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IMARY
The primary purpose of these notes is to
sketch an approach to the clementary aigebraic
theory of planar electric networks which conduces
to a formal dusl correspondence between the
so-called mesh and nodal representations of
planar networks that is complete in every respect.

It is also shown that if general variables are
emploved in the analysis of a network the number
of voltage or current equations that serve to
describe the network is infinite.

Finally, it is demonstrated that the impedance
or admittance matrix of o passive network is not

necessarily symunetrical,
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1e Flanar linear graphs

Our definition of a planar linear graph will be related
to the connectivity of the two-dimensional orientsble closed
surface on which we shall suppose it to be delineated, A surface
is said to have connectivity € if the maximum number of Jordan
curves ¥ that can be traced upon it without separating it into
- two or more regions is €~1. A surface of unit connectivity is
called siuply-connected while surfaces of connectivity greater
than univy are called multiply-connected, If a linear graph
is mappable on a simply-comnected surface without the crossing
of branches (Ref.1) it is similarly meppable on a plane and will
thercfore be called planar,

2, Segittal grophs

The use of a linear graph as a device for charting the
flow of electric currents in an electric network requires that we
associate with each bronch the notion of direction., If this is
done by plecing an arbitrerily directed arrow-head on every
branch, the graph will be called sagittal (Ref,2). The direction
associoted with a branch will also be taken to comnote the idea
of molarity, If branch k is directed away from node v (Ref.’%)
and toward node w then node v will be regarded as the positive
node and node w the negative node of branch k.

R Mash tie-sets and node cut-sets

The mepping of a planar linear groph on a simply-—
connected surface (that of = sphere, for example) divides the
surface into a number of regions., These regions will be called
meshes and the set of branches bounding a mesh will be described
ag the tie-set™ of the mesh. If a planar graph contains
branches and n nodes, it divides the surface into m meshes (and
therefore contains m mesh tie-sets) according to Euler's relation
between the faces, edges, and vertices of a polyhedron of
choracteristic 2, thus

m:b—n+2 (301)

% A closed curve that does not intersect itself; the homeomorph
of e circle,

®  The term tie-set is due to Professor E.,A, Guillemin.



The set of branches mecting at a node will be described as the
cut~set (Ref,1) of the node. If a planar graph contains n nodes
it contains n node cut-sets

An example of o planar sagittal wraph,containing six mesh
tie-sets and five node cut-sets is shown in Fig.3.1. It should
be noted that, because the graph is here moapped on a plane
surface, it lu nceessary to suppose the area surrounding the figure
to rcPrcgept one of the six meshes, The meshes are numbered
152, sse, 6o

With each mesh tie-sect of a planar graph we shall associate

the idea of direction, For this purpose we supposc all the
branches not 1pclurea in the tic-set belonging to mesh g to
dilate to the point of rupture so that all m@@“oa other than

mesh g unite to form one. Teking the direction as clockwise
around the tie-set, the result will be called the directed
tie-set of mesh g. The six directed mesh tie-sets of the graph
of Fig.3.1, for example, are represented in Fig.3.2. It should
be explained that directed tie-set 6 is that belonging to the
mesh corresponding to the area surrounding the figure in Fig.3.71.
and is therefore renroduced as if viewed from the opposite side
of the closed surface on which the graph is supposed to be drav
It is evident that each branch of a planar graph is a member

of two mesh tie-sets; a similerly directed set and an oppositely
directed set,

Witﬂ each node cut-set of a planar graph we shall
assoclate the idea of polarity. For this purpose we suppose all
the branches not included in the cut-set belonging to node g
to contract to the point when the meshes bounded by these
branches vanish so that 211l nodes other than node g unite to
form one, Teking the polarity as that with node g positive
and the coalesced nodes negative, the result will be called
the polarized cut-set of node gq. The five polarized cut-scts
of the graph of Fig.3.,1 are represented in Fig.3.3. It is
evident that each branch of a plenar graph is a member of two
node cut-scts; a similarly polarized set and an oppositely
polarized set.

L, Algebraic representation
A planor sagittal 3ch may be charecterized by either

of two matrices, The first of thesc is a rectangular matrix C
of order m by b with components:

A bvar below & letter will be employed to indicate o matrix.
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1 4if the tie-set of mesh r has the same direction as branch s

rs = -4 if the tie-sct of mesh r has the opposite direction to branch s
0 if the tie-set of mesh r does not contain brench s
The matrix C will be called the mesh~branch incidence matrix of
the greph; it has renk ¢ = m - 1 and colum nullity p = n - 1.
For the graph of Fig.3.1,
4 4 0 0 O 0 1 0O O
o -1 1 o 0 0 o0 O
¢ = o 0 0 414 O 0=~ 1 O (41)
0O 0 - O 1 + o 0 O
c 0o o 0 o 1 0+ 1
-~ 0 0 0 + 0O o 0 +
Row T of O enumerates and orientates the branches belonging
to the diTected tie-sct of mesh r and column s of C identifies
the two mesh tie-sets, one similerly directed and the other
oppositely directed, that contain branch s. Thus, the columns
of C contain two non-zero entries; 1 and -1,
The second matrix 4 is also rectangular with order n
by b and components: -
1 if the cut-set of node r has the same polarity as branch s
rs - ~1 if the cut-set of node r has the opposite polarity to branch s

0 if the cut-set of ncde r does not contain branch s

The matrix A will be called the node-branch incidence matrix
of the graph; it has rank p = n - 1 and column nullity ¢ = m = 1o
For the greph of Fig.3.1,



A = (4a2)

1 o 0 0 0 0 -1 - -

Lo

Bomomer

Row r of A enumerates and orientates the branches belonging to
the polarized cut-set of node r and colum s of A identifies
the two node cut-sets, one similarly polarized and the other
oppositely polarized, that contain branch s.  Thus, as in C,
the colums of A contain two non-zero entries; 1 and -1,

5. The dunl of a planar sagittal graph

If C is the m by b mesh-branch incidernce matrix andl A
the n by b node-branch incidence matrix of a planar sagittal -
graph G’I , the sagittal greph G2 that has C for node-branch

incidence matrix and A fér mesh~branch incidence matrix is

defined as the dual of G,. This definition arises from the

recognition of the duality between mesh and node., A branch
is a self-dual, Hence the graph C»2 contains b branches,

n meshes, and m nodes.

The following rules facilitate the construction of the
graph G2 from the graph G'“I :

(i) On the reverse side of the surface on which the
graph G, is drawn, indicate one node on every
mesh, Number the nodes according to the corresponding
meshes,

(ii) Interconnect the nodes with branches in such a
way that each branch crosses a branch of the
originel graph. Number the branches according
to those in the original graph to which they
correspond, Number the meshes thus formed
according to the corresponding nodes in the original
graph,
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(iii) If, in the original graph, branch k belongs to
thﬁ tieg-set of reoh r and has the seme (respectively
opposfcc) direction then branch k in the dual
belongs to the cut-set of node r and has the
same (respectively opposite) polarity,

The procedurc is illustrated in Fig.5.1 (2) in which the dual
of the sagittal groph of Fig,3.1 is constructed; the dual is
reproduced in Fig .5. (1(p).

Rule (:L) above differs from that usually given but if
the two sides of the surface on which the graph is drawn are
regarded as duals the application of the rules to the dual
sagittal graph G— will result in the original sagittal graph

(}1a Otherwise i‘t is necessary to distinguish between a graph
and its dusl by employing oppositely directed mesh tie-sets when
passing from the dual to the original. Such a distinction is
incompatible with the concept of duality.

6o Topological independence

Wie now identify (i) the directions and (ii) the
polarities associated with the branches of a sagittal graph with (1)
the dircctions of the instantaneous electric curren‘ts in and (Z}.l)
the polarities of the instantancous potential differences between
the terminals of the branches in the physical network.

If v and i represent respectively column matrices
of the branch potential differences v,, Vs eoes Y and the branch
currents i’i s 12, ceos lb in the physical network then the application
of the Kirchhoff voltage law to every mesh tie-set of the network
has the representation

Cv. = o (6.’5>

and the application of the Kirchhoff current law to every node
cut-set of the network has the expression

'{EE = ..,C,.). . (6'2)

Let the clockwise directions assoclated with the mesh
tie~sets of the sagittal graph be lﬂuﬂulfled with those of

hypothetical tie-set currents 1,!', 2, eeey 1. IF i' represents

the colum matrix of these currents then 1 and _g'._' arc related in



the equation

it | (6.3)

where C () is the transpose of ¢, Similarly, ‘let the polz:xrities
associated with the node cut-sets of the sagittal graph be
identified with those of hypothetical cut-set potential differences
Vis; Vhs eeey VY . If v' represents the colum matrix of these

n
potential differences then v and v' are related in the equation

¥ o=Ap) ¥ (6.4)

where 4. £) is the transpose of A4,
! ‘ &

However, the rank of C is ¢ = m ~ 1 and the rank of
Ads p=m=1, That is, the ranks of C and A are each one less
than the nurber of rews indicating that the rows are not linearly
independent; indeed, any row of C or A is the negative of the '
sum of all the other rows, The set of mesh tie-sets represented
by eny ¢ of the m rows of C and the set of node cut-sets represented
by any p of the n rows of A are each said to be topologically
linearly independent; either sct completely characterizes the
configuration of the system. Thus, of the m directed mesh tie-sets
that may be defined on a planar sagittal graph, one is redundant for
the complete specification of the system on a mesh basis. The
mesh associated with the redundant tie-set will be called the
datun mesh and designated mesh O, Similarly, of the n polarized
node cut-sets that may be defined, one is redundant for the
complete specification of the system on a nodel basis., The
node associoted with the redundant cut-set will be called the
datum node and designated node 0.

It follows that any ¢ of the m mesh tie-set currents in
the colum matrix i' are sufficient to represent the b branch currents.
Likewise, any p of the n cut-set potential differences in the column
matrix v' are sufficient to represent the b branch potential
- differences, '

The rank of the incidence matrix C or, which is equivalent,
the colum nullity of the incidence matrix A will be called the
cyclomatic index and the rank of the incidence matrix A or, which
is equivalent, the column nullity of the incidence matrix C we shall
take the liberty of calling the nodalic index of the corresponding



linear graph.t  If (3.1) is written as

(m=-1) = b=(n-1) (6.5)

we have the well-known equation relating the cyclomatic
index ¢ and the nodalic index p, thus

kC =D = P (606)

It is evident that the cyclomatic index and the nodalic index
are duals,

7o Mesh tie-set and node cut-set transformations

Considering first the mesh basis representation, let
us suppose that mesh 3 in the graph of Fig.3.1 is selected as
the datun mesh and the remeining meshes renumbered as in Fig.7.1.
The corresponding incidence matrix C is obtainable from that in
(k1) by suppressing row3, thus

1+ 4 0 0 0 0 41 0 O
0 -1 1 =4 0 0 0 0 ©
g, = 0O 0 -4 0 41 -4 0 0 O (7.1)
0O 0 0 0 0 1 0 -4 1
-4 0 0 0 - 0 0 0 =~

Let it now be required to derive from C 1 the matrix §_2

corresponding to a change of datum mesh from mesh O to mesh 5
with mesh O renumbered 5 and mesh 5 renumbered O. The metrix _Q_2

may be obtained from O, by exchanging row 5 for row 3 of C.

—-—»E
Row 3 of C is, however, the ncgative of the sum of all the rows
of C The matrix C? may therefore be cbtained from C (according

to the theory of clemenbary ma’crlcas) by Drmul’slmlylng it by the

The terms cyclomatic index (J.B.Listing) and nodalic index
are adopted in preference to Whitney's terms nullity and rank
because the column nullity of A is equal to the rank of C
and vice versa,

-
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matrix P obtained from the 5 by 5 unit matrix by substituting in
the place of row 5 the negative of the sum of all the rows, thus

1 0 0 0 o0 11 0 0 0 0 1 0 0
6 1 0 0 o0 O« 1 1 0 0 0 0 0
0 0 0 C, ={0 0 = - 0 0 0
- 1 0 g, 1 c 1 1 (7.2)
O 0 0 1 o0 6 0 0 0 0 4 0 -1 1
I B B IR ¢ 0 0 1 0 0 -4 1 o0
We have, therefore s
Theorem I:  If Qj is the ¢ by b mesh-branch incidence
matrix of a planar sagittal graph and if P is the ¢ by c
unit matrix with the gth row exchanged for a row of
(=1)'s, the o by b mesh-branch incidence matrix S =EC,
represents the graph after the datum mesh has been changed
from mesh O to mesh g with mesh O renumbered q and mesh g
renumbered O,
If &3 is the column matrix of mesh tic-set currents
i1' s izf, seos ié corresponding to a choice of ¢ topologically
independent tie-sets with mesh-branch incidence matrix 'Q'j’
the equation
. <y
2 =C54y 43 (7.3)
is an adequate representation of the b branch currents.
I _;_12 is the columm matrix of tie-set currents after a change
of datum mesh according to incidence mabrix G = B Gy, then
-j:§ and i} are related in the equation "
st - s g ! .
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2

-1 O

The determinant, det P of the transformation matrix P is ~1.
Furthermore, P is such that _1?_’2 is the unit metrix; that is,
It follows, therefore, that

P is involuntory.

L =By &

Considering now the nodal basis representation,
let us suppose that node 3 in the graph of Pig.3.1 is sclected

as the datum node and the remaining nodes renumbered as in

Pig.7.2. The incidence matrix -A’l
(4.2) by suppressing row 3, thus
*':1 11 0 1

o -1t 0 1 O

4 = 0 0 0 0 =+

L.j 0 ¢ 0 O

Let it now be required to derive from _1}1

is obtainable from that in

(7.5)

(7.6)

the matrix _4&_2

corresponding to a change of datum node from node 0 to node I

with node 0 remumbered 4 and node 4 renumbered O, The matrix A,

mey be obtained from _.1}_4

by exchanging row L for row 3 of A.

Row 3 of A is, however, the negative of the sum of all the rows

of 4,.

The matrix A, may therefore be obtained from g,; by

premiltiplying it by the matrix P obtained from the 4 by 4 unit

matrix by substituting in the place of row 4 the negative of the sum

of all the rows, thus

g 0 0 O

2.’5.1 =

o 1 0
1 0 O
0 +1 -
- 0 1

0 O
4

0 O
0 1

(7.7)



We have, therefore,

Theorem II: If _ﬁ_ﬁj is the p by b node-branch incidence
matrix of a planar sagittal graph and if P is the p by
p unit matrix with the gth row exchanged for a row of
(~1)'s, the p by b node~branch incidence matrix A =

P C represents the graph after the datum node has been
changed from node O to node g with node O renumbere&

q and node g renumbered O,

ir vé is the column matrix of node cut-set potential

differences v1', é, cses

topologically independent cut-sets with node~branch incidence

vI') corresponding to a choice of p

matrix A., the equation
=J

(7.8)

- A, '
e 25(4) <

is an adequate representation of the b branch potential
differences. If vi! is the column matrix of cut-set potential

-k
~ differences after a change of datum node according to

incidence matrix & = P A;, then v} and vy are related in
the equation
v! o= Py W (7.9)
=5 = =(t) X%
whence
(7.10)

I 1
_Yk = E(t) Xj

8. Network equations

The k th branch of the general b-branch electric
network has the alternative representations shown in Fig.8.1.
It will be supposed that cither (2) or (b) is used exclusively
in the representation of the complete network according as the
nodalic index p of its linear graph is greater or less than the

cyclomatic index c.
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Evidently, from the Helmholtz branch representation

in Fig.8. 1(a), the column matrix v can be expressed as
y o= u - e (8.1)

where u is the column metrix of branch impedance potential
differences u;',i > Uy wee, W With the seme polarities as those
of the branch potential differences and e is the column matrix
of branch impressed electromotive forces €15 G55 sees & with

polarities opposite to those of the branch potential differences.

If Z is the square non-singular b by b matrix

representing the impedances of the network branches with components:

” _ Vthe impedance of branch r for s = r
rs ~ ) the impedance coupling branches r and s for s AT

then
Zi = u (8.2)
In general, z_  is not the seme as g . By substituting (7.3) in
(8.2) and premultiplying by g4 we obtain, in view of {8.1),
0. Z Gy il = Cau = C.v+C.e |
R G T L L o (8.3)

but, according to (6.1), _Q_J._‘\_{ = o so that (8,3) may be written

Zt.it = e! , (8.4)
—JJ—J —d
where
Z'. = C. ZC. 8.5
=33 =5 2 =5(¢) (8.5)
and
e' . = C. 3 816
= J ~dJ = ( )

Z;-;‘}j is the non-singular ¢ by c¢ mesh tie-set impedance matrix
corresponding to the ¢ independent mesh tie-sets represented by
_Qj. If the network is passive _Z_s.lj is symmetrical but if the

network contains unilateral impedances, such as thermionic
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amplifying valves, then —Z—';’jj is asymmetrical, The column
matrix 95 is that of the mesh tie-set impressed electromotive
forces e%, é, coe ec’: corresponding to the same c independent‘
mesh t::.e-se%;s° |

By premultiplying (8.4) by the inverse of 7’ - we obta::.n

it = Z'. . =1 e!
=J ~dd —J
hence, by (7,3)
. . . =1
1 = 3 o= C. VAN '
2 =83(¢) 25 =3(t) =35 S5
that is
i = G. C & 8.7
= =5(t) ( =J -“"a(’c)) g2 (8.7)

which is Kron's equation (Ref.3) giving the branch current
column matrix i in terms of the colum matrix of branch
impressed electromotive forces e, the branch impedance matrix

Z, and the mesh-branch incidence matrix Qj,

Now let the datum mesh be changed from that according
to the incidence matrix C to that according to the incidence
matrix G = P g-j" By substltutmg (7.4) in (8.4) and premultiplying
the result by P there is obtained
]
' s ' 8.8
P2l By, Ee! (8.8)

-—-—.—JJ-— — —

which may be written as

Zh i = el (8.9)

where
t -
Bao = EZ5; By | (8.10)
and
1 — t ) 8.11
& = .Ef?.j . ( )
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-Z-l’ck is the non-singular ¢ by ¢ mesh tie-set impedance matrix

corresponding to the ¢ independent mesh tie-sets represented by
O ,
__z_gj is one of congruence, The column matrix gl; is that of

From (8.,10) it is evident that the relation between -—Z-l'ck and

the mesh tie-set electromotive forces correspending to the same
¢ independent mesh tie-sets, By substituting (8.5) in (8,10)
we see that

B = BC205(5) By = BE5 2 BG(s) =& 2O%x) (s.12)

If (8.9) is premultiplied by the inverse of Z!. we obtain

kk
g =2 g
which leads to the branch current equation
s , -1~
x = -gk(‘t) (9_1{_"2.".9{(45)) 2 £ | (8.13)

From the foregoing we have

Theorem IIT: If the equation _%5 . 3;:_} = gs. is the

mesh tie-set voltage equation of a given network,

the matrix Z;, in the equation Zyae iy = 5_3_1;
representing the network after the datum mesh

has been chonged from mesh O to mesh g (with mesh O
renumbered g and mesh g renumbered 0) moy be obtained
from the matrix g;"yj in the original ‘equ;ation by
substituting for the g th column of -Z{jj the negative

of the sum of all its columns and then substituting

the negative of ‘i:.he sum of all the rows of the resulting
matrix for the q th row. The column matrix __e__li: in the
new equation mey be obtained from the matrix _(35 in the
original equation by substituting for the g th component

of’ _6_._’._;'.3 the negative of the sum of all its components.
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The part of this theorem that refers to the impedance matrix is
the dual of thekel's first theorem for the case of planar networks
(Ref, L)

Fr{jxn | (8.10),

? - ry ™ ¥ e p
det "Z"l‘d{ = det é‘ . det 'Z‘jj ° det E(t) (8.41{.}

but det P = det E(t) = -1 so that '
det Z'. = det Z!'. 8.1
AN Zls (8.15)
hence,

Theorem IV: The determinant of the mesh
tie-set impedence matrix of a planar
network is dnvariant for o change of

datum mesh,

This is the dunl of Shekel's second theorem for th@ case of

planar networks (Ref.l.)

Turning now to the Norton branch representation in
F:’Lg.&‘}(b), it is evident that the column matrix i can be

expressed as
i=j-a | (8.16)

where Jj is the column matrix of branch admittance currents
j1 . 3'2, cecsy jb with directions the some as those of the branch
currents and a is the column matrix of impressed branch currents
By By cee, Oy with directions opposite to those of the branch

currents,

If Y is the square non-singular b by b matrix representing
the admittances of the network branches with components:
the admittance of branch r for s =

Ve =
s f\). the admittance coupling branches r and s for s £ r



then
In genersl, y_ . is not the same as y, .. By substitubing (7.8) in
(8.17) and premultiplying by .éj we obtain, in view of (8.16),

A, ¥ A, o= AL« A1 8.18
G IS B B (8.18)
but according to (6.2), éj i = o as that (8,18) may be written

i Xy a (8.19)
where

Y., = A, T A, .\

=33 =5 = =3(¢) (8.20)
and .

al = Ao (8.21)

—— Y

J
X-;!jj is the non-singuler p by p node cut-set admittance matrix
corresponding to the p independent node cut-sets represented by
_A__jo If the network is passive YSJ is symmetrical but if the
network contains unilateral admittonces then '—%j is asymmetrical,
The columt matrix _9_5 is thot of the node cut-set impressed
currents ’1,; s ?.1:'2, cees 31; corresponding to the same p independent
node cut-sets.

By multiplying (8,19) by the inverse of j‘%j we obtain

vto= b oA
=5 T =33 3

hence, by (7.8)
-~
= A, ". = A, Y'. (29
= S5(6) L3 T o=a(e) =330 =)
that is

(8.22)

vl

3= ) B Ia) T A8
which is Kron's equation (Ref.3) giving the branch potential
difference matrix v in terms of the column matrix of impressed
currents g, the branch admittence matrix Y, and the node-branch

incidence matrix _f}_j o
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Let us now change the datum node from that according
to the incidence matrix A, to that cccording to the incidence
matrix & = P A By substituting (7.9) in (8.19) and
premultiplying the result by P we obtain "

PY!'. P,y ¥ = Pa! 8.2
=235 =) A T =5 (8.23)

which may be written

Ty o= 2 (8.24)
where
. ' .
Lo = BEj5 By (8.25)
and
al = Pa' 8.26
2 = Ral €8.26)

-Y-l‘d’ is the non-singular p by p node cut~set admittance matrix

corresponding to the p independent node cut-sets represented

by & . From (8.25) it is ovident that the relation between Y
and —-Y-jj is one of congruence, The column matrix :.1}:: is that

of the node cut-set impressed currents corresponding to the

same p independent node cut-sets. By substituting (8,20) in (8.25)
we see that

' =PA, YA, P = . P A, = Y 8.27
T = B X 85(0) 2(t) =245 L B L) ()= B Thyy  (68:27)
By premultiplying (8.24) by the inverse of Z»ld{ we obtain

Wos e

which leads to the branch potentisl difference equation
N -1
= ~ .28
¥ o= &y (ékif“‘.:k(t)) A 2 (8.28)

From the foregoing we have
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Theorem V : If the equetion _S%J 1{5 = gé is

the node cut-set current equation of a given

nétwork, the matrix }%k in the equation X—l'd: Xli;

= 5_1_1‘{ representing the network after the datum

node has been changed from node 0 to node g

(with node O renumbered g and node q renumbered 0)
may be obtained from the matrix Xéj in the original
equation by substituting for the q th column of _T_E_éj
the negative of the sum of all its columns and then
substituting the negative of the sum of all the rows
of the resulting matrix for the q th row, The column
matrix -53-1:: in the new equation may be obtained from the
matrix _5}_5 in the original equation by substituting
for the g th component of 3_5 the negative of the sum

of a1l its components,

The part of the theorem that refers to the admittance matrix is

Shekel's first theorem for the case of planar networks (Ref. ).

From (8,25)

det Y'. = det P, det Y!.. det P : 8.29
L e OO0 2550 O H) ~ (8.29)
but det _E = det ’E(t) = -} SO tha‘t
v vl — ]
det X = det YI. (8,30)

hence,

Theorem VI : The determinant of the node
cut-set admittance matrix of a planar network

is irivariant for a change of datum node.

This is Shekel's second theorem for the case of planar networks (Ref.lt).
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9. General independent circuital current systems.

The analysis of o planar network is effectively accomplished
on a voltage basis by proceeding from the selection of an appropriate
independent mesh tie-set system in the corresponding linear graph
but there appears to be no reason why independent circuital current
systems other than independent mesh tie-set current systems
should not be employed.,  Indeed, provided P is non~singular, its
components may be selected at random from the field of real numbers
and the transformation will correspond to an independent system
of circuital currents that adequately represent the branch currents

of the network.,

Consider the plarmi" network shown in Fig.9. 1(a) * Por
simplicity we shall supposc the branch impedances to be pure
resistors of unit mapnitude., According to the mesh tie-set
system indicated in Pig.9.1(b), the equation corresponding to

(8.4) comes out to be

e i e jemes. vt

Is - =1

2 4 ¢] 11 61

— - 3 ¥ - - :

4 3 "I 12 = 64 .

0 -1 2 ié e, + v (9.1)
”" T T T - 4

If now the components of P arc selected arbitrarily, say

2 0 - |
P = 0 0,25 0 det P £ O (9.2)
0 1 0.5

¥ It will be observed that this network has cyclomatic index ¢ = 3
and nodalic index p = 2. A nodal analysis is therefore preferable
to the mesh analysis which is here employed for the purpose of
illustration, ‘
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then the equation corresponding to (8‘.9‘} is

ot oy s wmo—— i

160 =4 =32 :'LJ; 2@1 - =% 0.5
- . B _ . 93
?jé" Y310 i) - 0.25 ¢,
-32 10 40 1! 0.5 (ex = ¢, )
- o L3 - 5 W 1,

which represents the network equally well as (9.1). In view of

(7.&) it is easily seen that the matrix P transforms the mesh tie-set
current sy .em of Fig,9,1(b) to the circuital current system repre-
sented in Pig.9.2. . Thus, as has been shown by Le Corbeiller (Ref.5),
if we admit every possible system of independent circuital currents,
if follows that the totality of transformation matrices P constitute
an infinite group with respect to multiplication. The identity

element is the uwnit matrix.

We have shown that the determinant of the mesh tie-set
impedance matrix is the some for every independent mesh tie-set
gystem. An independent mesh tie-set current system is a
special case of the more general independent circuital current
system., Immediately we allow the use of all possible independent
circuital current systems the determinant of the impedance matrix
ceases to possess the property of invariance as we pass from one
system to another except for those transformations for which det P
has the value plus or minus one., It has been stated in the
literature that the determinant of a mesh tie-set impedance matrix
of a given planar network has the minimum value for that network,
Bvidently this is not so if the use of general circuital current
systems is allowed., Consider, for exampie, the case cited above,

The determinant of the mesh tie-set impedance matrix in (9.1) is
et z}, = 8 o (9.4)
and the determinant of the impedance motrix in (9.3) is given by

det 2}, = det P, det ﬂz;h. det E(

=22 t)
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Now, from (9.2), det P = 0,25 hence

det 28, = (0.25) (8) (0,25) = 0.5 (9.5)

" which is less than det Zf, in (9.4).

10. General independent potential difference systems,

The analysis of a planar network is effectively accomplished
on a current basis by proceeding from the sclection of an appropriate
independent node cut-set system but there appears to be no reason
why independent potential difference systems other then independent
node cut-set potential difference systems should not be employed.
Indeed, a similar freedom of choice exists as does in the case of
analysis on a voltage basis, The transformation métrikai belongs

to an infinite group with respect to multiplication.

Consider the planar configuration shown in Fig.9.1(a). For
simplicity we shall suppose the branch admittsnces to be pure
conductors of unit magnitude, According to the node cut-set
system indicated in Fig.9,1(b) the equation corresponding to (8.19)

comes out to be

rov - .‘m Ln-' »:-C' -
3 4 4 v% %1
- - ' _ " 10.1)
R B 78 B - (
- -1 ! -
3 VB a5”j
— — 4= =9 - 1

If now the components of P are selected arbitrarily, say

0.5 0 1
L= 3 -~ 0 det P £ O (10.2)
0 0,25 6

the equation dorresponding to (8,24) is
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) ‘44 48 234 Vs -(0.5% + a5)
6 =216 ! = | =42
16 L8 57 v} . (10.3)
234 =216 1683 | v} 0,250, - bag
— —22 =7=2 - - 2

In view of (7.9) it is easily seen that the matrix P transforms the
node cut-set potential difference system of Fig.10.1 (p) to the
potential difference system represented in Fig.10.2.

We have shown that the determinant of the node cut-set
admittance matrix is the samc for every independent node cut-sct
system., An independent node cut-set potential difference system
is a special case of the more general independent potential
difference system. Immediately we allow the use of all possible
independent potential difference systems the determinant of the
admittance matrix ceases to possess the property of invariance as
we pass from one system to another except for those transformations
for which det P has the value plus or minus cne, As in the case
of voltage analysis, the determinant of the node cut-set admittance
matrix of a given planar network is not the minimum determinant for
that network if the use of general potentisl difference systems

is allowed, In the casec of the network of Fig.10.1, the determinant off

1&2 is, fortuitously, greater than that of X—*t! 4 We have
ot ¥! = 10.4
det o= 16 ( )

Det P is -2,25, hence

det Y! &1 (10.5)

—22

1

If, instead of P in (10.2), we select

P= |1 1 0
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then, corresponding to (10.3), we obtain

4 : V,I' -(a,f + 5;55'
L}. Vz‘ = 0
L vé a2 - a5 |
- T330 73 - =3

with det 1})3 = 64, This is the dual of the example given by
Seshu (Ref,6).

11. Hybrid systems,

In connexion with (8.8), it is interesting to note that if
we had merely substituted (7.4) in (8.4) to obtain

!'. P 21 - ! i 11.'1
Z35 E¢) L <5 ( )

which may be written

t

gJ'.k;;L_k = e! - (11.2)

—J

where

Z (11.3)

Zie = Zj5 Ex)
we would have produced a voltage equation according to the mesh
tie~set system before the datum mesh is changed from mesh O to mesh
g but in terms of the mesh tic-set currents after the datum mesh has
been so changed, ~Z~§k is the non-singular ¢ by c¢ mesh tie-set
impedance matrix corresponding to a choice of ¢ independent
mesh tie-sets according to ineidence matrix gj and ¢ independent
mesh tiec-set currents according to incidence matrix 91:' By
substituting (8.5) in (141.3) we see that

Z' =C.ZC.,,\Piy = C.2(PC. =C. 20
=ik T =g = =5(8) =(+) &5 2 B8y ) 25 2 Se(x)

(11.4)
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Unlike, 'Z";!ij and —Z-lfck’ however, “Z“:’Jl’ is, in general, asymmetrical for
o passive network and possibly symmetrical for a network containing
wnilateral clements., Thus, as Guillemin has pointed out (Ref.7),
the symmetry of a mesh tic-set impedance matrix does not necessar-
ily indicote a passive network, From (11.3) it is evident that
-%Ejk and _2_153. are right asscciates., By premultiplying (11.2) by
the inverse of Z‘-,%k we obtain

. -1

t — 1 ~ 1

2 = -%jk 5

which leads to the branch current ecquation

Aiternatively, had we merely premultiplied (8,4) vy
P to obtain

Pzl il = e (11.6)
==3jJ =3 -k
which may be written
Zy 1y o= o (11.7)
where
Z . = P2 ’ (11.8)
=k = =33

we would have produced a voltage equation according to the mesh
tie-set system after the datum mesh has been chsmged'from mesh O
to mesh q but in terms of the mesh tie-sct currents before the
datum mesh has been so changed. —Z—lfcj is the non-singular ¢ by ¢
mesh tic-set impedance motrix corresponding to a choice of ¢
independent mesh tie-scts according to incidence matrix _(_}_k and.

¢ independent mesh tie-set currents according to incidence matrix
_qjg By substituting (8.5) in (11.8) we see thot '

By = EG32C(4) = & 2w (11.9)



As in the case of Z!
.._..J:'K,

passive network and peossibly symmetricel for an active network,
From (11.8) it is cvident that 2!, and_géj are left associates,
By premultiplying (11.7) by the inverse of.géj and moking the

appropriate substitutions we cbtain the branch

c

L = -Q-j(t) (.Q_k..z.c 1 £

From (41.3)

det 7!
—d

il

k

and from (11.8)

det Z'., = det I,
hence, since det P = =1
- 1 — o ?
det Ziy = dut_&kj

kJ

-1
~ﬁ(t))

"!_) - ’ -
det "Z"JJ“ det E(t)

zﬁj is, in general, asymmetrical for a

current equation

(11.10)

(11.11)

(11.12)

(11.13)

The foregoing discussion applies equally well to circuital

current systems (except for the statement in (11.13)) other than

mesh tie-set systems.

e gomunn

- Ty e

Por exemple, if we make the substitution

2 4

11 2 0 0
ié = 0 0,25 1
it - ¢c O,
15 1 5*

—

in (9.1) we obtain the voltage equation

L -0.25
- Q.75
-2 ~0,25

-1
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‘Which, although the impedance matrix is asymmetrical, is 2 true

representation of the passive network of Fig. 9.1 (a),

The same reasoning applies when the network is amnalysed
on a current basis., Referring to (8.23), if we had merely
substituted (7.9) in (8.19) to obtain

] t — ~ 1 ]
which may be written

t gt o ot 111
I B = 2y (11.15)

wnere

Y - Y (11.16)

o= Y. P
=3k T =53 =(%)

we would have produced a current equation accerding to the node
cut-set system before the datum node is changed from node 0 to
node g but in terms of the node cut-sct potential differences
after the datum node has been so changed. :—1:51{ is the non-singular
p by p node cut-set admittance matrix corresponding to a choice of
p independent node cut-sets according to incidence matrix i&‘—j and
p independent node cut-set potential differences according to

incidence matrix 4 . By substituting (8.20) in (11.16) we see that

The =45 Th500 By =5 X Gl =245 X (11.17)
Unlike )_{_53. and Xl’ck however, —-Y-ék is, in general, asymmetrical for
a passive network and possibly symmetrical for an active network.
Thus, symaetry of the node cut-set admittance matrix does not
necessarily indicate a passive network, From (11.16) it is evident
that X—sk and _‘3_’?_33 are right associates. By premultiplying (11.15)

by the inverse of E—g%k we obtain

-1
r t 1
e = -gjk 23
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which leads to the branch rotential difference equation

-1
Vo= N (ALY A. a
X f04) (..%J X é—k(t)) P
Alternatively, had we merely premultiplied (8.,419) by _E"bo

obtain

EX;x = a o (11.18)

which may be written

t 1 — ¥
Liyxy = 2l (11.19)
where
Y'., = PY!. ' 11,20
I, = BIL (11.20)

we would have produced a current equation according to the node
cub~set systom after the datum node has been changed from node

O 1o node g but in terms of the node cut-set potential differences
before the datum node has been so changed. 11!:3 is the non-singular
P by p node cut-set admittance matrix corresponding to a choice of

P independent node cut-sets according to incidence matrix -A—k and p
independent node cut-set potential differences according to incidence

matrix -é"'j’ By substituting (8.20) in (11.20) we see that

', = PA. YA .y = A TA |
g = 2RI < A I (11.21)
As in the case of zék, _1_{1’{3 is, in general, asymmetrical for a

passive network and possibly symmetrical for an active network
From (11.20) it is evident that _1{];3 and X‘;jj are left associates.,
By premultiplying (11.19) by the inverse of X‘Iftj and making the
appropriate substitutions we obtain the branch potential difference

equation

X o= By G Tdy))T e (41.22)
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From (11.16)

dot Il = det Xl deb Py (11.23)
and from (11.20)

det Ty, = det B det Yl (11.24)
hence, since det P = =1,

det Xl = st L, = - det T3 (11.25)

The sbove discussion applies equally well to potential
difference systems (except for the statement in (41.25) ) other than

node cut-set systems,

12 Cornzlusion

T4 hes been shown that if the algebraic theory of planar
electric networks procceds from the identificaticn of the meshes,
branches, and nodes of a network respectively with the faces, edges,
and vertices of a simple convex polyhedron the dual correspondence
between the voltage and current representntions of a planar network
is complete in every rcspect.  The duality of the concepts of mesh
and node has long been recognised in circuit topology but,
because of inconsistencies in the definiticns of a mesh, its
true significencc hns been obscured. It is for this reason, for
instence, that the mesh Counterpaz'ts in the plenar case cf the two
nodal theorems recently proposed by Shekel (Ref, L) were not
immedintely recognised. The approach recommended here makes for a

dualism that is both logical and elegant.

In the case of a complicated non~planar network the
selection of a tree in the lincar graph and the subsequent
interpretation of the chord currents as circuitel currents or,

alternatively, the use of tree-branch potential differences
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ensures the independence of the variables, Whatever the complexity
of & planar network however, the selection of an independent mesh
tie=set current system or node cut-set potential difference system
requires no effort and the network readily yields to analysis,
Nevertheless, it has been shown above that if circuital current
systems or potentisl difference systems other then these are allowed
then there is no limit to the number of systems that may be used

to represent a network, It follows therefore that a network

has an infinitude of impedance or admittance matrices certain

of which possess, respectively, the same determinant. The

latter have recently been the subject of discussion in the

literature,

It has also been shown that the symmetry or
asymmetry of a network parameter matrix does not necessarily

indicate the passivity or activity of the network.
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FIG. 3. POLARIZED NODE CUT-SETS.
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FIG. 4 THE CONSTRUCTION OF THE DUAL OF
A PLANEY SAGITTAL GRAPH.

FIG. 5. TOPOLOGICALLY INDEPENDENT MESH TIE-SETS.



FIG. 6. TOPOLOGICALLY INDEPENDENT NODE CUT-SETS.

(a)  HELMHOLTZ (b) NORTON
REPRESENTATION REPRESENTATION

FIG. 7 NETWORK BRANCH REPRESENTATIONS.






