristic condition numbers
relating to the stiffness of the numerical solution [22]. For stability reasons, the locally
computed pseudo-time step is defined by the minimum value of the locally determined
pseudo-time steps for the inviscid and viscous fluxes as

∆τi,j,k =γ·min
(

∆τInviscid
i,j,k ,∆τViscous

i,j,k

)

, (2.34)

where γ∈] 0,1] is an appropriately chosen safety factor to ensure numerical stability [41].
The pseudo-time step depends on the CFL numbers and the eigenvalues, which in turn
depend on the AC parameter β. These parameters have to be adjusted for each compu-
tational test case to ensure the stability and convergence of the numerical solution [4,42].

2.5 Boundary condition for the pressure

In the classical FS-PP method, a Neumann-type boundary condition was used by Chorin
[5] and Perot [13], which can be written as

∂P(n+1)

∂n
=0, (2.35)

and it is also called an “inviscid-type boundary condition” for the pressure [43, 44].
Karniadakis et al. [45] introduced a consistent Neumann-type boundary condition for
the pressure field using a spectral element discretization employing a high-order time-
splitting method for solving unsteady, incompressible flow problems. They pointed out
that the inviscid-type boundary condition (2.35) for the pressure is valid at high Reynolds
number flows, but not for low Reynolds number microflows, because this condition leads
to a divergence error at the boundary [43]. For microflows by using the dimensionless
form of the governing equations, the following consistent boundary condition is sug-
gested by Karniadakis et al. [43, pp. 514-517] as

∂P(n+1)

∂n
=

1

Re
n∇2U(n+1)−nÛ, (2.36)
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where n is the normal vector, which is perpendicular to the surface with outward direc-
tion. The Neumann-type boundary condition for the pressure prescribed at all bound-
aries introduces a difficulty; in particular the coefficient matrix of the system of linear
equations of the discretized pressure-Poisson equation becomes singular. To overcome
this problem, the pressure value has to be prescribed at least at one point of the domain
as an additive constant [46]. According to Guermond et al. [47] among others, the invis-
cid Neumann-type boundary condition is not a physical condition for the pressure, but
they do consider this boundary condition to be mathematically correct for the pressure-
Poisson equation. Bell et al. [8] and Guermond et al. [47] also pointed out, as a conse-
quence of Ladyzhenskaya’s [7] orthogonality theorem, that there is no need for a bound-
ary condition for the pressure because it makes the system over-determined [8]. For more
details about the orthogonality theorem of Ladyzhenskaya and the orthogonality of the
pressure gradient with a solenoidal vector field see [7].

3 Validation of the FSAC-PP method for benchmark problems

An in-house FORTRAN 90/95 code has been developed for solving the stationary and
unsteady, incompressible Navier-Stokes equations relying on the proposed FSAC-PP so-
lution method [1]. For benchmark test cases, the validation of this unified approach,
in conjunction with the further extended version of the non-linear FMG-FAS three-level
multigrid algorithm [18], is presented in this Section. The numerical results were com-
pared to other methods in terms of accuracy and efficiency.

For stationary, incompressible, constant density flows at (very) low Reynolds num-
bers, a two-dimensional pressure-driven laminar flow was simulated in a straight mi-
crofluidic channel. The numerical investigation of this fluid flow problem is an appro-
priate example for the validation of low Reynolds number flow solvers for microfluidic
applications, because an analytical solution exists for the fully-developed laminar outlet
velocity profile. Thus, the computational results can be compared to analytical solutions
and the original AC and PP methods at different low Reynolds numbers, taking into ac-
count extremely low Reynolds number cases, e.g., from 10−1 up to 10−4 (see more details
about pressure-driven laminar flows in [48, pp. 99-122], and in [49–51]).

The FSAC-PP method was also validated for stationary laminar flows in a lid driven
square cavity at moderate Reynolds numbers (Re = 100, 400, and 1000). For this two-
dimensional problem, the numerical results were compared to the AC and PP methods,
and the classical computational data of Ghia et al. [52].

For stationary simulation test cases, the convergence properties and numerical er-
rors of each employed interpolation scheme were demonstrated in conjunction with the
FMG-FAS multigrid algorithm [18]. The computational times were presented at different
Reynolds numbers. The numerical convergence of the AC, PP and FSAC-PP methods
was measured by using the maximum value of the fourth-order Runge-Kutta residuals
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of the pseudo-time stepping procedure, which can be defined by

max

(
∣

∣

∣

∣

∣

U
(n+1)
RK −U

(n)
RK

∆τ

∣

∣

∣

∣

∣

)

≤ ε, (3.1)

where the URK =
[

P/β U V W
]T

vector represents the numerical solution of the
governing equations between two pseudo-time levels. The pseudo-time stepping itera-
tions of the AC, PP and FSAC-PP methods were carried out until a steady-state solution
was achieved; this means that the Runge-Kutta residuals did not change significantly
below a very small ε threshold defined by the user as the machine-zero value.

To measure the computational time and examine the capability of the FSAC-PP ap-
proach at a higher Reynolds number, an unsteady, incompressible, turbulent flow was
tested in a lid driven cubical cavity at Re= 10000. For this three-dimensional problem,
experimental data are available in the paper of Prasad and Koseff [53]. It is important
to note that several authors have used this benchmark to verify their computer codes
and validate their numerical methods (see, e.g., [12, 54–56]). The turbulent flow simu-
lations were performed by using the Implicit Large Eddy Simulation (ILES) method in
conjunction with the AC, PP, and the unified FSAC-PP algorithms.

3.1 Laminar flow in a straight microfluidic channel at low Re numbers

For steady-state, incompressible, constant density flow in a straight microfluidic channel,
according to the analytical solution for the one-dimensional case, the axial velocity com-
ponent depends on the coordinate of the radial direction u=u(y) while the other velocity
components vanish (v=w=0). It is known from the literature that the AC method is ef-
ficient at Reynolds numbers from 1 up to 103 [2,4]. The reasons for this are the restriction
for the locally computed pseudo-time step in Eq. (2.34) and the choice of the AC param-
eter in Eq. (2.10) which can lead to a slow convergence rate at Re≪ 1. For microfluidic
applications, the typical Reynolds numbers range from 10−1 up to 102 (see, e.g., [21]),
therefore it was pertinent to validate the FSAC-PP method at very low Reynolds num-
bers. For a laminar flow in a channel, the Reynolds number can be defined by

Re=
2hũ

υ
, (3.2)

where h is the height of the microfluidic channel, ũ is the average velocity, and υ is the
kinematic viscosity of the fluid. From wall to wall, the fully-developed stationary velocity
distribution [57, p. 10] can be derived as

u(y)=ρ
∆Π

2µl
y(h−y) , (3.3)

where ρ is the density of the fluid, µ is the dynamic viscosity of the fluid, l is the length
of the microfluidic channel, and Π is the total potential proportional to the pressure dif-
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ference between the inlet and the outlet sections as

∆Π=
∆p

ρ
. (3.4)

The characteristic quantities can also be computed such as the volume flow rate which is

Q=wc

h
∫

0

u(y)dy=wc
∆Π

2υl

h
∫

0

y(h−y)dy=wc
∆Π

12υl
h3, (3.5)

where wc is the width of the microfluidic channel, and the average velocity can be ex-
pressed by the ratio of volume flow rate to cross-sectional area as

ũ=
Q

A
=

∆p

12µl
h2, (3.6)

where the pressure difference between the inlet and outlet sections is written as

∆p=
12µl

h2
ũ. (3.7)

By using Eqs. (3.2)-(3.7), all physical quantities of the pressure-driven laminar flow can
be computed analytically at the outlet cross-section of the straight microfluidic channel.

3.1.1 The straight microfluidic benchmark channel

The computational domain of the straight microfluidic channel and the contour lines of
the horizontal velocity component in the fully developed pressure-driven laminar flow
are shown in Fig. 2. The numerical grid consists of 181×41 node points (180×40) control
cells on the fine grid. The height h of the microfluidic channel is 10µm, and the length l
is equal to 100µm. Dimensionless quantities were used in the simulations, therefore the
spatial coordinates were normalized by the height h of the channel.

Figure 2: Computational domain and contour lines of the horizontal velocity component in the fully developed
pressure-driven laminar flow in a straight microfluidic channel by using dimensionless spatial coordinates.

A mathematical task can be formulated in terms of boundary and initial conditions
for the pressure-driven laminar flow in the straight microfluidic channel. From wall to
wall, the inlet velocity profile was normalized by the average flow velocity ũ and defined
as

Uinlet(0,Y)=
u

ũ
=6Y(1−Y), (3.8)
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where u∗ is the wall-friction velocity [48]. The dimensionless pressure was prescribed
equally to be zero at the inlet section, which can be written as Pinlet(0,Y) = 0. Thus the
boundary conditions were the Dirichlet-type in the inlet section. The outlet boundary
conditions for the dimensionless velocity components can be prescribed as

∂U(L,Y)

∂X
=0 and

∂V (L,Y)

∂X
=0, (3.9)

which were Neumann-type boundary conditions, where L is the dimensionless spatial
coordinate of the outlet section. The pressure was prescribed equally to be one at the
outlet section, and can be written as Poutlet(L,Y)= 1. The velocity components U and V
were equal to zero on the bottom and upper walls as

Uupper wall (X,1)=Ubottom wall (X,0)=Vupper wall (X,1)=Vbottom wall (X,0)=0. (3.10)

Neumann-type and consistent boundary conditions were prescribed for the pressure on
the bottom and upper walls, as suggested by Karniadakis et al. [43, pp. 514-517] based
on Eq. (2.36). The initial conditions for the dimensionless velocity components U, V and
the pressure values P were equal to zero in each interior cell.

3.1.2 Validation of the FSAC-PP method at very low Re numbers

For the validation of the FSAC-PP method, compared to the AC and PP methods, and an
analytical solution for stationary flows from Re= 10 to 10−4, 216 simulations were per-
formed by using three different methods with three different intercell flux interpolation
schemes on four different girds at six different Reynolds numbers.

As discussed above, for computing the convective fluxes, a transport CB Godunov-
type scheme (2.22) is employed for the AC and FSAC-PP methods, because a) the CB
Godunov-type scheme can be derived from the hyperbolic system of the AC formulation
and b) the FSAC-PP method unifies the AC method with the FS-PP method via pseudo-
time splitting. Due to the elliptical nature of the FS-PP method, the Lax-Friedrichs scheme
was employed for those simulations when the PP method itself was used. The accuracy
of the pseudo-time stepping procedure was improved further by applying an explicit
fourth-order Runge-Kutta integration scheme [1, 17, 20].

The non-linear FMG-FAS multigrid technique [18] was used to accelerate the numer-
ical procedure by using 100 pre- and post-smoothing iterations on the fine grid, 10 pre-
and post-smoothing iterations on the medium grid, and 10 iterations on the coarse grid.
Note that the choice of the number of pre- and post-relaxation steps is dependent on
the fluid flow case [21, p. 616]. The simulation parameters including the characteristic
condition numbers are summarized in Table 1.

The grid convergence study is an indispensable part of a validation procedure for
computational fluid dynamics (CFD) methods. In this test case, four different grid levels
with G1=200, G2=800, G3=3200, G4=7200 cells are used for validating the proposed
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Table 1: Simulation parameters of six numerical test cases for the AC parameter β, for the CFLinv and CFLvis
Courant-Friedrichs-Lewy numbers associated with the inviscid and viscous fluxes at various Reynolds numbers
Re.

Reynolds Numbers (Re)

10 1 0.1 0.01 0.001 0.0001

Simulation Parameters

β 10 102 103 104 105 106

CFLinv 0.2 0.05 0.015 0.015 0.015 0.015

CFLvis 0.15 0.05 0.015 0.015 0.015 0.015

Table 2: Grid refinement ratios r and the order of truncation errors p on different grids.

Grid Grid Refinement Ratio r Orders of Truncation Error p

G1÷G2 4 1,2,3

G2÷G3 4 1,2,3

G3÷G4 2.25 1,2,3

FSAC-PP method compared to the AC and PP methods and an analytical solution, re-
spectively. The grid refinement ratio r and the order of the intercell flux interpolation
schemes relating to the truncation error p are summarized in Table 2.

The results showed that grid convergence was observed in most cases of the AC, PP
and FSAC-PP methods from Re=10 to 0.1 based on the simulation parameters at different
grid levels (see Figs. 4-6). By decreasing the Reynolds number, grid convergence was
observed only in most cases of the PP and FSAC-PP methods from Re= 0.01 to 0.0001.
The results did not show significant changes when using more than 180×40 control cells
on the domain for this microfluidic benchmark problem.

The characteristic condition numbers as CFLinv and CFLvis had to be decreased and
the AC parameter β had to be increased when the Reynolds number was decreased from
10 to 0.0001. Small CFL numbers led to very small values of the locally computed pseudo-
time step, and the large values of the AC parameter β ensured the numerical convergence
(see Table 1). The computational efficiency of the AC, PP and FSAC-PP methods was
measured based on the required number of multigrid cycles Nmg until the lowest maxi-
mum Runge-Kutta residual RKmaxres was achieved on the fine grid.

The convergence histories of each simulation are summarized in Tables 4-9, and in
Fig. 7. The results showed that the FSAC-PP method required the lowest number of
multigrid iterations Nmg on the fine grid compared to the AC and PP methods for this
microfluidic benchmark test case. The computational times are summarized in Table
3 at three different Reynolds numbers on a Dual-Core E5300 2.60 GHz computer with
8GB RAM. For stationary flows, it was observed that the inclusion of the PP step in the
pseudo-time stepping procedure of the AC formulation can improve the convergence
properties of the FSAC-PP algorithm, compared to the AC and FS-PP methods. The rea-
son is that when the FSAC-PP algorithm is used, it is sufficient to perform a small number
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Table 3: Computational times for a stationary flow problem in a straight microfluidic channel at Re=10, 1, and
0.1 on a Dual-Core E5300 2.60 GHz computer by employing a 3rd-order interpolation scheme for the convective
term.

Reynolds Numbers (Re)

10 1 0.1

Solution Methods Computational Times (Minutes)

AC 41 214 1156

PP 15 153 473

FSAC-PP 14 102 34

of sub-iterations (e.g. between 1 and 10) for solving the pressure-Poisson equation to ac-
celerate the pseudo-time stepping procedure via the perturbed continuity equation.

Numerical solutions to the AC formulation exhibited slow convergence rates irrespec-
tive of the values of the AC parameter β. In the case of the PP method, the rate of con-
vergence was also slow and the number of iterations was the highest, because 1) a small
time-step size has to be chosen as, e.g. ∆t∗ = 0.001 or smaller, to achieve a numerically
stable solution; and 2) a relatively high number of sub-iterations (e.g. between 100 and
500) was required for solving the pressure-Poisson equation implicitly to obtain accurate
results. For these reasons, the FSAC-PP solution method was developed and investi-
gated as an alternative method. When the Reynolds number was decreased, the lowest
maximum Runge-Kutta residual was achieved by employing a third-order interpolation
scheme; therefore at least accuracy of third-order is recommended for the convective flux
terms at (very) low Reynolds numbers (see Table 9 and Fig. 3).
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Figure 3: Comparison of analytically and numerically computed outlet velocity profiles relying on the solution
of the AC, PP, and FSAC-PP methods in a pressure-driven laminar flow using a 3rd-order interpolation scheme
at Re=0.0001 [1].
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Figure 4: Comparison of analytically and numerically computed outlet velocity profiles relying on the solution
of the AC, PP, and FSAC-PP methods in a pressure-driven laminar flow in a straight microfluidic channel using
a 1st-order interpolation scheme on four different grids at six different Reynolds numbers.
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Figure 5: Comparison of analytically and numerically computed outlet velocity profiles relying on the solution
of the AC, PP, and FSAC-PP methods in a pressure-driven laminar flow in a straight microfluidic channel using
a 2nd-order interpolation scheme on four different grids at six different Reynolds numbers.
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Figure 6: Comparison of analytically and numerically computed outlet velocity profiles relying on the solution
of the AC, PP, and FSAC-PP methods in a pressure-driven laminar flow in a straight microfluidic channel using
a 3rd-order interpolation scheme on four different grids at six different Reynolds numbers.
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Figure 7: Comparison of the numerical convergence of the AC, PP, and FSAC-PP methods; maximum values
of Runge-Kutta residuals versus total number of multigrid iterations on the fine grid at six different Reynolds
numbers from Re=10 to Re=0.0001.
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Table 4: Multigrid iterations and maximum of Runge-Kutta residuals at Re=10.

Reynolds Number (Re=10)

Intercell Flux Interpolations Solution Methods Nmg RKmaxres

AC 166 0.19995·10−8

1st-Order PP 2699 0.17488·10−8

FSAC-PP 32 0.79310·10−7

AC 166 0.19994·10−8

2nd-Order PP 751 0.14190·10−3

FSAC-PP 32 0.40928·10−7

AC 166 0.19995·10−8

3rd-Order PP 1878 0.18354·10−5

FSAC-PP 31 0.13352·10−6

Table 5: Multigrid iterations and maximum of Runge-Kutta residuals at Re=1.

Reynolds Number (Re=1)

Intercell Flux Interpolations Solution Methods Nmg RKmaxres

AC 1686 0.17147·10−6

1st-Order PP 2610 0.98816·10−7

FSAC-PP 50 0.12885·10−8

AC 2548 0.19999·10−8

2nd-Order PP 1216 0.23133·10−3

FSAC-PP 50 0.24190·10−6

AC 2548 0.20027·10−8

3rd-Order PP 1161 0.33209·10−3

FSAC-PP 51 0.15745·10−8

Table 6: Multigrid iterations and maximum of Runge-Kutta residuals at Re=0.1.

Reynolds Number (Re=0.1)

Intercell Flux Interpolations Solution Methods Nmg RKmaxres

AC 8816 0.11695·10−3

1st-Order PP 764 0.67944·10−2

FSAC-PP 65 0.39556·10−6

AC 8755 0.16735·10−3

2nd-Order PP 854 0.99766·10−2

FSAC-PP 66 0.20061·10−6

AC 9913 0.93892·10−4

3rd-Order PP 1161 0.33399·10−2

FSAC-PP 65 0.39317·10−6
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Table 7: Multigrid iterations and maximum of Runge-Kutta residuals at Re=0.01.

Reynolds Number (Re=0.01)

Intercell Flux Interpolations Solution Methods Nmg RKmaxres

AC 912 0.25786

1st-Order PP 764 0.67973·10−1

FSAC-PP 63 0.18301·10−8

AC 1241 0.19437

2nd-Order PP 854 0.99824·10−1

FSAC-PP 63 0.19609·10−8

AC 1230 0.19621

3rd-Order PP 1161 0.33418·10−1

FSAC-PP 62 0.19609·10−8

Table 8: Multigrid iterations and maximum of Runge-Kutta residuals at Re=0.001.

Reynolds Number (Re=0.001)

Intercell Flux Interpolations Solution Methods Nmg RKmaxres

AC 1487 7.69911

1st-Order PP 764 0.67976

FSAC-PP 147 0.13595·10−6

AC 1481 6.52887

2nd-Order PP 854 0.99830

FSAC-PP 84 0.17256·10−6

AC 1470 6.54560

3rd-Order PP 1161 0.33420

FSAC-PP 77 0.16733·10−6

Table 9: Multigrid iterations and maximum of Runge-Kutta residuals at Re=0.0001.

Reynolds Number (Re=0.0001)

Intercell Flux Interpolations Solution Methods Nmg RKmaxres

AC 1172 0.16354·103

1st-Order PP 764 6.79768

FSAC-PP 81 0.11713·10−4

AC 1169 0.20113·103

2nd-Order PP 854 9.98313

FSAC-PP 76 0.13386·10−4

AC 1165 0.20293·103

3rd-Order PP 1161 3.34202

FSAC-PP 123 0.15059·10−4
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The relative errors of the outlet velocity component U compared to the analytical so-
lution were computed from Re=10 up to 10−4. On the finest grid level G4, the FSAC-PP
method exhibited agreement in ∼0.17535% maximum relative error up to Re=1 while the
AC and PP methods exhibited ∼0.50831% and ∼1.25491% maximum relative errors, re-
spectively. By decreasing the Reynolds number, the maximum relative error of the AC, PP
and FSAC-PP methods compared to the analytical solution was ∼4.19308%, ∼0.00563%
and ∼0.14231% on the fine grid at Re= 0.1, respectively. The AC method showed good
agreement with the analytically computed outlet velocity profiles up to Re=0.1 on each
grid level; unlike the PP and the FSAC-PP methods which exhibited agreement with the
analytical solution up to Re= 0.0001. Since the lowest maximum Runge-Kutta residual
of the AC method was between 0.19437 and 0.20293·103 when the Reynolds number was
smaller than 0.1 (see Tables 7-9), thus the numerical solution was not able to resolve the
fully developed laminar velocity profile at the outlet section. These results can be seen in
Figs. 4-6 at Re=0.01, 0.001, and 0.0001. The velocity values computed by the AC method
were almost equal to zero, which means they were nearly equal to the initial condition of
the velocity field. Despite of this fact, the PP and FSAC-PP methods showed fairly good
agreement with the analytical solution at Re=0.01, 0.001, and 0.0001.

For Re< 0.1, the AC method failed to give physically reasonable results (see Figs. 3-
6). The results overall showed that the FSAC-PP method was more efficient than the AC
and PP methods for the two-dimensional microfluidic benchmark channel. In this case,
it can also be concluded that both PP and FSAC-PP methods were capable of handling
extremely low Reynolds numbers more accurately than the AC method. The computa-
tional experience gained in this study also showed that the FSAC-PP method performed
at a very slow convergence rate when the Reynolds number was smaller than 10−4. This
result suggests that the FSAC-PP method is valid for Reynolds numbers up to 10−4. Con-
sequently, further investigation is required to understand the convergence properties of
the FSAC-PP method for Re<10−4; and this approach should be further tested for com-
plex microfluidic problems when a small Reynolds number flow occurs.

3.2 Two-dimensional steady-state flow in a lid driven square cavity at
moderate Reynolds numbers (Re=100, 400, and 1000)

In this subsection, we choose the two-dimensional, steady-state, incompressible flow
problem in a lid driven square cavity as a benchmark problem to validate the proposed
FSAC-PP method at moderate Reynolds numbers. This is one of the most frequently
used benchmark test cases in the field of CFD for validation purpose, because reliable
numerical data are available in the literature. For the dimensionless velocity components
V and U along the horizontal and vertical centre-lines, the results are compared to the
AC and PP methods, and the classical numerical data of Ghia et al. [52] at Re = 100, 400,
and 1000. For this study, 45 simulations were performed by using three different meth-
ods with five different intercell flux interpolation schemes (from first- up to ninth-order)
at three different Reynolds numbers. The incompressible Navier-Stokes equations were
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Figure 8: Computational domain and equidistant grid for a square cavity by using dimensionless spatial coordi-
nates.

solved by applying a pseudo-time stepping procedure until the steady-state solution is
achieved. The domain was a unit square (see Fig. 8). For these Reynolds numbers, the
numerical grid consists of 129×129 node points 128×128 control cells on the fine grid,
which was the same grid as used by Ghia et al. [52], thus a grid convergence study was
not performed for this benchmark problem. For the simulations, the AC parameter β was
chosen to be equal to 10, and the CFLinv and CFLvis numbers are equal to 0.5.

A mathematical task can be formulated in terms of boundary and initial conditions for
the two-dimensional laminar flow in a lid driven square cavity. For this benchmark prob-
lem, dimensionless quantities were used, thus the spatial coordinates were normalized
by the characteristic length l of the square cavity. The dimensional velocity components
u and v were normalized by the average velocity ũ of the moving lid on the top. No-slip
boundary conditions were prescribed for the dimensionless velocity components U and
V on the non-moving side walls and the bottom wall as Uwall =Vwall = 0. Dirichlet-type
boundary conditions were imposed for the velocity components U and V on the mov-
ing top wall as Ulid = 1 and Vlid = 0. It is essential to obtain a unique solution for the
incompressible Navier-Stokes equations for this benchmark problem, thus the reference
static pressure was taken to be equal to zero in the lower left corner of the square cav-
ity. Therefore Neumann-type boundary conditions can be prescribed for the pressure on
the non-moving and moving walls as ∂P/∂n= 0, because the pressure was determined
up to a constant value to avoid infinite particular solutions of the fully Neumann-type
boundary value problem. The Neumann-type boundary conditions can be considered
mathematically correct for the pressure (see [47]). The initial conditions for the velocity
components U, V and the pressure values P were equal to zero in each interior cell.

The dimensionless velocity profiles, including the streamline patterns, compared to
the numerical data of Ghia et al. [52] can be seen in Figs. 10-15. First of all, the results
of the low-order (first-order) interpolation scheme were investigated at Re = 100 (see
Figs. 10-15). For the velocity component V along the horizontal centre-line, the maxi-
mum relative errors of the AC, PP and FSAC-PP methods were ∼0.19925, ∼0.42650 and



28 L. Könözsy and D. Drikakis / Commun. Comput. Phys., x (20xx), pp. 1-46

∼0.07362, respectively (see Table 10). For the velocity component U along the vertical
centre-line, the maximum relative errors of the AC, PP and FSAC-PP methods were
∼15.67207, ∼13.76639 and ∼0.70087, respectively (see Table 11). In terms of accuracy,
these results showed that the FSAC-PP method gave the most accurate agreement with
the numerical data of Ghia et al. [52] for both velocity components V and U by using
first-order interpolation scheme at Re = 100 (see Figs. 10 and 15).

It was also observed that the primary large eddy and the corner vortices, compared
to the streamline patterns in [52], were captured correctly by employing the FSAC-PP
method with a first-order scheme (see Fig. 15). It is essential to note that neither the
velocity profiles nor the corner vortices were resolved by the AC and PP methods by
applying a first-order interpolation scheme (see Figs. 10 and 15).

For Re=100, the convergence history of the pseudo-time stepping procedure is shown
in Fig. 16, which can be characterized by the maximum value of the Runge-Kutta residu-
als versus the total number of multigrid iterations on the fine grid until the steady-state
solution is achieved. The total number of multigrid iterations of the AC, PP and FSAC-PP
methods were 107, 7280 and 97, respectively (see Fig. 16 and Table 13). With respect to
numerical efficiency, the FSAC-PP method required the lowest number of multigrid cy-
cles of 97, compared to the AC and PP methods. Due to the small time-step, the highest
number of multigrid cycles of 7280 was obtained by using the PP method (see Fig. 16 and
Table 13). For this benchmark, the FSAC-PP method was the most accurate and efficient
method compared to the AC and PP methods when a first-order interpolation scheme
was employed at each investigated Reynolds number (see Figs. 10 and 15).

For Re=100, when second-order interpolation was employed, the maximum relative
errors of the AC, PP and FSAC-PP methods for the velocity component V were ∼0.05110,
∼0.27482 and ∼0.05531, respectively (see Table 10). For the velocity component U, the
maximum relative errors of these methods were ∼0.27663, ∼0.63502 and ∼0.08482, re-
spectively (see Table 11). For velocity components V and U in this case, the AC and
FSAC-PP methods were more accurate than the PP method. Unlike when the first-order
scheme was employed, the FSAC-PP method was, overall, more accurate than the AC
and PP methods for this benchmark problem (see Fig. 10). By increasing the order of
the interpolation scheme for the convective terms, when third-order interpolation was
employed, the maximum relative errors of the AC, PP and FSAC-PP methods for the
velocity component V were ∼0.05420, ∼0.07968 and ∼0.05270, respectively (see Table
10). For the velocity component U, the maximum relative errors of these methods were
∼0.23427, ∼0.22983 and ∼0.11597, respectively (see Table 11). It can also be seen from the
results of this case that the accuracy of the AC and PP methods were similar to each other
for the velocity component V, and the proposed FSAC-PP method was the most accurate
for the velocity component U. In terms of efficiency, the results showed again that the
unified FSAC-PP method required the lowest number of multigrid iterations Nmg on the
fine grid compared to the AC and PP methods at Re=100 (see Fig. 16 and Table 13).

The maximum relative errors of the fifth- and ninth-order Weighted Essentially Non-
Oscillatory (WENO) schemes have been summarized in Tables 10 and 11. The numerical
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Figure 9: Computational results of the AC, PP, and FSAC-PP methods for dimensionless velocity component
V along the horizontal centre-line of the square cavity using a 1st-order interpolation scheme compared to the
data of Ghia et al. [52] at Re = 400.

results of high-order schemes suggested, similarly to the use of third-order interpolation,
that the accuracy of the AC and FSAC-PP methods were similar to each other for the ve-
locity component V, and again the unified FSAC-PP method was the most accurate for
the horizontal velocity component U. This also means that the numerically computed ve-
locity profiles in the centre-lines did not change significantly by employing higher than a
third-order interpolation for this benchmark problem. The reason is that the grid resolu-
tion of 129×129 node points, is a fine mesh for this test case, thus the high-order schemes
did not improve further the accuracy of the solution (see Figs. 12-14).

The results of the AC and PP methods obtained by the first-order scheme for the
convective terms led to non-physical solutions at Re = 400 and 1000, respectively even
if the solutions were converged to the threshold value of 10−9 (see Figs. 10, 15 and 16).
Note that the numerical data of Ghia et al. [52, p. 399, Table II] was also non-physical at
the grid point number 117 (X= 0.9063, V=−0.23827), which is shown in Fig. 9 depicted
by ’*’. It is important to emphasize that the non-physical data were excluded from the
computation of the maximum relative errors, which are summarized in Tables 10 and 11.

For Re=400, the results showed that when the second-order interpolation was used
for the velocity components V and U (see Tables 10-11), the PP method was more accurate
than the AC and FSAC-PP methods for the velocity component V, and again the FSAC-
PP method was the most accurate for the velocity component U (see Fig. 11). This result
was also valid for the velocity component V by employing a third-order interpolation
(see Fig. 12 and Table 10). Unlike when the second-order scheme was employed, the
AC method exhibited the lowest maximum relative error for the velocity component U
(see Table 11). In the cases of fifth- and ninth-order WENO schemes, the PP method was
more accurate than the AC and FSAC-PP methods for the velocity component V, and
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Table 10: Maximum relative errors of the dimensionless velocity component V compared to the numerical data
of Ghia et al. [52] at Re=100, 400, and 1000, respectively.

Maximum Relative Errors along Horizontal Centre-Line [-]

Intercell Flux Interpolations Solution Methods Re = 100 Re = 400 Re = 1000

AC 0.19925 0.61997 1.15918

1st-Order PP 0.42650 0.53882 0.82317

FSAC-PP 0.07362 0.56081 0.28518

AC 0.05110 0.61561 0.10497

2nd-Order PP 0.27482 0.58735 0.45352

FSAC-PP 0.05531 0.61311 0.57405

AC 0.05420 0.62387 0.04062

3rd-Order PP 0.07968 0.53539 0.43522

FSAC-PP 0.05270 0.61038 0.02942

AC 0.05415 0.62492 0.03863

5th-WENO PP 0.07575 0.50669 0.45148

FSAC-PP 0.05283 0.60976 0.10794

AC 0.05391 0.62612 0.04084

9th-WENO PP 0.07455 0.53552 0.47184

FSAC-PP 0.05277 0.61141 0.05262

Table 11: Maximum relative errors of the dimensionless velocity component U compared to the numerical data
of Ghia et al. [52] at Re=100, 400, and 1000, respectively.

Maximum Relative Errors along Vertical Centre-Line [-]

Intercell Flux Interpolations Solution Methods Re = 100 Re = 400 Re = 1000

AC 15.67207 3.11797 1.16409

1st-Order PP 13.76639 8.12039 3.42777

FSAC-PP 0.70087 0.19398 0.13116

AC 0.27663 0.05174 0.12761

2nd-Order PP 0.63502 0.21816 0.31473

FSAC-PP 0.08482 0.03716 0.44063

AC 0.23427 0.03705 0.02469

3rd-Order PP 0.22983 0.46706 0.26077

FSAC-PP 0.11597 0.05844 0.06324

AC 0.24897 0.03432 0.02355

5th-WENO PP 0.29880 0.58807 0.39702

FSAC-PP 0.12395 0.06039 0.11584

AC 0.24727 0.03205 0.02236

9th-WENO PP 0.36641 0.46733 0.28609

FSAC-PP 0.12054 0.05240 0.07939
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Figure 10: Computational results of the AC, PP, and FSAC-PP methods for dimensionless velocity components
V and U along (a), (c), (e) horizontal and (b), (d), (f) vertical centre-lines of the square cavity using a 1st-order
interpolation scheme compared to the numerical results of Ghia et al. [52] at Re=100,400,1000, respectively.
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Figure 11: Computational results of the AC, PP, and FSAC-PP methods for dimensionless velocity components
V and U along (a), (c), (e) horizontal and (b), (d), (f) vertical centre-lines of the square cavity using a 2nd-order
interpolation scheme compared to the numerical results of Ghia et al. [52] at Re=100, 400, 1000, respectively.
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Figure 12: Computational results of the AC, PP, and FSAC-PP methods for dimensionless velocity components
V and U along (a), (c), (e) horizontal and (b), (d), (f) vertical centre-lines of the square cavity using a 3rd-order
interpolation scheme compared to the numerical results of Ghia et al. [52] at Re=100, 400, 1000, respectively.
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Figure 13: Computational results of the AC, PP, and FSAC-PP methods for dimensionless velocity components
V and U along (a), (c), (e) horizontal and (b), (d), (f) vertical centre-lines of the square cavity using 5th-order
WENO interpolation scheme compared to the numerical results of Ghia et al. [52] at Re = 100, 400, 1000,
respectively.
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Figure 14: Computational results of the AC, PP, and FSAC-PP methods for dimensionless velocity components
V and U along (a), (c), (e) horizontal and (b), (d), (f) vertical centre-lines of the square cavity using 9th-order
WENO interpolation scheme compared to the numerical results of Ghia et al. [52] at Re = 100, 400, 1000,
respectively.
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(a) Re=100, Ghia et al. [52] (b) Re=400, Ghia et al. [52] (c) Re=1000, Ghia et al. [52]

(d) Re=100, AC-1st-Order (e) Re=400, AC-1st-Order (f) Re=1000, AC-1st-Order

(g) Re=100, PP-1st-Order (h) Re=400, PP-1st-Order (i) Re=1000, PP-1st-Order

(j) Re=100, FSAC-PP-1st-Order (k) Re=400, FSAC-PP-1st-Order (l) Re=1000, FSAC-PP-1st-Order

Figure 15: Streamline patterns of the AC, PP, and FSAC-PP methods in the square cavity using a 1st-order
interpolation scheme compared to the numerical results of Ghia et al. [52] at Re=100, 400, 1000, respectively.
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Figure 16: Comparison of the numerical convergence of the AC, PP, and FSAC-PP methods; maximum values
of Runge-Kutta residuals versus total number of multigrid iterations on the fine grid at Re=100, 400, and 1000,
respectively.

the AC and FSAC-PP methods were more accurate than the PP method for the velocity
component U (see Figs. 13 and 14, and Tables 10 and 11). For Re = 400, the results of
high-order schemes also did not improve further the accuracy of the solution compared
with the third-order scheme (see Figs. 12, 13 and 14).

For Re=1000, the results again showed that the FSAC-PP method gave the most accu-
rate agreement with the numerical data of [52] when a first-order scheme was employed
(see Fig. 10, and Tables 10 and 11). The AC method was more accurate than the PP and
FSAC-PP methods when fifth- and ninth-order WENO schemes were used, compared to
the other schemes (see Figs. 13 and 14).

The overall results suggest that the accuracy of the AC and FSAC-PP methods were
similar to each other for this benchmark problem (see Tables 10 and 11). The FSAC-
PP approach was proven to be the most efficient method compared to the AC and PP
methods at Re = 100, 400, and 1000 (see Fig. 16 and Tables 12-13). Furthermore, the
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Table 12: Computational times for a stationary flow problem in a lid driven square cavity at Re= 100, 400,
and 1000 on a Dual-Core E5300 2.60 GHz computer by employing a 3rd-order interpolation scheme for the
convective term.

Reynolds Numbers (Re)

100 400 1000

Solution Methods Computational Times (Minutes)

AC 89 71 244

PP 129 251 321

FSAC-PP 86 57 105

Table 13: Total number of multigrid iterations on the fine grid using five different interpolation schemes at
Re=100, 400, and 1000, respectively.

Total Number of Multigrid Iterations on the Fine Grid

Intercell Flux Interpolations Solution Methods Re = 100 Re = 400 Re = 1000

AC 107 159 189

1st-Order PP 7280 12360 14490

FSAC-PP 97 113 162

AC 788 1716 526

2nd-Order PP 9780 13180 19380

FSAC-PP 202 722 403

AC 157 175 521

3rd-Order PP 8350 13180 19310

FSAC-PP 107 115 118

AC 157 346 521

5th-WENO PP 8940 12600 18460

FSAC-PP 102 114 104

AC 157 283 521

9th-WENO PP 8370 13400 18990

FSAC-PP 105 125 112

proposed unified FSAC-PP approach also provided accurate and efficient solutions by
employing a first-order (low-order) scheme as discussed above.

3.3 Three-dimensional unsteady turbulent flow in a lid driven cubical cavity
at a higher Reynolds number (Re=10000)

The FSAC-PP method has been further validated for an unsteady, incompressible, turbu-
lent flow and the results were compared to the AC and PP methods, and the experimental
data of Prasad and Koseff [53] for a lid driven cubical cavity at Re= 10000. This bench-
mark problem is of central interest in the field of CFD, because both simulations and mea-
surements are available in the literature [53,55,56]. Therefore this problem was chosen to
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Figure 17: Geometrical dimensions of the cubical cavity configuration measured by Prasad et al. [53, p. 209] at
L=B=D=150mm with spanwise aspect ratio of 1:1.

measure the computational time of the AC, PP, and FSAC-PP methods for an unsteady
flow at a higher Reynolds number. The geometry of the full measurement configuration
of Prasad and Koseff can be seen in Fig. 17 [53, p. 209]. The dimensions of the compu-
tational domain are equal to the cubical cavity of the experiment: L=B=D=150mm at
a spanwise aspect ratio (SAR) of 1:1 [53] (see Fig. 18). The numerical grid consists of a
64×64×64 node points 63×63×63 control cell, which is a relatively coarse grid for this
benchmark problem. Due to this fact, the non-linear advective terms were interpolated
by the ninth-order WENO scheme. For the PP method itself, the Lax-Friedrichs scheme
was employed with an explicit fourth-order Runge-Kutta time integration method.

Similarly to the two-dimensional benchmark problem, a mathematical task can be
formulated in terms of boundary and initial conditions for the three-dimensional turbu-
lent flow in a lid driven cubical cavity. For this test case, dimensionless quantities were
used as well, thus the spatial coordinates were normalized by the characteristic length L
of the square cavity (see Fig. 18). The dimensional velocity components u, v and w were
normalized by the average velocity Ub of the moving lid on the top. No-slip boundary
conditions were prescribed for the dimensionless velocity components U, V and W on the
non-moving walls as Uwall =Vwall =Wwall = 0. Dirichlet-type boundary conditions were
imposed for the velocity components U, V and W on the moving lid as Ulid =1, Vlid =0,
and Wlid = 0. It was essential to obtain a unique solution of the incompressible Navier-
Stokes equations for this three-dimensional benchmark problem as well. Therefore the
reference static pressure was set to be zero in the lower left corner of the front side of the
cubical cavity. Thus Neumann-type boundary conditions were prescribed for the pres-
sure on both moving and non-moving walls which means that the normal derivative of
the pressure vanishes as ∂P/∂n=0. The initial conditions for the velocity components U,
V and W and the pressure values P were equal to zero in each interior cell.

For this three-dimensional turbulent flow, the unsteady, incompressible Navier-Stokes
equations were solved by using the Implicit Large Eddy Simulation (ILES) technique via
a dual-time stepping procedure. The ILES method relying on the Godunov-procedure
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Figure 18: Equidistant numerical grid of the cubical cavity by using dimensionless coordinates, where L=B=
D=150mm with spanwise aspect ratio of 1:1.

has advantageous features for this problem, because a) the subgrid scale modelling is in-
cluded implicitly in the numerical scheme employed for the non-linear convective terms,
and b) the Godunov-type treatment of non-linear advective fluxes makes unnecessary
any restrictions for the cell Reynolds number at high-speed flows [2, 8]. By employing a
dual-time stepping procedure for the AC and FSAC-PP methods, the pseudo-time step-
ping process has to be performed until the steady-state solution is achieved, then the
process has to be advanced in real time. In this paper, the computational results were
compared to the experimental data of [53, p. 212] along the horizontal and vertical centre-
lines of the mid-plane of the cubical cavity at z/L=0 (see Fig. 19).

For the turbulent flow problem in the lid driven cubical cavity, the third velocity com-
ponent W becomes significant due to the presence of strong velocity fluctuations, which
have a high-frequency [53]. At the early stage of the flow field formation, a clockwise-
rotating primary large eddy appears in the upper right corner, which slowly flows down-
stream [46]. During this period of time, the counter-rotating downstream secondary eddy
starts to develop from nearly the mid-point of the right side of the cubical cavity towards
the lower right corner. In the finally developed flow field, the primary large eddy is
located in the middle of the symmetry plane; two counter-rotating secondary eddies ap-
pear in the lower corners; and a third vortex formation appears slightly lower than the
left upper corner [46, 53] (see also the vortex structure in Fig. 17 [53, p. 209]).

The flow is strongly turbulent in the mid-plane of the cubical cavity at Re = 10000,
and the dimensionless mean velocity profiles, the root-mean-square (RMS) profiles, and
the shear stress U′V ′ profiles are compared against the experimental data of [53], which
can be seen in Fig. 19. The RMS profiles represent the normal stresses in the Reynolds
stress tensor. By employing the ILES method, the elements of the Reynolds stress tensor
are modelled implicitly, and these values can be recovered by spatial averaging. The re-
lationship between the Reynolds Averaged Navier-Stokes (RANS) and the ILES method
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based turbulence modelling can be expressed by the Reynolds decomposition [2] as

UT =U+U′, (3.11)

where UT is the instantaneous (turbulent) velocity field, U is the spatial averaged mean
velocity field, and U′ is the fluctuating velocity field. The instantaneous velocity field
UILES=UT was obtained as the result of the ILES method.

The spatial averaged mean velocity field may be computed by

U=
1

N

N

∑
i,j,k

(UILES)i,j,k , (3.12)

where N is the number of computational cells. Relying on the Reynolds decomposition
(3.11), the fluctuating velocity field can be approximated by

U′=UILES−U, (3.13)

and by averaging the products of the fluctuating velocity components U′, V ′ and W ′, the
elements of the Reynolds stress tensor can be recovered. The mean velocity, normal and
shear stress profiles were computed by employing the AC, PP and FSAC-PP methods in
the framework of the ILES method [58].

All simulations have been performed on a Dual-Core E5300 2.60 GHz computer with
the real-time step ∆t∗ = 0.01 to measure computational times. The convergence criterion
of the dual-time stepping procedure was 10−5 in each pseudo-time step for the AC and
FSAC-PP methods. When the PP method itself was employed, 50 sub-iterations were
performed by the S.O.R. method with ω= 1.7 relaxation factor for solving the pressure-
Poisson equation. The FSAC-PP method satisfies the continuity equation iteratively in
the pseudo-time stepping procedure, thus 10 sub-iterations were used with the S.O.R.
method for updating the pressure field. Note that when the FSAC-PP approach is em-
ployed, one sub-iteration is usually sufficient to solve the pressure-Poisson equation. For
unsteady flows, it has been observed that the inclusion of the PP step in the AC formu-
lation can speed up the satisfaction of the divergence-free (incompressibility) constraint
in the perturbed continuity equation. Therefore the steady-state solution of the dual-
time stepping procedure can be achieved faster with the FSAC-PP method than with the
AC method in most cases. Furthermore, when the FSAC-PP approach is employed, it is
not necessary to perform many sub-iterations for solving the pressure-Poisson equation
compared to the PP method. For this benchmark problem, these reasons could justify that
the computational time was decreased by employing the proposed FSAC-PP approach,
compared to the AC and PP methods (see Table 14).

The numerical results showed that the AC, PP and FSAC-PP methods capture the
mean velocity components better than the RMS normal and shear stress profiles when
compared to the experimental data of [53]. The RMS stress profiles followed the ten-
dency of the measured values with significant deviations between experiments and sim-
ulations, which were similar to the DNS results of Leriche et al. [55] at high Reynolds
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Figure 19: ILES results of the AC, PP, and FSAC-PP methods compared to the experimental data of Prasad
et al. [53, p. 211] in the mid-plane z/L = 0 at Re = 10000; dimensionless mean velocity profiles along a)
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Table 14: Computational times for an unsteady turbulent flow problem in a lid driven cubical cavity at Re=10000
on a Dual-Core E5300 2.60 GHz computer by employing 9rd-order WENO interpolation scheme [24–26] for the
convective term.

Methods Computational Times of 41380 Time Iterations (Days)

AC 12

PP 14.5

FSAC-PP 7

numbers. According to Leriche et al. [55], the differences in the fluctuating field between
the simulation and the experiment are caused by the measurement errors approaching
to the moving wall. Therefore the deviations observed in the current simulations may
also be due to the same reason. Overall, the AC, PP, and FSAC-PP methods also lead to a
good agreement with the experimental data for this higher Reynolds number flow.

4 Conclusions

In this paper, a unified fractional-step (FS), artificial compressibility (AC) and pressure
projection (PP) formulation and numerical algorithm have been introduced in conjunc-
tion with a characteristics-based (CB) Godunov-type scheme for incompressible flows.
The advantageous feature of the proposed FSAC-PP approach is the inclusion of the PP
step in the AC formulation via pseudo-time splitting to decrease the magnitude of the
pseudo-pressure term in the perturbed continuity equation, thus enforcing and acceler-
ating the satisfaction of the continuity equation.

For simulating pressure-driven stationary laminar flows in a straight microfluidic
channel, the AC method failed to give physically reasonable results at Re < 0.1, while
both PP and FSAC-PP methods were capable of handling extremely low Reynolds num-
ber flows more accurately than the classical AC method. The results suggest that the
proposed FSAC-PP method is valid for Reynolds numbers up to 10−4.

For two-dimensional stationary laminar flows in a lid driven square cavity, the results
showed that the accuracy of the AC and FSAC-PP methods were similar to each other.
For this benchmark problem, the FSAC-PP approach was the most efficient method com-
pared to the AC and PP methods at Re=100, 400, and 1000, respectively. Furthermore, the
FSAC-PP approach was also capable of providing accurate and efficient solution by em-
ploying first-order (low-order) interpolation scheme for the convective flux terms com-
pared to the use of higher-order schemes.

For a three-dimensional unsteady turbulent flow in a lid driven cubical cavity, the
AC, PP and FSAC-PP methods captured the mean velocity profiles more accurately than
the RMS normal and shear stress profiles. For this problem, the FSAC-PP approach per-
formed better again than the AC and PP methods by decreasing the computational time.

The overall results suggest that the proposed FSAC-PP approach is more efficient
than the AC and PP methods at low and moderate Reynolds numbers, and at a higher
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Reynolds number flow regime as well. The FSAC-PP method provides an advantageous
numerical strategy both for stationary and unsteady flow problems relating to the pre-
sented benchmark problems. As a future work, it will be necessary to further investigate
the FSAC-PP method for more complex flows regarding unsteady problems.

Acknowledgments

The authors would like to acknowledge Tommaso Oggian’s assistance regarding the im-
plementation of the pressure-Poisson solver.

References
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