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a b s t r a c t

Lithium-sulfur batteries are now commercially available, offering high specific energy density, low
production costs and high safety. However, there is no commercially-available battery management
system for them, and there are no published methods for determining state of charge in situ. This paper
describes a study to address this gap. The properties and behaviours of lithium-sulfur are briefly
introduced, and the applicability of ‘standard’ lithium-ion state-of-charge estimation methods is
explored. Open-circuit voltage methods and ‘Coulomb counting’ are found to have a poor fit for lithium-
sulfur, and model-based methods, particularly recursive Bayesian filters, are identified as showing strong
promise. Three recursive Bayesian filters are implemented: an extended Kalman filter (EKF), an un-
scented Kalman filter (UKF) and a particle filter (PF). These estimators are tested through practical
experimentation, considering both a pulse-discharge test and a test based on the New European Driving
Cycle (NEDC). Experimentation is carried out at a constant temperature, mirroring the environment
expected in the authors' target automotive application. It is shown that the estimators, which are based
on a relatively simple equivalent-circuitenetwork model, can deliver useful results. If the three esti-
mators implemented, the unscented Kalman filter gives the most robust and accurate performance, with
an acceptable computational effort.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Compared to today's widespread lithium-ion (Li-ion) battery
technologies, lithium-sulfur (Li-S) offers increased specific energy
storage capability [1]. A greater battery capacity is often advanta-
geous, particularly in applications such as electric vehicles, where it
can mitigate consumer concerns about driving range. Li-S batteries
er).
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also have significant benefits in terms of their wide operational
temperaturewindowand safety [2]. The fact that sulfur is abundant
and environmentally friendly is also attractive for large-scale cost-
driven consumer applications. Commercialization has been hin-
dered by the limitations of early-stage Li-S technologies such as
quick degradation and limited sulfur utilization [3]. In recent years,
considerable effort has been put into the exploration of Li-S's inner
cell mechanisms, resulting in enhanced understanding [4]. Com-
mercial cells are now available from suppliers such as OXIS Energy
[5] and Sion Power [6]. Although today's cells may not fulfil every
aspect of high automotive demands, they do open the opportunity
for practical application oriented research.

In order to use a battery in a practical application, it is necessary
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Fig. 1. Discharge/charge behaviour of a Li-S battery.
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to have an appropriate battery management system (BMS). A key
function of the BMS is determining the remaining usable capacity
of the battery, i.e. estimation of the state of charge (SoC). This is
important for many reasons: the more accurately SoC is known, the
greater the proportion of a battery that can be potentially utilized
without fear of overcharging and over-discharging; for consumers,
it is often helpful to know how much battery life remains.

In the automotive sector in particular, there has been much
research on accurate and robust SoC estimation techniques for Li-
ion batteries, aimed at meeting the demanding requirements of
the automotive traction battery. Here, the batteries operate in an
environment with varying power loads, different operation tem-
peratures, noisy and crude measurements, and high safety re-
quirements [7]. For systems with limited computational power, the
SoC of a Li-ion battery can be estimated through the use of equiv-
alentecircuit-networks (ECNs) [8,9], which simulate the voltage
response of the battery. Due to their simplicity they are not able to
give any insight into the inner cell reactions. However, in practice
this does not matter: when operated within their specified limit-
sdin terms of state-of-charge, temperature and current rate-
sdperformance of intercalation-based lithium-ion batteries is
consistent and predictable [10e13]. This behaviour and the fact that
the nonlinear relationship between open-circuit voltage (OCV) and
SoC is monotonic means that it is relatively straightforward to
determine a Li-ion battery's SoC [14].

For Li-ion batteries, there are many viable techniques for esti-
mating SoC in situ. The simplest is to measure the open-circuit
voltage and relate it through a nonlinear function or lookup table
to the SoC. However, this method needs the battery to be in resting
condition which limits the applicability for electric vehicles while
driving. For improved robustness, OCV-based estimation is com-
binedwith other methods [15]. For a given value of SoC, ECNmodels
can be used to predict terminal voltage output from a known
dynamically-changing input current. This can be used to estimate
SoC with a good compromise between accuracy, robustness and
simplicity. A powerful approach is the use of ‘observers’ or ‘state
estimators’ which combine model-based estimation with actual
measurements using principles derived from control theory,
particularly the Kalman filter and its derivatives. Estimators of this
kind are popular (particularly within the automotive environment)
due to their ability to handle measurement noise and model inac-
curacies [7]. With these estimation methods, a high battery utiliza-
tion is possible,without compromising battery safety or lifetime [16].

To date, estimation techniques of this kind have not been
applied to Li-S batteries. There are big differences between Li-S and
the classic Li-ion chemistry. Li-ion has an intercalation based pro-
cess that has a single well-known dominant reaction pathway. Li-S
batteries however are more complex with multiple pathways [17],
which leads to some unusual and challenging behaviour for the SoC
estimation: (i) the OCV-SoC curve has two voltage ‘plateaus’ with
different properties; (ii) the OCV-SoC curve has a large flat region,
where the OCV does not change with SoC; (iii) the batteries exhibit
relatively high self discharge; and (iv) the usable capacity and po-
wer exhibit sensitivity to the applied current profile. Until recently,
there have been no models of a Li-S cell suitable for use in a battery
management algorithm. Recent developments have been made,
and there are now published ECN models of Li-S batteries during
discharge that are valid for a range of temperatures [18]. However,
the use of these models for the estimation of SoC, remains unex-
plored. As initial step towards a full BMS system for Li-S batteries,
this study examines SoC estimation techniques for their applica-
bility to Li-S batteries.

In this paper, Sec. 2 introduces Li-S batteries and their proper-
ties. Sec. 3 explores the applicability of state-estimation techniques
used for lithium-ion, noting the limitations with OCVmeasurement
and ‘Coulomb counting’ and concluding that a more sophisticated
approach is required. Sec. 4 describes the filtering techniques that
will be used for estimation: Sec. 4.1 describes an equivalent circuit
model that will be used to implement such filters, and Sec. 4.2e4.4
introduces three such filters: the extended (nonlinear) Kalman
filter (EKF), the ‘unscented’ Kalman filter (UKF) and the particle
filter (PF). Sec. 5 describes the experimental evaluation of these.
The results are presented in Sec. 6 where their performance and
applicability are discussed.

This work has been conducted as part of an automotive battery
project, and the batteries used in this study are kept at a well-
maintained constant temperature environment. Accordingly, the
work in this paper has been restricted to a constant temperature.
(In future work, this could be extended to a varying temperature
environment.)

The key contribution of this paper is the development and
analysis of these three recursive Bayesian SoC estimators for Li-S. To
the best of the authors' knowledge, no similar work has appeared
elsewhere in the literature.

2. Lithium-sulfur batteries

A Li-S battery consists of a lithium metal anode and a sulfur-
based cathode in electrolyte. Sulfur reversibly reacts with lithium
ions when reduced from elemental state S8, via the intermediates
Li2S8; Li2S4; Li2S2, to lithium sulfide Li2S, which is the key of the
high theoretical capacity of sulfur (1672 mAh g-1) [19]. The large
number of different species however, lead to complex inner re-
actions that are still a matter of ongoing research [17]. As shown in
Fig. 1, the discharge curve consists of two sections [20]: a high
plateau at about 2.35 V OCV, characterized by the presence of a
majority of high order polysulfides in solution (Li2S8, Li2S6), and a
low plateau at around 2.15 V OCV, where lower order chains have
been identified (Li2S4, Li2S3) [21].

In Li-S batteries the availability of these species in the electrolyte
determine the battery’s behaviour. In simple words, the cathode is
dissolving and participating in electrolyte [22], which causes two
voltage plateaus with different behaviour (usable capacity, internal
resistance, self-discharge, transient behaviour) [23,24]. As an initial
step to model these effects, an equivalent circuit model was pre-
sented recently, employing the Thevenin model structure with a
pulse discharge current profile and an off-line prediction error
minimisation method for parameter identification [18]. The model
does not explicitly consider self-discharge, but is valid for transient
behaviour of the kind seen in this study. In practice, lithium-sulfur
batteries do experience significant self-discharge during long
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resting periods. For a shorter-term transient state estimation prob-
lem, this can be treated as uncertainty regarding the initial state. For
details regarding the model derivation the reader is guided there.

Due to these unique properties of Li-S batteries, a precisely
known SoC is helpful to predict the power capabilities of the bat-
tery, especially towards the end of discharge where the internal
resistance raises quickly. It is not just near depletion that SoC
estimation is important. Li-S batteries also need careful monitoring
when they are close to fully charged to avoid the problem of
‘shuttle’. While charging, the high solubility of the formed high-
order polysulfide chains enables them to diffuse to the anode,
where they can be reduced to lower order chains directly when in
contact. The reaction circle is closed by the movement of the lower
order chains back to the cathode. Here, they form high-order pol-
ysulfides againwhen the charging is continued. This redox reaction
occurs without electrons passing through the external circuit of the
battery and is called polysulfide shuttle [25], which leads, next to
self-discharge in the high plateau, to poor coulombic efficiency and
is associated with capacity fade [26]. Therefore overcharging
should be avoided despite the fact that the shuttle effect can also
protect the battery from being overcharged [19].

3. Applicability of conventional SoC estimation techniques

The behaviour of Li-S batteries discussed above leads to diffi-
culties for SoC estimation. Each method faces different challenges:
in the following section, these are explained in more detail for the
most common SoC estimation techniques. (Impedance spectros-
copy is not mentioned further, since it is seldom implemented for
practical SoC estimation [15].)

Coulomb counting: Determining the charge flow in and out of
the battery is the most common technique for SOC estimation since
it is easy to implement. With a given starting point SoC0 and the
rated capacity, it is fairly simple to calculate the SoC from

SoC ¼ SoC0 þ
1
CN

Zt
t0

ðIbatt � IlossÞdt: (1)

where CN is the rated capacity, Ibatt the battery current and Iloss the
current consumed by loss reactions [15]. While this method is seen
generally as reliable, it demands high precision current sensors (to
reduce the accumulation of measurement errors over time), known
values for the charge/discharge efficiency, and a precisely known
initial condition [27,28]. These drawbacks lead to issues with the
unique properties of Li-S batteries. Firstly, the polysulfide shuttle
effect [25], mainly present in the high plateau, enhances self-
discharge, poor coulombic efficiency and capacity fade [25,26].
This leads tohard to determinevalues for the Iloss or efficiency factors
in the calculation and changing initial conditions for an estimator
[29]. Secondly, the amount of sulfur that can be reversibly utilized
during a discharge is strongly affected by the current profile, age and
temperature [30]. Generally high discharge capacity is only obtained
at low currents. High currents can produce a resistive layer on the
cathode, hindering the utilization of the underlying sulfur [20]. This
effect hampers the determination of the rated capacity, reducing the
practicability of the Coulomb counting method itself significantly.

Open circuit voltage: Another common method of SoC esti-
mation is to assign the OCV to the SoC. This is usually used in ap-
plications with low and constant currents or long resting periods.
This method works well with Li-ion batteries, since they provide
generally a monotonic rising relationships between OCV and SoC
[14]. For Li-S however, this method is not feasible due to the non-
monotonic curve, changing the gradient between the high and
low plateau, and the stable OCV within the low plateau (Fig. 1).
Furthermore, the whole concept of OCV for Li-S batteries is not
clear due to self-discharge and precipitation [22].

Soft computing techniques: Avoiding the need for building a
mathematical battery model and linearisation, soft computing
techniques have the ability to model a highly non-linear system by
establishing a relationship between the input and output of a sys-
tem (a ‘black-box’ model) from training data. This makes these
techniques suitable for consideration for battery applications.
Particularly for SoC estimation, soft computing techniques have
been used in previous studies for NiMH and Li-ion batteries [31,32].
However, there is no record in the literature where these tech-
niques are used for Li-S batteries. (In Ref. [33], the idea is briefly
proposed. However, estimation results are not presented.)

Model-based approaches: For the SoC estimation in highly
dynamic environments, model-based solutions with a combination
of adaptive algorithms are used. Their principle is based on an off-
line established model, predicting the terminal voltage of the cell
during operation and an adaptive algorithm, using the error be-
tween prediction and measurement to adjust the states. As the
computational power of common BMSs are limited, simplified
equivalent electrical circuits are often used to reproduce the tran-
sient behaviour of a battery [34,35]. In combination with algo-
rithms such as the extended Kalman filter [36e38], unscented
Kalman filter [39e41] and particle filter [42e44] ECN models can
help to estimate the batteries internal states with relatively low
computational effort and simple measurements of current and
terminal voltage. The main advantage of model based methods is
that they combine the benefits of direct voltage measurements and
’Coulomb counting’ through the use of equivalent-circuit-network
models, providing a formal framework for integrating model-
based predictions with real-world voltage measurements. This
may make them suitable for the properties of the Li-S chemistry.
The principle behind these estimation algorithms is described in
the following section.
4. Implementation of state estimators

As outlined in Sec. 2 and Sec. 3, Li-S batteries have poorly un-
derstood internal dynamics, and state-of-the-art ECN models that
cannot represent every aspect of the cell in detail. Methods that
have been found to be robust against unmodeled dynamics in the
environment are recursive filters [45], that treat the model states x
and the observations y as stochastic variables with associated
probability density functions [46]. For Gaussian distributions the
Kalman filter (KF), minimizing the error variance between true and
estimated state, is heavily applied in battery state estimation. In
such estimates, the process state is first estimated from a mathe-
matical representation of the system dynamics; this is then cor-
rected with feedback from measurements. The continuous model,
described in Sec. 4.1, is used in its discrete form for propagation of
prediction- and update-step.

xk ¼ Axk�1 þ Buk�1 þwk�1
yk ¼ Cxk þ vk

(2)

The additional terms wk and vk are random variables ewhite,
zero mean, with normal distributionsdrepresenting process and
measurement noise respectively. These describe the uncertainty in
each equation. Their values are determined with the process noise
covariance matrix Q and measurement noise covariance matrix R,
which are usually assumed to be constant and chosen by the user.
Simply speaking, the determined values affect whether the Kalman
filter emphasises its ‘trust’ on feedback frommeasurements or the a
priori estimates from the system model. Larger values indicate
higher uncertainty or less trust in general. Referring to [47], the
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Kalman filter equations are:
Time update equations:

bx�k ¼ Abxþk�1 þ Buk�1 (3)

P�k ¼ APþk�1A
T þ Q (4)

Measurement update equations:

Lk ¼ P�k C
T
�
CP�k C

T þ R
��1

(5)

bxþk ¼ bx�k þ Lk
�
yk � Cbx�k � (6)

Pþk ¼ ðI � LkCÞP�k (7)

The beauty of the filter is that it provides an efficient recursive
mean, minimizing the mean of the squared error, by supporting
past, present and future states, evenwhen the precise nature of the
modelled system is unknown [47]. For the state estimation of Li-S
batteries the nonlinear derivatives of the KF [48] (EKF, UKF) and
the particle filter (PF) are employed.

The following describes the mathematics of the three recursive
filter algorithms that were implemented. All three algorithms used
the same nonlinear equivalent-circuitenetwork model (Sec. 4.1);
the three algorithms are the extended Kalman filter (Sec. 4.2), the
unscented Kalman filter (Sec. 4.3) and the particle filter (Sec. 4.4).
4.1. Equivalent-circuitenetwork model

The Li-S battery model, used in this work, is developed and
described in detail in Ref. [18] for temperatures from 20 �C to 50 �C.
Here however, the temperature is assumed to be constant,
assuming a controlled BMS environment at 20 �C. The identification
for a Thevenin equivalent circuit model (Fig. 2) is done with a
similar mixed current pulse discharge as shown in Fig. 3-A. The
mixed pulse pattern in combination with identification for each
pulse individually is used to unveil current-dependent parameter
changes in the model. There is self-discharge in the battery, but it is
only significant during long resting periods, so Iself can be neglected
for transient applications. Fig. 2 shows the identification results, as
well as the chosen simplified parameter functions over the SoC (X)
for the modelled parameters. For the observer the identified pa-
rameters of all pulses are used to fit polynomial functions over SoC
for the open circuit voltage UOCV, the internal resistance R0 and one
parallel RC circuit Cp and Rp with MATLAB [49]. Then the derived
functions are included in the general state-space form

_xðtÞ ¼ AðtÞxðtÞ þ BðtÞuðtÞ
yðtÞ ¼ CðtÞxðtÞ þ DðtÞuðtÞ: (8)

The dynamic states x ¼ ½x1 x2�T of the system are the voltage
over the RC circuit Up and the SoC (X), calculated through Coulomb
counting. The corresponding state space representation gives

A ¼

2664
�1

fRp
ðXÞ fCp

ðXÞ 0

0 0

3775B ¼

2666664
1

fCp
ðXÞ

�1
3600Qcap

3777775
C ¼ ½�1 fOCVðXÞ �D ¼ � fR0

ðXÞ �:
(9)

In Ref. [18] it was shown that the current dependencies of the
model parameters mostly influence the transient voltage
behaviour, represented by Cp and Rp, and that they can be neglected
without compromising the accuracy of the model significantly. But
because of the parameter patterns of UOCV and R0 vary strongly
between the high- and low plateau (Fig. 2), two separate poly-
nomials were fitted over the SoC for each plateau respectively. (A
single polynomial would be impractical, since behaviour changes
significantly between the plateaus.)

The transition between the polynomials is realized smoothly
and differentiably via a partial sinusoidal function gm,c.

gm;cðXÞ :¼

8>>><>>>:
0; if a

1
2
þ 1
2
sinð2mðX � cÞÞ; if b

1; if c

(10)

where the conditions a, b, c stands for the different ranges of the
function,

a : 2mðX � cÞ< � 1
2
p;

b : �1
2
p � 2mðX � cÞ<1

2
p;

c : 2mðX � cÞ>1
2
p;

(11)

where m is a scaling factor for the maximal gradient of the sinu-
soidal function, determining the transition range between both
polynomials and c represents the point where both functions are
equally represented. The combined equations of both polynomials
and factor g are

fOCVðXÞ ¼
�
1� gm;cðXÞ

�
fOCV�lowðXÞ þ gm;cðXÞfOCV�highðXÞ

(12)

for the open circuit voltage UOCV and

fR0ðXÞ ¼
�
1� gm;cðXÞ

�
fR0�lowðXÞ þ gm;cðXÞ fR0�highðXÞ; (13)

for the internal resistance R0 over SoC. Since the variations between
both plateaus are less pronounced for Cp and Rp, the functions for
these parameters are only determined with a single polynomial
respectively. This decision also simplifies the estimation of the Ja-
cobian matrix of A for the extended Kalman filter.

For a fuller discussion of this ECNmodel, the reader is referred to
the original source [18].

4.2. Extended Kalman filter

The basic Kalman filter algorithm, described in Sec. 4, applies to
linear systems, not nonlinear systems. The Li-S equivalent-cir-
cuitenetwork is nonlinear. This means that the basic algorithm
needs adaptation before it can be applied. There are several ways of
doing this, which will be explored in the following sections. The
simplest is the ‘extended Kalman filter’ (EKF).

The basic idea of the EKF is to linearise the system around the

current mean of the state bxþk�1 with a first order Taylor series for the
propagation of the probability densities [50]. Hence, the EKF pre-
dicts the states andmeasurements with a nonlinear systemmodel f
and the covariances and Kalman gain with the Jacobians of A and C,bA and bC . Generally this linearisation works well with models con-
taining slight non-linearities as it is the case for most classic Li-ion
batteries.

Determining the Jacobians analytically increases the effort for
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setting up the filter with the benefit of the lowest computational
effort of the proposed methods.
4.2.1. Summary of EKF algorithm
In the following, the algorithm is summarized from Ref. [16].

(Details are omitted here for brevity, but can be found in the
reference.)

Nonlinear state space model
xk ¼ f ðxk�1;uk�1;wk�1; k� 1Þ
yk ¼ hðxk;uk; vk; kÞ

Definitions
bAk ¼
vf ðxk;uk;wk; kÞ

vxk

���
xk¼bxþ

k

; bBk ¼
vf ðxk;uk;wk; kÞ

vwk

���
wk¼wk

;

bCk ¼
vhðxk;uk;wk; kÞ

vxk

���
xk¼bx�

k

; bDk ¼ vhðxk;uk;wk; kÞ
vvk

���
vk¼vk

Initialisation for k ¼ 0

bxþ0 ¼ E½x0�; Pþ0 ¼ E

��
x0 � bxþ0 ��x0 � bxþ0 �T�

Computation EKF for k ¼ 1, 2, …

State estimate update:
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Fig. 3. Mixed pulse and NEDC current profile with test installation.
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bx�k ¼ f
�bxþk�1;uk�1;wk�1; k� 1

�
Error covariance update:

P�k ¼ bAk�1P
þ
k�1
bAT
k�1 þ bBk�1Q bBT

k�1

Output estimate:byk ¼ h
�bx�k ; uk ; vk; k�

Kalman Gainmatrix:

Lk ¼ P�k bCT
k

hbCkP
�
k
bCT
k þ bDkRk bDT

k

i�1
State estimatemeasurement update:bxþk ¼ bx�k þ Lk½yk � byk�
rror covariancemeasurement update:

Pþk ¼ ðI � LkbCkÞP�k

4.3. Unscented Kalman filter

To improve the estimation for nonlinear systems, the covariance
propagation in the UKF follows the nonlinearities with a set of
sigma points, propagated through the main steps of the algorithm.
The number of necessary points depends on the state vector's
dimension L and leads to 2Lþ 1 columns for the resulting vector c.
With the principle of estimating covariances with data rather than
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a Taylor series, the unscented Kalman filter has the advantage that
no derivatives are needed, with only slightly more computational
effort. Furthermore, the covariance approximations are usually
better than these of the EKF [16]. The differences between both are
largely dependent on the nonlinearity of the system. For standard
Li-ion batteries for example, the improvements are modest due to
their small nonlinearities [16].

4.3.1. Summary of UKF algorithm
In the following the algorithm is summarized from Ref. [51].

(Again, details are omitted here for brevity, but can be found in the
reference.)

Nonlinear state space model

xk ¼ f ðxk�1;uk�1Þ þwk�1 yk ¼ hðxk;ukÞ þ vk

Definitions

Qk ¼ E
h
wkw

T
k

i
Rk ¼ E

h
vkv

T
k

i
Initialisation

bxþ0 ¼ E½x0�

Pþ0 ¼ E
��

x0 � bxþ0 ��x0 � bxþ0 �T�
Computation UKF for k ¼ 1, 2, …
State estimate time update

Errorcovariancematrix squareroot :ffiffiffiffiffiffiffiffiffiffi
Pk�1

p
¼ cholðPk�1Þ

Create sigma points:

cþk�1 ¼
�bxþk�1; bxþk�1 þ g

ffiffiffiffiffiffiffiffiffiffi
Pþk�1

q
; bxþk�1 � g

ffiffiffiffiffiffiffiffiffiffi
Pþk�1

q �

Update sigma points:

ci;�k ¼ f
�
ci;þk�1;uk�1

�
for i ¼ 0;1;2…2L

Mean of updated sigma points:

bx�k ¼
X2L

i¼0
a

mð Þ
i ci;�k

Error Covariance time update
Covariance prediction:

P�k ¼ Qk�1 þ
X2L

i¼0
a
ðcÞ
i

�
ci;�k � bx�k ��ci;�k � bx�k �T

Output estimate
Measurement prediction for each sigma point:

ji
k ¼ h

�
ci;�k ;uk

�
for i ¼ 0;1;2…2L

Mean of themeasurement prediction:

byk ¼X2L
i¼0

a
mð Þ
i ji

k

Estimator gain matrix
Estimate the covariance of measurement:

Pyyk ¼ Rk þ
X2L

i¼0
a
ðcÞ
i

�
ji
k � byk��ji

k � byk�T
Estimate cross covariance state/measurement:
Pxyk ¼
X2L

i¼0
a
ðcÞ
i

�
ci;�k � bx�k ��ji

k � byk�T
Kalman gain:

Lk ¼ Pyyk

�
Pxyk

��1

State estimate update:bxþk ¼ bx�k þ Lkðyk � bykÞ
Error covariance update:

Pþk ¼ P�k � LkP
yy
k LTk

4.4. Particle filter

To solve the recursive estimation problem for arbitrary proba-
bility distributions, the PFappliesMonte Carlomethods to represent
the probability density functions. Unlike the UKF, where just the
means and covariances of the sigma points are transferred to the
next step, the PF recursively estimates thewhole particle set ct from
the last step ct�1. Generally three steps are executed [52]. (i) The
state transition, where each particle transition is calculatedwith the
input uk�1, after measurement noise is added to the particles of the
previous step. Similar to the Kalman filter, the addition of the noise
leads to an increasing variance over time. (ii) In the weighting step
the observations yk and a probability density function are used to
allocate aweight to each particle, representing the probability state
prediction xk given a certain observation yk. (iii) During resampling,
the variance of the particle set is decreased by sampling a new set of
particles according to their weights and allocating new, equal
weights. The main advantage of the PF is the independence of the
Gaussiannoise assumption of the Kalmanfilter. However, since each
particle has to be computed separately, the computational effort
exceeds the Kalman filter type algorithms significantly [53].
4.4.1. Summary of PF algorithm
The derivation of the equations orients on chapter 4.2 of the

textbook [54]. (Again, details are omitted here for brevity, but can
be found in the reference.)
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5. Experimental evaluation

To investigate the performance of the state estimation algo-
rithms, batteries were discharged with two current profiles and
different test rigs. The first, a mixed-current pulse test, is based on
the parameter estimation in Ref. [18] and represents an abstract
test in a controlled environment. Here, a pre-cycled (C/10 charge, C/
5 discharge, 30 �C) 3.4 Ah long life chemistry pouch cell from OXIS
Energy was tested with current pulses of 290 mA, 1450 mA and
2900 mA at 20 �C (Fig. 3-A). The test hardware included a Maccor
4000 battery tester with cells constantly held at temperature in
sealed aluminium boxes inside a Binder KB53 thermal chamber,
also shown in Fig. 3-A.

To represent a more practical scenario, the same kind of OXIS
Energy cell was discharged with a current profile based on the New
European Driving Cycle (NEDC) [55]. The related power profile,
shown in Ref. [56], was chosen due to its compromise of a realistic
user scenario, also containing some level of abstraction. The test
hardware used in this case is a Kepco BOP100-10MG programmable
power source/sink (Fig. 3-B) discharging a battery at room tem-
perature (23 �C). The details of the experiments are summarized in
Table 1.
5.1. Reference SoC estimation

The reference SoC for both test benches was calculated from the
cumulated current, operating in the cells' recommended voltage
range, i.e. between 2.45 V (fully charged, SoC ¼ 1), and 1.5 V (fully
discharged, SoC ¼ 0).

SoC ¼ SoCð0Þ �
1

3600Qcap

Zt
0

iðtÞdt: (14)

While Coulomb counting is a poor predictor during tests, the
discharge capacity for a specified voltage window can be calculated
retrospectively, giving a reference SoC that can be used for post-
experimental interpretation.
5.1.1. EKF SoC estimation
For the application of the EKF algorithmwith the presented Li-S

battery model, the Jacobians of the matrices A and C are needed,
which are presented here for convenience. With one polynomial
function respectively for Cp and Rp dependent on the SoC (here
presented as second state of the model x2), the Jacobian matrix of A
is populated as:

bAð1;1Þ ¼ �1
fCp

ðx2Þ fRp
ðx2Þ

bAð2;1Þ ¼ 0 bAð2;2Þ ¼ 0 (15)

bAð1;2Þ ¼ " _f Cp
ðx2Þ

fCp
ðx2Þ2 fRp

ðx2Þ
þ

_f Rp
ðx2Þ

fCp
ðx2Þ fRp

ðx2Þ2
#
x1 �

"
_f Cp

ðx2Þ
fCp

ðx2Þ2
#
IBat ;

(16)

with the same principle for C
Table 1
Discharge experiments.

Discharge Measured Cap. Av. Power Av. Temp.

Pulse 9778 As 0.147 W 20 �C
NEDC 9678 As 0.467 W 23 �C
bCð1;1Þ ¼ �1 bCð1;2Þ ¼ _f OCV ðx2Þ � _f R0
ðx2ÞIBat: (17)

The derivatives of the combined functions _fOCV and _f R0
with

respect to x2 are influenced by the introduced factor g, here
substituted by fgðx2Þ.

fOCVðx2Þ ¼
�
1� fgðx2Þ

�
fOCV�lowðx2Þ þ fgðx2ÞfOCV�highðx2Þ (18)

Derivation with respect to x2 leads to

_fOCVðx2Þ ¼ _fOCV�lowðx2Þ �
�
_f gðx2ÞfOCV�lowðx2Þ

þ fgðx2Þ _fOCV�lowðx2Þ
�
þ _f gðx2ÞfOCV�highðx2Þ

þ fgðx2Þ _fOCV�highðx2Þ: (19)

where _f g is defined by

_gm;cðx2Þ :¼
8<: 0; if a

m cosð2mðx2 � cÞÞ; if b
0; if c

(20)

with the same conditions for a, b, c as in equation (11). The deri-
vation of _f R0

follows the same pattern. As mentioned before, the
unique behaviour of the Li-S battery can vary in a complex manner.
Therefore it is reasonable to assume that the voltage prediction of
the observer is, firstly, not necessarily accurate and, secondly, that
the predicted voltage is not everywhere an indicator of the SoC. To
account for this, the measurement noise value R is with 0.15 rela-
tively high compared to the chosen model noise Q, which assumes
uncorrelated states with a low uncertainty for the Coulomb
counting state.

P0 EKF ¼
�
10 0
0 10

�
QEKF ¼

�
0:1 0
0 0:0000003

�
(21)

The value of the measurement noise R implies a standard de-
viation for the measurements of 387 mV. This is greater than the
values of actual Gaussian noise observed from the measurements.
However, since the battery model is not able to predict the terminal
voltage for every user case precisely, deviations in this order of
magnitude are possible. The values of Q, representing the system
noise, were determined iteratively to give good results.

5.1.2. UKF SoC estimation

Within the UKF framework, the weights aðmÞ
i and a

ðcÞ
i are vectors

containing real constant scalars with the conditions that
Pp

i¼0a
ðmÞ
i

and
Pp

i¼0a
ðcÞ
i are equal to 1 [16]. With the scaling value

l ¼ a2ðLþ kÞ � L

the weights can be calculated from

g ¼
ffiffiffiffiffiffiffiffiffiffiffi
Lþ l

p
; a

ðmÞ
i ¼ a

ðcÞ
i ¼ 1

2ðLþ lÞ

a
ðmÞ
0 ¼ l

Lþ l
; a

ðcÞ
0 ¼ l

Lþ l
þ
�
1� a2 þ b

�
:

Here, we chose similar weights as presented in Ref. [51],
defining the values 1 for a, 2 for b, L ¼ dim xf g ¼ 2 , and 0 for k.
Since the parameters are constant, they can be defined once prior
executing the filter. The values of the measurement and system
noise R and Q follow the same pattern of the EKF. However, the
values for P0 are considerably smaller since widely spread,
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unrestricted sigma points lead to estimation errors when they
exceed the defined SoC range of 0e1 in the beginning of the esti-
mation. Furthermore, the UKFwas found to bemore sensitive to the
model prediction errors compared to the EKF, so larger values were
used in the measurement noise matrix R ¼ 0.3.

P0 UKF ¼
�
1 0
0 0:014

�
QUKF ¼

�
0:0005 0

0 0:0000007

�
(22)
5.1.3. PF SoC estimation
The chosen probability density function should, on the one

hand, accurately determine themost likely observations, but on the
other hand hinder the impoverishment of the samples over time.
Examples for non Gaussian probability density functions for SoC
estimation are given in Refs. [43,44]. Here however, the Gaussian
distribution

f ðxÞ ¼ 1
s
ffiffiffiffiffiffi
2p

p e�
ðx�mÞ2
2s2 (23)

is used due to its simplicity and comparably to the EKF and UKF. To
account for the uncertainties of the model and Coulomb counting,
the standard deviations to sample the states in the prediction step
are chosen in the same pattern as the EKF and UKF, allocating larger
values to the transient voltage term Up, to account for the model
inaccuracies, and smaller values to the SoC state, to limit the
random fluctuations when the battery behaviour does not change.

stdx1 ¼ 0:004 stdx2 ¼ 0:0003 (24)

The number of particles was chosen iteratively. Tests indicated a
decent compromise between computational effort and estimation
precision with a constant number of 30 particles.
Fig. 4. Estimation results for EKF, UKF, PF with a mixed pulse- and a NEDC dri
6. Results and discussion

The results of the proposed SoC estimation algorithms are
evaluated qualitatively for their convergence time, with imprecise
initial states, and quantitatively by their estimation accuracy. As
measure for the latter the root mean squared error (RMSE) over the
hole discharge range is used.

RMSE ¼ 1ffiffiffi
n

p
 Xn

i¼1



SoCt;i � SôCt;i

�2!0:5

(25)

where n is the number of data points, SoCt;i is the reference SoC
from themeasurement and SôCt;i is the estimated SoC by the filters.
The accuracy and convergence depend on the quality of the model,
the observability of the system itself, the quality of the measure-
ments, their noise pattern and the users choices for the system and
measurement uncertainties. In the context of the model accuracy
also the discharge profile plays a role. For the pulse test, with its
long resting periods, the errors in the OCV are more sensitive to the
prediction error, whereas the more realistic NEDC cycle emphasises
the internal resistance or transient behaviour. Since Li-S batteries
suffer from self-discharge, which can lead to an imprecise initial
condition for the SoC estimation, each test is performed with three
different initial SoC values. While two of them are located in the
high plateau (SoC0 ¼ 1; 0:7), one is chosen after the transition point
(0.68) at (SoC0 ¼ 0:6), to test the algorithms ability to converge in
between both plateaus. To test their robustness against current
profile induced changes, all filters use the predetermined capacity
from the mixed pulse discharge profile tests during the model
identification (9778 As). The results of the SoC estimation tests are
shown in Fig. 4 and Table 2. The following discussion orients on the
specific properties of Li-S batteries.

High self-discharge: Self discharge, caused by the shuttle effect,
occurs mainly in the high plateau. This can be difficult to handle for
ve cycle current profile, starting with a fully charged battery, i.e. SoC ¼ 1.



Table 2
RSME SoC Estimation with EKF, UKF and PF with initially fully charged battery.

Algorithm SoC0 Pulse RSME NEDC RSME

EKF 1 0.0114 0.0217
0.7 0.0160 0.0267
0.6 0.2986 0.2732

UKF 1 0.0347 0.0280
0.7 0.0444 0.0537
0.6 0.0705 0.1199

PF uni 0.0576 0.0195
0.7 0.0532 0.0694
0.6 0.3997 0.3354

Table 3
RSME SoC Estimation with EKF, UKF and PF with partly discharged battery.

Algorithm SoC0 Pulse RSME NEDC RSME

EKF 1 0.1593 0.1696
0.7 0.0860 0.0535
0.6 0.1203 0.0745

UKF 1 0.0887 0.1743
0.7 0.0240 0.0687
0.6 0.0189 0.0332

PF uni 0.0281 0.0561
0.7 0.1661 0.1176
0.6 0.0383 0.0320
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the SoC estimators since the state changes when the monitoring
system is switched off. However, the high plateau has also a steep
OCV gradient which allows the estimator to converge quickly when
the state changed. Therefore the estimation result does not change
significantly with an imprecise initial condition as long as both
states, the real one and the estimated one, are within the same
plateau. Otherwise, the local minimum in the OCV can hinder the
convergence. Especially the EKF, with its first order linearisation,
and the PF with its particle set far away from the real SoC suffer
from this effect (Fig. 4 EKF: Pulse Test, NEDC PF: Pulse Test, NEDC).
Here, the UKF has the best performance. For applications
demanding a quick conversion without a precise initial condition a
self-discharge model is recommended.

Constant OCV: The uncertain region does not contain sufficient
information in the battery behaviour to distinguish different SoCs
in the low plateau, which leads to a state prediction heavily based
on the Coulomb counting. The result of this is a slightly drifting SoC
in that region and a slow convergence (Fig. 4 all filters: Pulse test,
NEDC initial SoC0 ref ¼ 1). However, due to the area with increased
internal resistance towards the end of discharge, the estimators are
able to correct that error mostly before the depletion point. Here,
Fig. 5. Estimation results for EKF, UKF, PF with a mixed pulse- and a NEDC drive cyc
the fact that the constant region is enclosed by the high plateau and
an area of increased cell resistance favours the model based esti-
mation. Furthermore, the lower self-discharge within the low
plateau allows the Coulomb counting to be accurate and limits the
drift.

Conversion with discharged battery: When starting from a
partially-discharged state, e.g. where the self-discharge of the
battery causes the estimated SoC to be higher than the real one
(Fig. 5), the differences between the EKF and UKF are more pro-
nounced. Here, the simulation was started at the initial reference
SoC of 0.6, with the same initial conditions used in the fully-
charged tests for the estimators ðSoC0EKF;UKF;PF ¼ 1;0:7;0:6Þ. In
these tests, it can be seen that the estimators performance is also
depending on the starting point. In general, the UKFs work best,
though they can fail (Fig. 5 UKF NEDC initial SoC0 ref ¼ 0:6). The EKF
tends to converge slowly, requiringmore than a full discharge cycle.
The particle filter can fail if the particles are poorly distributed at
the start, but when the particles are uniformly distributed, it con-
verges to the true state of charge very quickly. The results are
summarized in Table 3.
le current profile with an initially partly discharged battery, i.e. from SoC ¼ 0:6.



Table 4
Discharge experiments with NEDC-low and NEDC-high profile.

Discharge Measured Cap. Av. Power Av. Temp.

NEDC-low 10561 As 0.317 W 23 �C
NEDC-high 9072 As 0.610 W 23 �C
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Changes of the model parameters: As mentioned before, the
smaller parameter variationwithin the low plateau favours the SoC
estimation. However, the dependence of the battery behaviour on
the load profile remains a challenge. Different current rates and
profiles cause different utilisations of sulfur and therefore varia-
tions in the usable capacity.While these effects are less pronounced
in the high plateau, the low plateaus variations are significant. To
show their effect to the model accuracy and SoC estimation, further
tests were done with a decreased (added gain of 0.66 to current
profile) and increased (added gain of 1.33 to current profile) NEDC
profile (Table 4).

Both, Fig. 6 and Fig. 7, show the effects of the current density
variations to the model accuracy and SoC estimation. For most of
the discharge range the cell behaviour could still be represented
well. But the increased capacity, mainly in the low plateau, leads to
deviations of model prediction and measured voltage towards the
end of discharge (Fig. 6), since the model uses the fixed capacity
value from the pulse identification process (9778 As).

The rough capacity prediction combined with the constant OCV
within the low plateau cause a negative drift of the SoC estimation
in this area. Due to the strong divergence between model and
measurements towards the end of discharge however, there is
Fig. 6. Estimation results EKF, UKF, PF for a lower current NEDC drive cycle (A
some correction towards the reference SoC in the end of the
discharge process as well.

With higher rates the ratio of the high plateau of the whole
discharge capacity increases which should enable the algorithms to
correct the states longer. Nevertheless, the estimated SoC drifts
towards higher values in this case. Here the differences in between
the model and measurements are not significant enough to correct
the states sufficiently. The results of the estimation accuracy with
different current profile gains are summarized in Table 5.

To cover for the uncertainties, an improved observer model,
accounting for model changes with current profiles, could be the
key for improvement. However, since the inner cell mechanisms
are still a matter of ongoing research, on-line parameter estimation
could lead to improvements for the SoC estimation easier to obtain.

To achieve optimal results with handling the proposed model
and estimation, we suggest the following steps: (i) define a
simplified current profile for the intended application; (ii) measure
the delivered capacities for this use-case and (iii) apply our pre-
sented battery model and estimation method with the derived
capacity value.

Two plateaus with transition region: A likely consequence of
the local minimum in the identified OCV curve in between the
voltage plateaus, the EKF and the PF converge slowly when the
initial condition is not located in the high plateau ðSoC0 ¼ 0:6Þ. To
investigate filter-based solutions to improve the convergence, a
simplified OCV curve, neglecting the voltage drop in between the
plateaus (Fig. 8), was fitted to the OCV identification data and
substituted with the previously used function.
dded gain of 0.66 to the reference NEDC drive cycle, described in Sec. 5).



Fig. 7. Estimation results EKF, UKF, PF for a higher current NEDC drive cycle (Added gain of 1.33 to the reference NEDC drive cycle, described in Sec. 5).

Table 5
RSME SoC estimation with NEDC-low and NEDC-high profile.

Algorithm SoC0 NEDC-low NEDC-high

EKF 1 0.0489 0.0580
UKF 1 0.0625 0.0546
PF uni 0.0310 0.0694
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fOCV�simpleðx2Þ ¼ 339:78x92 � 1372:71x82 þ 2291:23x72

� 2066:02x62 þ 1107:76x52 � 364:76x42
þ 72:94x32 � 8:36x22 þ 0:48x2 þ 2:1 (26)

The advantage of this single polynomial is an almost monotonic
behaviour ignoring highly nonlinear parts in the OCV curve, also
simplifying the derivation of the Jacobian matrix. While the esti-
mation results of the PF do not change significantly, the first order
linearisation of the EKF leads to the anticipated results. As shown in
Fig. 8, the convergence time for the imprecise initial SoC of 0.6 has
improved significantly with only minor losses in the estimation
accuracy for the rest of the discharge (Table 6).(For the simplified
OCV curve, it was found necessary to set the initial covariance of the
SoC to 21.)

However, all in all we can conclude that the UKF can cope best
with the properties of the Li-S battery combined with a reasonable
computational effort. Table 7 presents the simulation times for the
reference battery model and three parallel running estimation
algorithms (SoC0: 1, 0.7, 0.6) on the same system (Intel(R) Core(TM)
i5-5300 CPU @ 2.30 Ghz, 8GB RAM, 64 bit operating system).

It is shown that the additional computational effort of the par-
ticle filter does not lead to significant improvements in this case.
7. Conclusion

This paper has introduced the problem of SoC estimation for Li-S
batteries, and explored the applicability of ‘standard’ techniques
used for lithium-ion batteries. It was noted that Li-S batteries
exhibit complex behaviours, some of which prevent the exploita-
tion of ‘standard’ techniques in electric vehicles. Lithium-sulfur's
open-circuitevoltage versus state-of-charge curve has a large flat
region, meaning that open-circuit voltage is a poor indicator of SoC.
Because there aremultiple reaction pathways, the useful capacity of
Li-S cells depends on the applied duty cycle. Furthermore, it suffers
from high self-discharge, so ‘Coulomb counting’ is unlikely to be
effective. As an alternative, this paper has explored three model-
based methods of state estimation, all of which were variants of
the recursive Bayesian filter: the extended Kalman filter, the un-
scented Kalman filter and the particle filter. Despite the complex-
ities of Li-S cells, it was demonstrated in experimental tests that the
model-based estimators based on an equivalent-circuitenetwork
model were able to perform robustly.

The discussion of the results noted several ways where the
complex behaviours of Li-S help to aid the estimation problem.
While the high self-discharge within the high plateau hinders the
determination of a precise initial SoC, the steep OCV gradient in this



Fig. 8. Simplified OCV curve and related estimation results for the EKF.

Table 6
RSME SoC estimation with simplified OCV curve.

Algorithm SoC0 OCV Function NEDC RSME

EKF 1 one poly 0.0205
0.6 one poly 0.0272
0.6 two poly 0.3923

Table 7
Simulation time for the pulse discharge test (128000 s).

EKF UKF PF

Simulation time 5.25 [s] 7.97 [s] 21.54 [s]
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region allows a quick convergence. Here, problematic and useful
properties for the state estimation cancel each other out. In the low
plateau, the flat OCV curve and relative constant battery parame-
ters hinder a precise estimation. In this area also current-related
changes in the usable capacity occur mostly, which is the reason
why the proposed estimation methods works best within a certain
discharge current range. However, due to the enclosure of the
constant region by the high plateau and an area with increased
internal resistance, the estimation is mostly able to converge to the
correct SoC within one discharge cycle. Therefore a standard
model-based estimator, with its multiple sources/states of infor-
mation, is capable of predicting the SoC of a Li-S cell well enough.
Hereby the unscented Kalman filter gives the most robust and ac-
curate performance in combination with a reasonable computa-
tional effort.

It was conjectured that improvements to the model to represent
self-discharge are likely to benefit the robustness of the estimators.
Furthermore, a facility to deal with the current-related parameter
changes, is very likely to improve the accuracy. It would also be
interesting to consider whether adaptive noise covariance values
could be used to improve the model fit whilst accommodating re-
gions of greater uncertainty. The authors also are currently
exploring the application of recursive parameter estimation for
state estimation. A limitation of the performed tests is the constant-
temperature scenario. This mirrors the highly regulated environ-
ment of the authors' intended end application, an electric vehicle
test environment with a tightly-regulated temperature. However,
future work should also explore any challenges associated with
state estimation in an environment with significant temperature
variations.
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