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SUMMARY
puliatil

The urgent need for a systematic approasch to the problenms of
the optimum design of structures is stressed and ideal formulations
of these problems are considered. Differential equations and a
variational principle are derived for the case of plates loaded in

their own planes; these can form the basis for approximate

solutions, in the form of optimum distributicns of plate thickness

and the corresponding stress distributions which are reguired to

equilibrate given asystems of external loads.
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Introduction

The real problem of aircraft structural design is the disposal
of material in such a way, that it can safely equilibrate given systems
of applied forces and at the sane time weigh as little as possibles
Practical considerations relating to napufacture, maintenance or
funetion will force a departure from such an ideal solution, but a
knowledge of ideal optima is clearly of great value as a control,
Almost all* of the content of the Theory of Structures is concerned
with the strength or stiffness of a given structure subjected to given
loads and the designer is left to do the best that he can, using his
native wit and the processes of trial and error.  This is unsatisfactory,
since there is no meang of telling how far from the ideal solution any
given practical construction lieg.  This has always been the case, but
in view of the wvery severe loading conditions on modern aercplanes and
ﬁissiles, and the vital need to minimise their structure weight, in
order to achieve competitive performamce, there would seem to be at
present a special need for developing in a systematic way, the study of
optimum structures. This note is written in the hope that it may

contribute towards the encouragement of such developments.

Ideal Pornulation of the Problen

Suppose that we have the problem of designing an optimmm structure
to carry a systen of loads, which can be specified as forces distributed
through given volumes or over given surfaces in space, Suppose further
that we have at our disposal a material, availsble in a continuous range
of densities fron zero upwards, and such that the moduli of elasticity
and the yield stress increase monotonically with the density (e.g. they
night be proporticnal ta’the'a&nsiﬁyﬁ‘ A typical optimum design
problen would then be to determine that distribution of material densi%y
throughout space, such that the given loads can be equilibrated by
that meterial without the yield conditions being excecded at any point |

and such that the total weight of material is as snall as possible.

) Exceptions include Refs. 1, Z2a




This is perhaps the simplest formulation. In some cases it may be
necessary to add a requirenent for stdblﬁlty'ox equilibrium,  In othars,
consideration must be given to several dl?ferunt loading systems and

stiffness requirenents, and to thermal effects as well.

The problem can be made as complex as one likes, but even in
its simplest form, it brings with it a nurber of formidable nathematical
difficulties. Its equations are non-linear, since the relations
between stress and strain have coefficients depending upon the -unknown

density and the yield condition in its usual Nises-Hencky form is

o

quadratic relation between the stresses. The yield condition is also
an inequality, not an equation and if it is replaced by an equation,
naking the naterdial yield at all points, then this completely
deternines the solution, without any explicit reference to minimum
weight. A further difficulty arises in cases where the applied loads
are not continuously distributed (e.g. when they act on separate
pieces of surface), In this case the "shape" of part of the

structural surface is one of the unknowns of the problen,

In view of these difficulties we shall confine ourselves in-
what follows to the two-dimensional case of plates loaded in their own
planes. We shall take the thickness of the @1ate as our unknown
rather then the density and shall consider a material of constant
moduld and yileld sitress. This is clearly equivalent, in this special
case, fc our general formulation and has been adopted since its
equations present a more familiar appearance. Strictly speaking, of
course, the variation of ﬁhickness invalidates the assumptions of "plane
stress", but since the équivélent variable density formulation avoids this
cbjection, we shall disregar& it and proceed on the basis of "conventional
plate theory". We shall further assune the yield condition to be
satisfied at every point of the plate and shall examine, where possible,
the relation of this restriction to the condition of minimum weight.
Flnally, in view of the great difficulty of even the two dimensional

equations, we shall seek alternative variational formulaticn,



Equations for the Two-Dirensional Problen

Consider a plate referred to axes O(x,y) in its plane. Denote
the stresses due to loads applied to the edges, in the plane of the
plate by fxx’ f and fvy, Then if "t" is the varizble thickness,

equilibrium demands the existence of a stress function ¢ such that

a2 , 3%y a2
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The condition of compatibility for the strains can be written using

the strain-stress relations as,
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where v is Poisson's ratio. Finally the Mises-Hencky yield criterion,

“which is assumed satisfled everywhere, is
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where q is the yield stress for pure shear.

The stress components con be eliminated from (1),(2),(3)

to yield a pair of equations for ¢ and %, namely,
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This would seem to be the simplest fornmulation of our problem.
The varisble t cen be eliminated, since it is given explicitly by (5),

but the result is hardly worth writing, The resulting equation is




of fourth crder in ¢ and nmust be solved subject to the usual plate
boundary éonditionsg which are definite 1f the external loading is
giveﬁ on a closed curve and lightening holes are not considered!

The problen is clearly very difficult, but might yield to a numerical
approach, like "relaxation", using successive approxinations for t, :
beginning with t = constant, defined by the preceeding approxination

for ¢ by equation (5).

A Simple Example

Since the general equations are cleerly very difficult, one
turns naturally to the simplest possible case of the problem, which is
provided by a circle radius"a"loaded by uniforn radial tension
T per unit length., Let us fiil the circle with a plate of thickness %
which is 5 function of the polar coordinate r mneasured from the centre.

Then if V - is the radial displacement the stresses f%r"fea are given by,

-
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where E is Young's Modulus. The condition of equilibrium is,
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and the boundery conditions are,
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and. av/ar , V/r finite atr

Finally to avoid non-linearity we use the mexinum shear stress

condition of yielding, which can be written,

{ £ = Log f = 2q ‘ oo (102)
or ; o } = 2q ' seo (1Gb)
or | foq | = 2q k sas (10c)



Substitution fron (6) in (40) and integration for V yields the

solutions, ;
v o= % §3£%$Zl r log v + Gy veo (112)
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where Cq, Cp, O3 are constants of integration.  Solution (11a) is
incompatible with (9) and so (10a) cannot be used near ¥ = O.
Solutions (41b),(11c) satisfy (a) 4f C; = C3 = 0. They are thus
identical and yield constant isotropic strains and stresses which by
(8) are given by,

frr = fee = 2(1 *o0 (‘ig)

where the positive sign must clearly be taken.

RS

Substitution in (7) yields +t = const., which is perhaps not unexpected!
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The solution of.(12) must epply near r =0. Since V and f  must

be continuous it follows from (6) that fee is continuous as well and s0,

| ,
| | 06|
a boundery condition for the remaining portion of the circle.

at any boundary where (12) ceases to apply, we have e = T =0as
This means that (10a) cammot be valid for this region and so0 (12),
which follows from (10b) and (10c¢), must be valid everywhere.
Equation (8) then gives,

t = T/Zq eww (15)

which is our "optimum design™!  This solution although "erivial"
1llustrates the sort of considerations involved in these design

problens.

Varistional Formulation

Tet us consider a variation in the stress distribution 6?}{}{,
6f’w, 6f and in the thlctmess 61;, such that both the comltlonb
of equlllbrlum as well as &a jmldz.ng condition like (Zz) are sa"tisfm&

in the varied state.
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we can write (14) in the form,

[/(*%:6*@'+2W5t)dxdy = 0 s (16)

This is the variational equation of our problem., We note that,

3 L

if t is not varied, it reduces to the usual minirun energy principle.
Equation (16) can be used with any yielding hypothesis.

Suppose for the moment that we are old fashioned and *dopt the Hoigh

theory and write,

.52 2 . 2 £2 . 2 s e
£ fyy zbfxxfyy + 2(1 + v>”xy‘ 2(1 +v)q ’ (17)

This is equivalent by (15) to W = constont. e see then that (16)

becones 6]/‘tdxdy = 0 . een (18)
J

I“ the formulae for the strains in terms of the displacements
are substituted in (14), an application of Green's Theoren
reduces this equation to the veried equilibriun equations,



i.e, & condition of nminipun weight! Conversely, the condition of
ninimun weight (18) implies compatibility of strain as deternined by
(16), only if W = constant and so, if any hypothesis but that of ‘
Haigh is adopted for yielding, the weight of the optimum design is not

a strict mininmum.

If the Mises-Hencky yielding condition of (3) is used, then
from (3) and (15) we find

Q’bﬁgl‘ +f ) _;.gwi;ﬁ.}.qz Qﬂ.’(€9)
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and the variational equation (16) can be put into the special forn

ﬂr(f + £ )\&L + 8 )-{(f v ) .4-“:;&1%%%2} 5{{@@3

eos (20)

These variational equations may well be used to construct approximate
solutions to optimum ‘d’e‘sign problens., One might begin with a

stress function ¢ which is chosen so that the boundary conditions

are satisfied and which depends upon a number of unknown paramncters or -
funetions. - A formula :Cor t  then follows from (5) and the stress
components are obtainsble from (1).  Substititution in (20) will then
yield by the usual processes of the calculus of variations a series

of equations for the unknowns. These will herdly be sinmple, butb.
since they nay well have ”i:he form of algebraic or ordinary

differential equations, they will probebly y:,eld. nore readily to

eatment than equation (L).




Conclusions

(1) There is an urgent need for the development of systenatic nethods
for the deternmination of optimun structural designs and their

corresponding ideal weights.

(2) This means by and large the creation of a new branch of the Theory -
of Structures.

(3) The construction of ideal solutions using materials, with continuously
‘ varying density or thickness, transnitting given systenms of loads,
is of value but methods for the consideration of alternative

loading and stiffness requirenments must be developed,
(&) Techniques for positioning unloaded boundaries are also required.

(5) The extension of the theory to three dimensions is perhaps not
terribly urgent for aircraft work, but extension to curved shells

is clearly importent.,

(6) The equations (4) and (5) for the two-fimensional form of the
s&mp?est kind of prbleu are difficult, but will probsbly yleld

T to ' a relaxation type of analysis.

(7) Exact solutions though of interest will doubtless be rather trivial.

‘ (8) The equations of %he prdblém can be . given a variational fornm as
in (16),(18) and (20). Ecuatlons of this kind nay well be the

main basis for approx1ﬂa e solution of problens.
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