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Abstract

Simulation with models based on partial differential equations often requires
the solution of (sequences of) large and sparse algebraic linear systems. In
multidimensional domains, preconditioned Krylov iterative solvers are often ap-
propriate for these duties. Therefore, the search for efficient preconditioners for
Krylov subspace methods is a crucial theme. Recent developments, especially in
computing hardware, have renewed the interest in approximate inverse precondi-
tioners in factorized form, because their application during the solution process
can be more efficient. We present here some experiences focused on the approx-
imate inverse preconditioners proposed by Benzi and Tůma from 1996 and the
sparsification and inversion proposed by van Duin in 1999. Computational costs,
reorderings and implementation issues are considered both on conventional and
innovative computing architectures like Graphics Programming Units (GPUs).
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1. Introduction

The numerical approximation of the vast majority of mathematical models
from applied science and engineering requires solving linear algebraic systems
that become every day larger and larger. In particular, this happens for finite
volumes, finite elements or finite differences schemes solving models based on
partial differential equations. Very often, most of the computing time is spent in
the solution of those linear systems by direct or iterative algorithms. However,
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direct methods sometimes can be less appropriate than iterative for multidi-
mensional problems and Krylov iterative methods can give a viable approach
especially on parallel architectures. Preconditioning is often essential because
without it the convergence of iterative solvers can be too slow for practical
purposes.

Preconditioning a linear system Ax = b by a direct approximation of A−1,
i.e. by using approximate inverse preconditioners, has been quite popular in the
last two decades; see, e.g. [9] and references therein.

From an implementation point of view, preconditioning by an approximate
inverse is carried out by sparse matrix by vector multiplications, the same nu-
merical kernel that forms the core of any Krylov subspace method. On highly
parallel computing architectures such as the GPUs it is quite possible to im-
plement efficiently matrix-vector multiplication, but GPU implementations for
triangular systems are much less efficient [4, 22, 23].

Aside from the potential to exploit parallel hardware potentialities, there
are also frameworks where sparse approximate inverse are required. An exam-
ple is the updates for inverse incomplete factorization preconditioners for solving
cheaply sequence of large and sparse linear systems proposed in [10, 17, 20, 8].
We recall that sequences of large and sparse linear systems arise, e.g., in the nu-
merical solution of nonlinear algebraic systems, ordinary and partial differential
equations, nonlinear optimization.

Among the various approaches for computing sparse approximate inverses
that have been proposed in the literature through the years we can find:

• Minimization of the residual norm;

• Approximation by a matrix polynomial;

• Inexact inversion of sparse triangular factors;

• Incomplete biconjugation.

This paper will deal with the last two approaches. See [27] for a recent GPU
implementation of the first one.

The remainder of the paper is organized as follows. In section 2 we recall
briefly the sparse approximate inverses based on inversion and sparsification
of incomplete factorizations proposed in [42] and in section 3 the approximate
inverse preconditioners based on incomplete biconjugation proposed by Benzi
and Tůma. In section 4 we give a brief discussion of the main features of the
algorithms for the underlying approximate inverse factorization to prepare for
some experimental results; section 5 holds a description of a number of software
and hardware issues. Finally, in sections 6 and 7 we report some numerical tests
and conclusions and perspectives.

2. Sparse Inversion of Sparse Factors

A strategy for computing a sparse approximate inverse based on incomplete
factorizations is advocated by A. van Duin [42]. The idea is to start from a
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sparse (approximate) factorization

A ≈ LDU,

where L and U are unit lower and upper triangular matrices and D is diagonal.
Let us now describe the process with respect to the upper factor U ; the lower
factor L can be treated in a completely analogous way.

The triangular matrix U can be represented as

U = I +

n−1∑
i=1

eiu
T
i , (1)

where uTi is the i-th row of the strictly upper part of U , i.e.

ui(j) = 0 ∀j ≤ i.

Given this structure, it is also possible to express the same matrix in product
form as

U =

1∏
i=n−1

(I + eiu
T
i ), (2)

where each term in the product is an elementary transformation. Since each
term is easily invertible, we obtain the following expression

U−1 =

n−1∏
i=1

(I − eiuTi ), (3)

but given that this matrix is also upper triangular we can express it in the form

U−1 = I +

n−1∑
i=1

eiû
T
i . (4)

Combining (4) and (3) we derive an expression for ûTi :

ûTi = −uTi
n−1∏

j=i+1

(I − ejuTj ). (5)

We can recast this expression in the algorithm 1 for computing U−1. To turn
this into an effective preconditioning strategy we need however to apply some
form of “drop strategy” to preserve the sparsity of the resulting factors. Let us
emphasize that, as noted by [13, 16], the usage of a factored form to approx-
imate A−1 can be helpful in this respect: an irreducible sparse matrix has an
inverse that is typically full, but, under suitable conditions, its inverse can be
approximated reasonably by the product of two sparse matrices. Therefore, we
can expect to reap some benefits in this respect.
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Algorithm 1 A General Sparse Triangular Inverse

1: for j = 1 to n− 1 do
2: ûTi ← −uTi
3: j ← location of first nonzero in ûTi
4: while j < n do
5: α← −ûTi ej
6: ûTi ← ûTi + αuTj
7: j ← location of next nonzero in ûTi
8: end while
9: end for

Algorithm 2 Positional Fill Level Triangular Inverse, or INVK

1: levelij ← 0 if aij 6= 0, ∞ otherwise;
2: for j = 1 to n− 1 do
3: ûTi ← −uTi
4: j ← location of first nonzero in ûTi
5: while j < n do
6: if levelij ≤ p then
7: α← −ûTi ej
8: ûTi ← ûTi + αuTj
9: update fill levels levelik = min(levelik, levelij + 1)

10: else
11: ûTi (j)← 0
12: end if
13: j ← location of next nonzero in ûTi
14: end while
15: end for



D. BERTACCINI, AND S. FILIPPONE 5

Algorithm 3 Incomplete factorization with threshold

1: for i = 1, . . . , n do
2: w ← ai∗
3: for k = 1, . . . , i− 1 and wk 6= 0 do
4: wk ← wk/dk
5: Apply a drop rule to wk

6: if wk 6= 0 then
7: w ← w − wkuk∗
8: end if
9: end for

10: Apply a drop rule to row w
11: lij ← wj j = 1, . . . , i− 1
12: lii ← 1; di ← wi; uii ← 1;
13: uij ← wj j = i+ 1, . . . , n
14: w ← 0
15: end for

2.1. Positional Drop Strategies

The most common positional drop strategy is based on the concept of level
of fill; the resulting algorithm bears many similarities with the incomplete fac-
torizations based on levels of fill, and is shown in Algorithm 2. Throughout the
paper we will refer to this method as INVK. In the overall process, the fill level
will have to be specified for both the LDU incomplete factorization as well as
for the sparse triangular inversion. In the sequel we will split the specification in
two steps, so that an INV K(I, J) is to be interpreted as allowing a fill level of I
in the factorization phase, and then an additional fill level of J in the inversion
phase.

2.2. Numerical Drop Strategies

In a manner completely analogous to the previous subsection, the numeri-
cal drop strategy for the approximate inverse shown in Algorithm 4 (shown in
sec. 2.3) can be implemented with algorithmic steps very similar to the factor-
ization phase; the resulting algorithm will be called here INVT. In an actual
implementation, it is normal practice to use the threshold ε as a relative value
with respect to the norm of the relevant row; this reduces the dependency on
the scaling of the original problem.

2.3. Factorization and inversion implementation

Let us review the basic incomplete factorization algorithm with threshold
(Algorithm 3), described in [40]: Each iteration of the main factorization loop
may be partitioned in three phases:

1. A copy–in phase at step 2 where we take the ith row of matrix A and
expand it in a full row w;
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2. A factorization loop 3 where we apply all the needed updates from the
previous phases of the factorization and the first dropping rule 5;

3. A copy–out phase at steps 10-13 in which we also apply the second drop-
ping rule.

The two dropping rules are slightly different in nature. The dropping rule
at step 5 is based on the comparison of wk with a user specified threshold.
The second dropping rule at step 10 is more complicated: first, we perform
a comparison with a threshold; then, we keep only the p elements of largest
absolute value among those which were not dropped.

As written this algorithm is hopelessly expensive: the nested loop 3 on k
is executed i − 1 times and for each iteration we execute a vector update of
size n − i, thus giving an overall cost that is quadratic in n. To keep the cost
under control the first thing to do is to run the loop 3 on just the values that
correspond to non zero entries in the current row w. The set of nonzeros in w
is easily identified when it is initialized at step 2, but the problem is that it is
altered during the course of the loop itself. An efficient loop would be described
as follows:

At each iteration, select the next lowest index k among the nonzero entries
of w; update wk and if it is not dropped then:

• use it to update the rest of w with uk∗, possibly adding new nonzeros to
w and thus new indices to the candidate set in w;

• Add wk to the set of entries in w to be considered for the second drop rule
and copying out in steps 10-13.

A subtle and interesting problem surfaces with the seemingly innocuous
statement at step 14: if we naively zero out the entire row w, we are accessing
all its entries, and therefore incur an O(n) cost. This O(n) cost is incurred at
each iteration of the outer loop, which runs through all n columns: thus, we
would be reintroducing an overall quadratic cost for our algorithm. To overcome
this issue we make use of the drop rule and copy–out steps 10-13: here, we can
zero coefficients selectively, as we run through the entries of w that were not
annihilated at step 5. Then, it only remains to initialize to zero the data area
for w before entering the main loop; this is an example of how small details can
sometimes imperil the implementation of an otherwise reasonable algorithm.

Let us now turn to the issue of implementing the sparse inversion of a sparse
triangular factor. By comparing the threshold based version presented in Algo-
rithm 4 with the factorization discussed above, it is clear that it is possible to
implement it with the same “elementary” operators, and specifically:

• During the copy–in phase in step 2 we initialize the set of nonzero entries
for the current row ûi;

• During the update phase in step 7 we also insert the relevant indices
into the set to ensure that the retrieval of the next nonzero at step 11 is
performed efficiently;
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Algorithm 4 Numerical Fill Drop Triangular Inverse or INVT

1: for j = 1 to n− 1 do
2: ûTi ← −uTi
3: j location of first nonzero in ûTi
4: while j < n do
5: α← −ûTi ej = −ûTi (j)
6: if |α| > ε then
7: ûTi ← ûTi + αuTj
8: else
9: ûTi (j)← 0

10: end if
11: j location of next nonzero in ûTi
12: end while
13: Drop elements in ûi as necessary to achieve the desired number of nonze-

ros.
14: end for

• At the end of the inner loop, we perform a copy–out operation bringing
the row ûi into its desired final state, copying the largest entries up to the
maximum allowed number of nonzeros.

From the above discussion it is clear that for both the factorization and the
inversion phases we are looking for ways to implement efficiently the following
two operations on a set with an order relation:

1. Select and remove the lowest ranked element from a set;

2. Add an element to the set.

One possible and efficient solution relies on the Partially Ordered Set Abstract
Data Type [1]. This guarantees that both insertion of a new element and deletion
of the lowest ranked element can be performed with a cost O(log(|S|)) where
|S| is the cardinality of the set S.

The copy–out operations in both factorization and inversion can be again
implemented by making use of a partially ordered set, but this time we are
interested in a set that is ordered based on the absolute value of its entries,
since the second dropping rule in both phases states that we are to keep the p
largest entries of the current row.

With the appropriate implementation for this data structure we are now
in a position to estimate the cost of building an approximate inverse as in
Algorithm 4.

Theorem 1. Let nzu be the average number of nonzeros per row in u and let
nzû be defined similarly ; assume moreover the bounds

|S| ≤ γ nzu, (6)

nzû ≤ β nzu, (7)
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where |S| is the maximum size of the set of entries in any of the ûi before the
application of the drop rule 13. Then the cost of algorithm 4 is

O(γβn · nz2u(1 + log(γ nzu))). (8)

Proof. Given the bound (6), the term γn · nzu follows easily from the nesting
of the two outer loops. For the remaining factor β nzu(1 + log(γ nzu)), consider
statement 7: this is executed whenever the nonzero in ûi is above threshold, and
we would expect this to happen a number of times within a (moderate) factor
times the size of ui. On each execution, statement 7 requires nzu floating-point
operations to execute the sparse AXPY, plus nzu log(|S|) operations to update
the set S with the (possibly new) nonzero entries. Using again bound (6) gives
the desired result.

The result relies on the two crucial assumptions about the size of the sets
involved, and specifically that both β and γ are small constants. Assumption (7)
is easier to justify: it simply expresses the fact that in many applications we
would normally like to have a preconditioner that has a number of nonzeros of
the same order as the coefficient matrix A, hence we would have β ≈ 1. Since
the number of nonzeros can be enforced at step 13, this is not a problem.

Assumption (6) is a bit more complex: it relies on the interaction between
the profile of u and û. In particular, the hypothesis (6) is considered plausible,
at least for important classes of problems, see Theorem 4 in [16]. The latter gives
an exponential decaying argument for the entries of the inverse of the Cholesky
factor. The application of the dropping rules at 6 and 13 in Algorithm 4 is also
acting to keep the number of elements in the set S under control.

The cost of the sparse inversion of sparse factors INVK and INVT has also
been analyzed in the paper where they were proposed [42]. The approximate
inversion for the upper factor is estimated at

Cinvrt = O
(

nzÛ
nzU
n

)
where nzU is the number of nonzeros above the main diagonal in U and likewise
for the other quantities.

Note that the upper bound for the first term nzÛ is given by the product
nβ nzu while the second term is nzu. This estimate is then equivalent to our
estimate (8) under the mild assumption that log(γ nzu) is bounded by a small
constant.

3. AINV: a Method Based on Incomplete Biconjugation

The method we are about to discuss was proposed in [14] and later extended
in [11]. It is based on the observation that if a matrix A ∈ Rn×n is nonsingular,
and if we have two vector sequences {zi, i = 1 . . . n} and {wi, i = 1 . . . n} which
are A-biconjugate, i.e. wT

i Azj = 0 if and only if i 6= j, we can express the



D. BERTACCINI, AND S. FILIPPONE 9

biconjugation relation as follows:

WTAZ = D =


p1 0 . . . 0
0 p2 . . . 0
...

...
. . .

...
0 0 . . . pn

 (9)

where pi = wT
i Azi 6= 0. Thus, W and Z must be nonsingular, since D is

nonsingular. Therefore, we have

A = W−TDZ−1

from which it readily follows that

A−1 = ZD−1WT . (10)

If W and Z are triangular, then they are actually the inverses of the triangular
factors in the familiar LDU decomposition, as can be easily seen by comparing
the two expressions

A = LDU

and
A = W−TDZ−1.

Algorithm 5 Biconjugation

1: w
(0)
i ← z

(0)
i ← ei 1 ≤ i ≤ n

2: for i = 1, . . . , n do
3: for j = i, i+ 1, . . . , n do

4: p
(i−1)
j ← aTi z

(i−1)
j ; q

(i−1)
j ← cTi w

(i−1)
j

5: end for
6: for j = i+ 1, . . . , n do

7: z
(i)
j ← z

(i−1)
j −

(
p
(i−1)
j

p
(i−1)
i

)
z
(i−1)
i ; w

(i)
j ← w

(i−1)
j −

(
q
(i−1)
j

q
(i−1)
i

)
w

(i−1)
i

8: end for
9: end for

10: wi ← w
(i−1)
i , zi ← z

(i−1)
i , pi ← p

(i−1)
i , 1 ≤ i ≤ n

There are infinitely many biconjugate sequences {w} and {z}: to find any
one of them it is sufficient to apply a biconjugation procedure to the appropriate
pair of nonsingular matrices W (0), Z(0) ∈ Rn×n. From a computational point
of view one can start with W (0) = Z(0) = I, thus obtaining the procedure
in Algorithm 5, where aTi is the i-th row of A and cTi is the i-th row of AT .
If the procedure reaches completion without breakdowns, i.e. all the diagonal
element are nonzero, then the resulting matrices W and Z will be triangular,
again giving the explicit inverses of L and U . Thus, we can conclude that for
symmetric positive definite matrices the process will not break down. Another
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interesting feature of algorithm 5 is that the process for building W can proceed
independently of the process to build Z.

To turn Algorithm 5 into a practical procedure, we need to “sparsify” the
resulting W and Z by dropping elements in the vectors wi and zi. In principle
this could be done at the end of Algorithm 5, but this would mean storing the
matrices W and Z in full until the very end. Thus in practice the sparsification
has to happen at all updates to the vectors w and z.

Similarly to the case of the incomplete factorization, it is possible to prove [12]
that the incomplete inverse factorization exists (in exact arithmetic) when A is
an H-matrix.

An important point to be noted is that, despite the many similarities, there
is a noticeable difference with the case of incomplete factorizations. It is well
known that if A is an M -matrix, then the incomplete factorization induces
a regular splitting A = L̂Û − R, i.e. ρ(I − Û−1L̂−1A) < 1, while this is not
necessarily true of the incomplete inverse factors produced by biconjugation [14].

Let us finally note that in particular the process as modified in [11] will not
break down for symmetric positive matrices. The modified method is known
as SAINV. Indeed, in theory, AINV may suffer breakdown when the coefficient
matrix is not an H-matrix.

3.1. Algorithmic variants

The procedure in Algorithm 5 is a right looking variant: when a vector
zi is finalized, it is used to update all the vectors zj , j > i. An alternative
formulation is to use a left looking variant: all the updates to zi involving
zj , j < i, are performed in a single iteration of the outer loop; the relevant
procedure is shown for Z in Algorithm 6 (the other triangle W can be handled
in the same way). While the numerical behavior of the two algorithms is the
same (in exact arithmetic), the distribution of work in the two variants is quite
different. The left-looking variant groups together all the updates to a given
column; it tends to perform more (sparse) dot products, using the “true” zi
(i.e. before sparsification), as it can afford to sparsify each column only once.
These features have the following interesting properties that may be beneficial
from a numerical point of view:

1. The dot products at 5 and 8 in Algorithm 6 are computed with the full
vector zi, before the application of the dropping tolerance;

2. The dropping rule on zi entries is only applied at the end of the update
loop, whereas in the right-looking version it would be applied at each
update, thereby allowing a better buildup of the vector entries.

In our test problems the left-looking variant has suffered less from pivot break-
down.

3.2. Approximate Biconjugation Implementation

In section 2.3 we have seen how incomplete factorization with inversion and
sparsification can be implemented employing data structures and operators for
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Algorithm 6 Left Looking Biconjugation for Z

1: z
(0)
1 ← e1; p

(0)
1 ← a11

2: for i = 2, . . . , n do

3: z
(0)
i ← ei

4: for j = 1, . . . , i− 1 do

5: p
(j−1)
i ← aTj z

(j−1)
i ;

6: z
(j)
i ← z

(j−1)
i −

(
p
(j−1)
i

p
(j−1)
j

)
z
(j−1)
j

7: end for
8: p

(i−1)
i ← aTi z

(i−1)
i ;

9: end for

partially ordered sets. We now direct our attention to the implementation of
approximate inversion with biconjugation. It turns out that the scheme we are
interested in can also be based on the same abstract data type.

Let us take a close look at Algorithm 6. In an actual implementation the
vector zi would be stored in full format during the execution of loop 4, and
there could be two applications of a dropping rule:

1. at statement 6 the update of zi is only performed for a sufficiently large
value of pi/pj ;

2. after the statement 8 a dropping rule is applied to zi thereby sparsifying
it for final storage.

Note that the application of the first dropping rule based on pi/pj was actively
discouraged in the paper that introduced right-looking AINV for symmetric
systems [12].

In our experiments with the left-looking variant we have instead applied
the dropping rule, without adverse numerical effects while at the same time
providing a performance advantage. Moreover, in the dropping rule applied to
zi we apply the usual threshold comparison but we also enforce a limitation on
the maximum number of nonzeros allowed, similarly to what happens in the
ILU(T, P ) algorithm.

A key observation is that the execution of statement 5 in Algorithm 6 will
compute the dot product among aj and zi even if in most cases this product will
be exactly zero because of the (mis)match between the position of nonzeros in
aj and zi; this is a useless quadratic cost. We can instead ensure that the loop 4
is executed only as necessary, i.e.: we should only execute the iterations of the
loop on j where the dot product at 5 is nonzero. This is equivalent to letting at
each step j be the lowest index among those not processed yet such that row
aj∗ has at least one nonzero element in a column corresponding to a nonzero

entry in z
(j−1)
i . To achieve this goal we keep an extra copy of the pattern of a

in a column-oriented format, and we do the following:

1. at the start of loop 4, zi ← ei; therefore, the set of indices {j} is initialized
with RA∗j = {i : aij 6= 0}, the set of row indices of nonzero entries in
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column i of matrix A;

2. at each iteration of loop 4, choose j to be the smallest index in the set
that is greater than the last visited one;

3. at step 6, whenever an entry zi(k) becomes nonzero, add the row indices
RA∗k corresponding to the nonzeros of column k in matrix a to the set of
indices to be visited.

To ease the implementation of the algorithm, we keep copies of the input matrix
A both in a row-oriented and column-oriented storage. Having an extra copy of
A in column-oriented format allows to build Z and W at the same time, sharing
the same outer loop: when dealing with W we need to access rows and columns
of AT , but these are accessible as the columns/rows (respectively) of A. The
inner loop is in any case separate between Z and W , as it runs on a subset of
indices specific to the given triangular factor.

The result is Algorithm 7. The implementation makes use of a dense work
vector zw to compute zi and wi; the indices of the non-zero entries are kept in
a heap hp. Another heap rhp is used to hold the indices of the rows with at
least one nonzero in a column matching a nonzero entry in zw, thus giving the
set of rows for which we have to compute the scalar products.

We are now in a position to state:

Theorem 2. Let nza be the average number of nonzeros per row in A and
similarly nzz; assume moreover the bounds

|S| ≤ γ nza, (11)

nzz ≤ β nza, (12)

where |S| is the maximum cardinality of the sets of entries in any of the zi before
the application of the drop rule 19. Then the cost of algorithm 7 is

O(γnnz2a(1 + β(1 + log(γ nza)))). (13)

Proof. Given the bound (11), the term γnnza follows easily from the nesting
of the two outer loops. The bodies of loops 8 and 23 in Algorithm 7 contain
the following terms:

• The dot products at 10 and 25 add a term nza;

• The cost of 12 and 27 is given by β nza, by assumption (12);

• The updates of the set S at 14 and 29 add another cost β nza log(γ nza)).

The result follows considering that the statements 12-14 and 27-29 are executed
at most as many times as statements 10 and 25 respectively, because of the drop
rule at 11 and 26.

The situation is thus analogous to that of Theorem 1. To be completely
precise, note that the bound β in (12) refers to the ratio between the size of the
rows in the upper triangle Z and the rows in matrix A. When enforcing a size
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Algorithm 7 Practical left-looking biconjugation

1: For a matrix A let Ai∗ the ith row, and A∗j the jth column;
2: For a sparse matrix A let CAi∗ = {j : aij 6= 0} the set of column indices in

row i, and similarly let RA∗j = {i : aij 6= 0};
3: For a set S with an order relation ≤, let first(S) be the operator returning

the smallest element in S;

4: z
(0)
1 ← e1; p

(0)
1 ← a11

5: for i = 2, . . . , n do
6: Inner loop over Zj ;
7: zw ← ei; S ← RA∗i ;
8: while S 6= ∅ do
9: j ← first(S); S ← S − {j};

10: p(i)← Aj∗zw; α← (p(i)/p(j)) ;
11: if |α| > ε (drop rule) then
12: zw ← zw − αZ∗j
13: for k ∈ RZ∗j do
14: S ← S ∪ {l ∈ RA∗k : j < l < i}
15: end for
16: end if
17: end while
18: p(i)← Ai∗zw;
19: Apply a drop rule to zw;
20: Z∗i ← zw;
21: Inner loop over Wj ;
22: zw ← ei; S ← CAi∗ ;
23: while S 6= ∅ do
24: j ← first(S); S ← S − {j};
25: q(i)← AT

∗jzw; α← (q(i)/q(j)) ;
26: if |α| > ε (drop rule) then
27: zw ← zw − αW∗j
28: for k ∈ RW∗j do
29: S ← S ∪ {l ∈ CAk∗ : j < l < i}
30: end for
31: end if
32: end while
33: q(i)← (A∗i)

T zw;
34: Apply a drop rule to zw;
35: W∗i ← zw;
36: end for
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of the preconditioner comparable to that of the matrix A, the actual value of β
will be approximately one half as that of the factor entering (7), since in that
case we are comparing the upper triangle of the inverse to the upper triangle of
the incomplete factorization. On the other hand, the biconjugation process is
applied twice, for both Z and W , so that the ratio of nonzeros in the complete
preconditioner to the nonzeros in A is again β just like in the case of INV T .

The application of the dropping rules at statements 11, 19 26 and 34 of
Algorithm 7 has the effect of enforcing strict control over the size of set S,
thereby improving the factor γ and the overall performance of the preconditioner
construction. A key element here is the fact that with dropping rules 19 and 34
we limit the number of accepted nonzeros.

The original AINV algorithm proposed in [12] may suffer from pivot break-
down when applied to matrices that are not H-matrices. In [11] a more robust
version called SAINV is proposed: the key issue identified is the need to compute
the diagonal elements pi via the formula

pi ← zTi Azi,

instead of the simplified formula

pi ← Ai∗zi.

The same kind of reasoning can be applied to nonsymmetric matrices, but we
expect to reap less benefits, because in general the matrix A does not necessarily
define a dot product. On the other hand, there are important cases where pivot
breakdown cannot occur for SAINV also in the nonsymmetric case, in particular,
if the symmetric part of the matrix if positive definite [39].

If we apply the full formula to the left-looking algorithm we obtain Algo-
rithm 8: the product with A is applied at steps 10, 24 and 34. Note that the two
triangles W and Z are no longer independent of each other: the computation
of the pi and qi must be performed at step 34 where we finally have available
the relevant elements of both W and Z. In the test set used in this paper we
have not found any significant advantage in using Algorithm 8 over the use of
Algorithm 7.

4. Approximate Inverses: Algorithmic Variants

We now discuss some features of the algorithms presented.
For reference we denote by:

INVK: the algorithm 2 based on the sparse inversion of triangular factors based
on a positional drop strategy;

INVT: the algorithm 4 based on the sparse inversion of a triangular factors
based on a numerical drop strategy;

LLK: the algorithm 7 based on a left-looking variant of AINV biconjugation.
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Algorithm 8 Practical left-looking biconjugation stabilized

1: For a matrix A let Ai∗ the ith row, and A∗j the jth column;
2: For a sparse matrix A let CAi∗ = {j : aij 6= 0} the set of column indices in

row i, and similarly let RA∗j = {i : aij 6= 0};
3: For a set S with an order relation ≤, let first(S) be the operator returning

the smallest element in S;

4: z
(0)
1 ← e1; p

(0)
1 ← a11

5: for i = 2, . . . , n do
6: Inner loop over Zj ;
7: zw ← ei; S ← RA∗i ;
8: while S 6= ∅ do
9: j ← first(S);S ← S − {j};

10: p(i)← ((W∗j)
TA)zw; α← (p(i)/p(j)) ;

11: if |α| > ε (drop rule) then
12: zw ← zw − αZ∗j
13: for k ∈ RZ∗j do
14: S ← S ∪ {l ∈ RA∗k : j < l < i}
15: end for
16: end if
17: end while
18: Apply a drop rule to zw;
19: Z∗i ← zw;
20: Inner loop over Wj ;
21: zw ← ei; S ← CAi∗ ;
22: while S 6= ∅ do
23: j ← first(S); S ← S − {j};
24: q(i)← (AZj)

T zw; α← (q(i)/q(j)) ;
25: if |α| > ε (drop rule) then
26: zw ← zw − αW∗j
27: for k ∈ RW∗j do
28: S ← S ∪ {l ∈ CAk∗ : j < l < i}
29: end for
30: end if
31: end while
32: Apply a drop rule to zw;
33: W∗i ← zw;
34: p(i)← q(i)← (W∗i)

TAZ∗i;
35: end for
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These different algorithms have different implementation costs. Moreover, a
discussion of their cost based on the number of floating-point operations only is
likely to be misleading.

4.1. Inversion of sparse ILU factors

The inversion of underlying sparse ILU factors, INV K and INV T variants,
can be implemented with the same building blocks that have been used for
ILU(K) and ILUT (T, P ) incomplete factorizations, respectively. The above
inversion algorithms require the choice of multiple parameters, and are therefore
somewhat difficult to tune in actual applications. In the case of INV K it is
necessary to choose the level of fill in the sparse factorization and the level of
additional fill in the approximate inversion phase: INV K(N1, N2) means having
an ILU(N1) factorization, and then an inversion accepting fill-in for N2 levels
beyond the output of the factor phase. Thus, an INV K(0, 0) preconditioner
has exactly the same pattern as the original matrix A.

In general it is better to allow additional fill in the inversion phase rather
than in the factorization phase; this is perhaps not surprising considering that
the inverse of an irreducible sparse matrix is usually full, therefore we need to
spend space resources (i.e. nonzeros) to approximate more closely the sparse
triangular factor, taken as a reference in terms of preconditioning efficiency.

For INV T , similar considerations apply, except that we have to choose
four parameters: the drop threshold ε and the number of additional nonzeros
N for both the incomplete factorization and the sparse inversion. Again, the
sparse inversion phase is based on the kernels developed for the incomplete
factorization; this in turn defines a dual drop strategy based on the numerical
threshold and on accepting at least as many nonzero entries as in the original
matrix A, and up to N additional nonzeros, with N chosen by the user.

We will henceforth denote this algorithm as INV T (N1, ε1, N2ε2) where the
ε1,2 are the thresholds for the factor and inversion steps, respectively. The
parameters N1 and N2 specify the factor β implicitly: they are interpreted as
the maximum number of nonzeros per row to be accepted in output in addition
to those already present in input. Thus, INV T (0, ·, 1, ·) would accept at most
as many nonzeros as in A in the factor phase, and at most one more per row
per triangular factor in the inversion phase.

We can derive from Theorem 1 and from the performed tests useful sugges-
tions for the choice of the algorithmic parameters:

• as a first approximation, the performance of the final preconditioner is
related to the number of its nonzeros (although this is not guaranteed to
be always true). As we let β grow, we typically get a better approximation
to the inverse, so the number of iterations decreases, but the cost of the
preconditioner, both in terms of building and applying it, grows. Often a
value of β only moderately larger than 1 suffices.

• The threshold employed at statement 6 of Algorithm 4 controls the size
of the set S: having too permissive a threshold is wasteful, since many
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nonzeros will be kept around, only to be thrown away when sparsifying ûi
at step 13. Thus the threshold should be as restrictive as possible while
still providing enough nonzeros to match the desired β.

4.2. Biconjugation

The implementation of our left-looking variant of biorthogonalization re-
quires the choice of two parameters: the dropping threshold ε and the amount
of fill-in p. We stress that for non symmetric or non Hermitian matrices we
speak about biorthogonalization and conjugation for symmetric or Hermitian
ones.

We always use the same threshold and fill-in for the Z and W factors, even if
in principle they could be different. The construction of each factor is logically
independent of the other; nevertheless, we compute them simultaneously, mak-
ing maximal use of both a row-oriented and a column-oriented copy of A. The
left-looking incomplete biconjugation will be henceforth denoted as LLK(N, ε),
where ε is the dropping tolerance and N is the number of nonzeros per row in
each triangular factor; thus, the effective number of nonzeros per row in the
preconditioner will be determined by 2N + 1.

Comparing equations (8) and (13), we see that the computational complex-
ity bounds for INV T and LLK are of the same order. This is substantiated by
the numerical results in section 6 where the ratio of the computing time of the
two preconditioner types is approximately constant once the method(s) param-
eters are adjusted to give preconditioners with comparable number of nonzeros,
and with comparable intermediate sizes during the factorization/biconjugation
loops. The advantage of LLK is that it is normally easier to adjust the con-
trol parameters of the algorithm to achieve the desired result. On the other
hand, once the parameters are tuned, we experienced that the build phase of
the INV T and INV K preconditioners is often faster.

4.3. Reordering: numerical and algorithmic implications

Reordering is the process of applying a permutation to both rows and columns
of a sparse matrix. If P is the permutation, then the new matrix is Â = PAPT .

Also nonsymmetric permutations Â = PAQT , Q 6= P , have been shown to
be very beneficial in many cases but will not be treated here.

The effects of reordering on preconditioners are the subject of a substantial
body of research, even though the situation is far from being fully clear. Both
factorization-based and inversion-based preconditioners have been analyzed in
the past; see, e.g., [29, 13, 16, 21].

A recurring theme in sparse matrix computations is the relative weight of
data structure manipulations and other integer operations as opposed to the
“true” floating point arithmetic operations; both are affected by reorderings. In
particular it is often observed that

• the amount of fill during the computation of a factorized approximate
inverse strongly depends on the ordering of the matrix;
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• the interaction with the computer memory subsystem, and the reduction
in operations due to “clipping” techniques applied to the matrix profile,
tend to favour orderings designed to reduce bandwidth, such as Reverse
Cuthill-McKee (or RCM for short).

Orderings developed for sparse factorization algorithms such as Nested Dissec-
tion and Minimum Degree give in general lower fill-in, therefore better approxi-
mation for a fixed amount of allowed fill-in; Benzi and Tůma prove the following
(see [16])

Theorem 3. Consider a matrix A arising from a five-point discretization of
an elliptic PDE on a two-dimensional regular k × k grid. Then, the number of
nonzeros in the inverse factor L−1 is O(k3) for Nested Dissection and O(k4)
for Reverse Cuthill-McKee orderings, respectively.

And yet the situation is not quite as bad as it sounds; in the same paper [16],
by using the main result in [28], the authors derive a bound for the entries of
the factors of the approximate inverses.

Theorem 4. Let A be SPD and m-banded, with maxi aii = 1; then the entries
zij, i < j in Z = L−T , are bounded by

|zij | ≤ Kλj−i (14)

for appropriate K and λ.

The actual definition of λ is related to the spectral condition number κ, and
is given by

λ = q2/m, q = q(κ) =

√
κ− 1√
κ+ 1

.

The most important feature entailed by Theorem 4 is by far the fact that for
important applications, even though the inverse matrix is full, its entries decay
away from the main diagonal. The value of λ determines how fast the entries
decay; this property becomes computationally interesting when λ is not too
close to one. Moreover, K also depends on the condition number and on the
bandwidth of A and can be written explicitly in terms of these quantities; see
[16].

As a consequence, using a bandwidth-reducing ordering appears to be ben-
eficial. Benzi and Tůma as well as Bridson and Tang [21] conclude that for
the preconditioners based on biconjugation, fill-reducing orderings give better
results in general.

5. Software Issues and Computing Platforms

The study of the multiple variants of approximate inverse preconditioners
discussed here required the development of a substantial amount of software. A
complete and detailed discussion of the software development issues involved is
outside the scope of this work.
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The Krylov subspace iterative methods and the basic kernels for comput-
ing matrix-vector products are those of the Parallel Sparse BLAS (PSBLAS)
library [32]. This software library has the ultimate goal of enabling the imple-
mentation of Krylov methods on distributed memory computing architectures
employing the MPI programming interface. To achieve this, it was necessary
to develop a number of support tools for handling sparse matrices in serial
mode, both in terms of support operations and of computational kernels. The
library has been subject to a major redesign employing object-oriented tech-
niques, described in [31] and resulting in its version 3.0. The main objective
for the redesign was to make it easy for developers to evolve the library over
time by adding plugins for new computing architectures without the need to
change the main library framework. This capability has been exploited to im-
plement in a convenient way a plugin to use the computing capability of graphics
processing units, commonly known as GPUs (see also section 5.1). The specific
techniques employed involve the usage of the STATE and PROTOTYPE design
patterns [34], which may be described in a nutshell as follows:

1. The STATE pattern consists of the encapsulation of an object in a two-
layered hierarchy, so that the inner object can be changed dynamically to
adapt to the various usage needs of the application.

2. The PROTOTYPE pattern tackles a problem for a library developer: the
library code must be able to instantiate at run time objects whose type is
not known (exactly) at the time of writing and compiling. In particular,
the object the library needs to instantiate is of a type that extends a knwon
type, but was developed after the main library was written and compiled,
e.g. to adapt to a new computing architecture. The solution is to make the
library code use a sample object provided by the application code. In our
case the application code will declare an object of a specific GPU-enabled
type, and will pass this object to the library which will then instantiate a
copy of it to run the necessary computations (e.g matrix-vector products)
on the GPU device.

A full discussion of these techniques has been detailed in [5, 22].
Note that since the approximate inverse preconditioners work by applying

sparse matrix-vector products, the necessary kernels and programming tech-
niques are a by-product of the effort to implement Krylov methods, which also
rely on the sparse matrix-vector product in their formulation. Since the matrix-
vector product per se has already been discussed in other works, in this article
we have mostly discussed the programming techniques that have been applied
to the construction of the preconditioner matrices.

The preconditioner themselves have been implemented in the context of
the MLD2P4 framework [24]. This is a package of multilevel preconditioners
that can be plugged into the PSBLAS library in an easy and transparent way.
In particular we refer to the current development version 2, since this uses
PSBLAS 3.0.

As already mentioned, MLD2P4 version 2 is a framework supporting alge-
braic multilevel preconditioners. It supports a hierarchy of objects including “re-
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striction” and “prolongation” operators that move between levels, “smoothers”
that are applied to a given level using “solvers” applied to a given subdomain,
according to the lexicon typical of algebraic multigrid. From a software point of
view, approximate inverses are simply new variants of the inner “solver” objects
that can be plugged into the general framework, using the same design patterns
we discussed above.

For the purposes of this article we are only discussing the behavior of ap-
proximate inverses as preconditioners. We do not exploit the full generality
of the multilevel preconditioner structure. Nevertheless, by construction the
framework supports the usage of approximate inverses in more sophisticated
ways. Some preliminary results are presented in [18].

We are testing some ideas to implement the construction phase of the un-
derlying preconditioners on the GPU itself. At the present stage, it seems that
the left-looking variant of biconjugation is less suitable than the right-looking to
expoit the GPU computing features. Since we are still at a preliminary stage,
we will only present here results related to building the preconditioners on the
CPU. Note however that there is a positive aspect in that we have not tied down
the approximate inverses to the GPU usage: they are two different plugins that
can be used together or separately, thereby demonstrating the flexibility of the
underlying software structure, and providing the ability to run the experiments
on more conventional architectures.

5.1. Approximate Inverses and Computing Devices: GPUs

In the context of the present article the main interest of GPUs is not only
in their performance characteristics, but also in the algorithmic implications of
their programming model. The parallelization needed to exploit the capabilities
of these machines can be quite influential in the formulation of the models and
algorithms for solving interesting application problems. The characteristics of
the GPUs have been discussed in a number of papers, among them there are [6,
23, 22, 4] which are relevant to sparse matrix computations. See also [30, 35]
and [43], where the latest focus on the construction phase of the preconditioners.

In particular, it should be stressed that the usage of GPUs has the effect
of making approximate inverses more attractive with respect to the standard
incomplete factorizations. In fact, there exist efficient implementations of a
sparse matrix by vector product, whereas it is difficult to have an efficient di-
rect solver or iterative method with incomplete factorization preconditioner for
sparse linear system on the GPU. As an example, the conjugate gradient pre-
conditioned with incomplete LU available in CUDA CuSPARSE since version
4.0 [38] achieves at best a speedup factor of about 2, whereas approximate
inverses give much better results as we will detail in section 6.

Finally, we note that the NVIDIA GPUs do not have virtual memory: mem-
ory occupation must be managed by the application. This makes it desirable to
have fine-tuned control over the size of the preconditioning operators.
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6. Numerical Tests

We now report on some experiments on both synthetic and real-world appli-
cations. Even though the PSBLAS and MLD2P4 software frameworks discussed
in section 5 are based on MPI, for the current set of experiments we report runs
with just one MPI process. Further testing in the context of multilevel pre-
conditioners with multiple MPI processes is the subject of related work, to be
fully explored in the future. The computing platform used is based on an Intel
Xeon E5-2670 running at 2.6 GHz, coupled with an NVIDIA K20M graphics
accelerator. The GPU kernels have been compiled with CUDA 6.5. All other
software components have been built with the GNU compilers (C and Fortran)
version 4.8.3. Symmetric linear systems are solved with the CG method, wheras
non symmetric systems are solved with BiCGSTAB [41]; with a stopping crite-
rion based on the reduction of the 2-norm of the (left preconditioned) relative
residual, and a stopping tolerance of 10−7.

Table 2 shows tests run completely on the CPU. All other measurements refer
to a preconditioner build phase run on the CPU and a linear system solution
run on the GPU.

6.1. Convection-diffusion in 2D and 3D

We start with some tests based on the linear convection-diffusion PDE model
problem

−ν∇ · (a(x)∇u) + q(x) · ∇u = 0, x ∈ Ω, (15)

u = g, x ∈ ∂Ω, (16)

where Ω is [0, 1]d, d is the dimension, here d = 2 or d = 3. We use stan-
dard second order centered finite difference discretization with constant step
size. Note that bounds for the spectrum of the eigenvalues of the underlying
system of linear equations, i.e., of the discretized model, are known. More-
over, for some preconditioners, bounds for the preconditioned spectrum and the
condition number of the related matrix of the eigenvectors are known under
certain simplifying assumptions, see, e.g., [19]. Different choices for the func-
tion a(x) are possible. We have run tests with a(x) = 1, x = (x1, x2, ...)

T , and
a(x) = exp(−

∑
i xi), the second case being harder than the first case for the

linear solvers because the considered domain includes the origin. The parame-
ter ν controls the relative strength of the diffusion and convection parts of the
equations, and indirectly the conditioning of the resulting linear system. The
tests have been run with ν = 1/80. We have built both 2D and 3D variants of
this equation. The names of the test cases contain the number of steps in each
coordinate direction for unit square and cube, respectively. The resulting linear
system sizes are detailed in table 1. In all tables the † symbol marks those cases
where convergence was not reached within the allowed number of iterations.

For the first set of tests we have used the natural numbering scheme, i.e.
no reorderings have been applied. The baseline performance for our analysis
is shown in table 2. Here we show measurements gathered running both the
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2D 3D
Matrix size Matrix size
pde0300 90000 pde020 8000
pde0400 160000 pde030 27000
pde0500 250000 pde040 64000
pde0600 360000 pde050 125000
pde0700 490000 pde060 216000
pde0800 640000 pde070 343000
pde0900 810000 pde080 512000
pde1000 1000000 pde090 729000
pde1100 1210000 pde100 1000000

Table 1: Linear system sizes - PDE test cases

Matrix NOPREC ILU(0) INV K(0, 0)
it tslv tpr it tslv tpr it tslv

pde0300 728 0.69 0.1 133 0.31 0.1 375 0.75
pde0400 960 1.68 0.2 175 0.75 0.2 495 1.88
pde0500 1189 3.52 0.2 216 1.46 0.4 614 3.93
pde0600 1417 7.04 0.3 256 2.62 0.5 731 6.91
pde0700 1643 10.30 0.4 296 3.95 0.7 847 10.75
pde0800 1867 16.00 0.5 336 5.92 0.9 962 15.66
pde0900 † 2000 — 0.6 376 8.36 1.2 1075 21.91
pde1000 † 2000 — 0.7 416 11.54 1.5 1189 29.53
pde1100 † 2000 — 0.9 455 15.05 1.8 1301 39.38

Table 2: Baseline CPU performance data, a(x) = 1, CG
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Matrix ILU(0) ILU(0) ILU(0)
CPU GPU CSR GPU HYB

tpr it tslv it tslv it tslv
pde0300 0.097 133 0.31 133 2.14 133 0.31
pde0400 0.152 175 0.75 175 3.94 175 0.74
pde0500 0.216 216 1.46 216 6.25 216 1.46
pde0600 0.292 256 2.62 256 9.17 256 2.59
pde0700 0.379 296 3.95 296 12.56 296 3.94
pde0800 0.483 336 5.92 336 16.86 336 6.02
pde0900 0.599 376 8.36 376 21.63 376 8.31
pde1000 0.722 416 11.54 416 27.27 416 11.36
pde1100 0.862 455 15.05 455 33.83 455 15.24

Table 3: Performance data for ILU(0) on GPU, a(x) = 1, CG

preconditioner setup and the Krylov solver on the CPU; they refer to the 2D
equation with no preconditioning, ILU(0) and INV K(0, 0). From this compar-
ison it looks like INV K(0, 0) is not a very attractive option. It is substantially
underperforming when compared with ILU(0). Indeed, when the method con-
verges without a preconditioner within the allowed iterations, it is faster even
if the iteration count is much worse. This is far from surprising, since the
INV K(0, 0) preconditioner starts from ILU(0) and then it computes its in-
verse in an approximated manner, therefore the increase in the amount of work
per iteration is not compensated by a sufficient reduction in the iteration count.

If we perform the same tests on the GPU, the results are quite different. The
ILU preconditioners rely on the solution of sparse triangular linear systems; the
triangular structure enforces data dependencies, and the sparsity of the matrix
reduces the amount of floating-point operations. The GPU architecture employs
a large number of relatively slow arithmetic units; to use them effectively, we
need to feed them with a significant amount of independent computations, and
this is extremely difficult in the context of a sparse triangular system solution.

In table 3 we show some performance data obtained with an implementation
of ILU(0) based on the data storage formats CSR and HYB available in the
NVIDIA CUSPARSE library version 6.5. The first set of data in the second
third and fourth columns is just a repetition of the CPU data from the previous
table. The second set of measurements in the fifth and sixth columns uses the
CSR format: we actually get a slowdown, even a significant one. When using
HYB the GPU timings are essentially the same as the CPU times, despite the
fact that the matrix-vector product in HYB format is significantly faster than
the CPU one. From the NVIDIA documentation we surmise that the library
is applying some sort of level numbering to the triangular matrices, but the
amount of parallelism that can thus be extracted is apparently too low in many
practical cases to make good use of the GPU capabilities. Slightly better results
can be obtained in the case of 3D problems, but we have never seen a speedup
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Matrix NOPREC INV K(0, 0) INV T (0, .1, 4.01)
it tslv tpr it tslv tpr it tslv

pde0300 728 0.69 0.1 375 0.58 0.6 286 0.47
pde0400 960 0.94 0.2 495 0.83 1.0 377 0.71
pde0500 1189 1.20 0.4 614 1.11 1.5 468 1.09
pde0600 1417 1.51 0.5 731 1.45 2.2 556 1.31
pde0700 1643 2.00 0.7 847 1.93 3.0 646 1.85
pde0800 1867 2.59 0.9 962 2.50 3.9 732 2.25
pde0900 † 2000 — 1.2 1075 3.23 4.9 820 2.78
pde1000 † 2000 — 1.5 1189 4.20 6.0 906 3.59
pde1100 † 2000 — 1.8 1301 5.18 7.5 994 4.63

Table 4: Basic GPU performance data, 2D test case, a(x) = 1, CG.

Matrix NOPREC INV K(0, 0) INV K(0, 1)
it tslv tpr it tslv tpr it tslv

pde0300 1446 0.43 0.1 408 0.64 0.2 310 0.50
pde0400 1926 0.89 0.2 538 0.90 0.3 410 0.71
pde0500 † 2000 - 0.4 667 1.20 0.5 509 0.98
pde0600 † 2000 - 0.5 795 1.57 0.8 606 1.40
pde0700 † 2000 - 0.7 922 2.09 1.0 703 1.79
pde0800 † 2000 - 0.9 1048 2.71 1.3 799 2.41
pde0900 † 2000 - 1.2 1174 3.50 1.7 895 3.03
pde1000 † 2000 - 1.4 1299 4.49 2.1 991 3.93
pde1100 † 2000 - 1.8 1424 5.76 2.5 1085 4.96

Table 5: Basic GPU performance data, 2D test case, a(x) = exp(−(x1 + x2)), CG.

over 1.5, and Naumov reports in [38] a best speedup of about 2.
In table 4 we see the results from the application of approximate inverses:

• The preconditioned iterations always converge within the allowed number
of iterations;

• The solve times are as good as or better for the preconditioned iterations
with respect to the unpreconditioned ones;

• The solve times for INV K and INV T are very similar (with INVT bet-
ter), but the time for building the preconditioner are quite different;

• The speedup of the GPU over CPU on iterations preconditioned with the
approximate inverse is quite substantial; enough, indeed, to overcome the
advantage of ILU(0) in the number of iterations.

A similar situation is shown in Table 5 for the harder test case with

a(x) = exp(−(x1 + x2));
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Matrix INV T (0, .1, 4, .01) LLK(5, 0.01)
tpr it tslv spd tpr it tslv spd

pde0300 0.6 286 0.47 1.6 0.3 289 0.46 1.6
pde0400 1.0 377 0.71 2.6 0.5 380 0.69 2.6
pde0500 1.5 468 1.09 3.5 0.8 471 0.90 4.1
pde0600 2.2 556 1.31 4.8 1.2 561 1.20 5.1
pde0700 3.0 646 1.85 5.5 1.6 650 1.64 5.8
pde0800 3.9 732 2.25 6.6 2.1 739 2.10 6.7
pde0900 4.9 820 2.78 7.6 2.7 826 2.75 7.2
pde1000 6.0 906 3.59 8.0 3.3 913 3.51 7.7
pde1100 7.5 994 4.63 8.2 4.0 996 4.47 8.0

Table 6: GPU performance: INV T vs. LLK on 2D test case, a(x) = 1, CG

Matrix INV K(0, 1) LLK(10, 0.05)
tpr it tslv spd tpr it tslv spd

pde0300 0.2 310 0.50 1.6 0.4 242 0.42 1.9
pde0400 0.3 410 0.71 2.9 0.7 321 0.62 3.3
pde0500 0.5 509 0.98 4.2 1.1 397 0.91 5.3
pde0600 0.8 606 1.40 5.0 1.6 472 1.33 5.1
pde0700 1.0 703 1.79 6.0 2.2 549 1.62 7.0
pde0800 1.3 799 2.41 6.6 2.8 623 2.17 8.1
pde0900 1.7 895 3.03 7.5 4.1 698 2.83 7.9
pde1000 2.1 991 3.93 7.8 4.3 772 3.58 9.5
pde1100 2.5 1085 4.96 8.3 5.4 845 4.63 9.9

Table 7: GPU performance: INV K vs. LLK on 2D test case, a(x) = exp(−(x1 + x2)), CG.

here the unpreconditioned iterations do not converge at all, and we need to
increase β to reach convergence. Note that the reduction in the number of iter-
ations when going from INV K(0, 0) to INV K(0, 1) does not translate into the
same reduction in runtime, because the memory footprint of the preconditioner
increases significantly.

In tables 6 and 7 we have a comparison with the symmetric left-looking LLK
variant. For the solution phase it is the fastest option; for the setup phase it
is faster than INV T , although slower than INV K, and it works consistently
well, as opposed to the occasional problems of INV K. The behavior in terms
of number of iterations to convergence is consistent with the theoretical expec-
tations, i.e., they are roughly proportional to n. We also list speedups with
respect to running the same algorithms on the CPU, which for large enough
matrices are about an order of magnitude. We also have a non-trivial speedup
of about 3.4 when comparing against ILU(0) on CPU, despite the fact that the
number of iterations is larger for approximate inverses. We stress that ILU(0)
would provide no speedup at all with a GPU implementation.
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Figure 1: Parallel performance data, 2D test case, a(x) = 1, CG.

Note that INV K(N1, N2) has a rather significant disadvantage with respect
to the other alternatives, in that the control over the number of nonzeros in the
preconditioner is exercised through the fill levels, and therefore it is at a much
coarser grain.

6.2. Multi-core and multi-GPU performance

The programming framework of PSBLAS/MLD2P4 is fully parallel; there-
fore we may choose to run our application by using multiple processes. Here we
show the results of two tests, the basic 2D and 3D convection-diffusion problem,
preconditioned with one sweep of Block Jacobi using INVT as the local solver
on both CPU and GPU. The tests were run on 1 or 2 GPUS, and on 1 to 16
CPUs, within one shared-memory node. From the graphs in fig. 1 and 2 we can
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Figure 2: Parallel performance data, 3D test case, a(x) = 1, CG.
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Matrix size NOPREC INV K(0, 1) INV T (0, .01, 1, .01)
it tslv tpr it tslv tpr it tslv

kivap1 86304 95 0.320 2.040 21 0.117 1.230 24 0.108
kivap2 76504 204 0.430 1.760 49 0.241 1.240 64 0.251
kivap3 59354 257 0.686 1.340 56 0.264 1.000 84 0.334
kivap4 42204 636 1.259 0.940 138 0.592 0.670 135 0.343
kivap5 25054 † 1000 1.955 0.540 † 1000 2.218 0.310 † 1000 1.930
kivap6 42204 856 2.025 0.900 250 0.735 0.610 214 0.534
kivap7 56904 257 0.828 1.260 55 0.241 0.980 74 0.295
kivap8 76504 197 0.604 1.700 49 0.254 1.240 62 0.268
kivap9 86304 203 0.675 1.950 46 0.205 1.320 65 0.287

Table 8: GPU performance: engine design application.

see that for these problems even a single GPU is capable of performing at more
than twice the speed of 16 cores acting together, and at sufficiently large sizes
we also have a good speedup from using two GPUs to solve the linear system;
the solution times for the largest 2D cases are about 100s for the 16-cores, 48s
for single GPU and 23 for dual GPUs. This behaviour is consistent the fact that
the sparse matrix-vector product is a memory-bound kernel, therefore its perfor-
mance is determined by the available memory bandwidth. On our experimental
platform the CPU cores are divided in two 8-core banks, each having a peak
bandwidth of 51 GB/s, whereas each K20 GPU has a peak memory bandwidth
of 208 GB/s. One thing to notice is that there is a break-even point between the
solution times with one and two GPUs, and this is approximately located at a
number of equations of 106; all these performance data are consistent with the
behaviour in the image segmentation application examined in [25]. At (very)
small sizes the multi-core versions exhibit spikes in the speedup graphs. These
are due to the fact that the smallest matrices are small enough to fit into the
combined cache memories of the 8/16 cores.

A more detailed analysis of the behaviour of the approximate inverse pre-
conditioners in a parallel context would require looking at the interaction with
multilevel aggregation, and the use of heterogeneous local solvers (factorization
and approximate inverses) on CPU cores and GPUs, as easily enabled by our
software framework. Such a complete analysis is beyond the scope of this arti-
cle; some preliminary data appeared in [18], and a more thorough investigation
taking into account recent hardware developments is the subject of ongoing
work.

6.3. Engine design application

This test set was extracted from an engine simulation application [33, 7].
The latter solves the turbulent Navier-Stokes equations with ALE finite vol-
ume discretization, coupled with the k-ε turbulence model and solved with the
SIMPLE method. In particular, the test matrices are those for the pressure-
correction equation, which is the most demanding linear system to be solved in
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Matrix size LLK(10, 0.01) INV T (1, .01, 4, .01)
tpr it tslv spd tpr it tslv spd

kivap1 86304 1.73 24 0.083 2.8 1.31 20 0.091 2.4
kivap2 76504 1.66 62 0.189 2.7 1.33 54 0.237 2.3
kivap3 59354 1.28 67 0.261 1.6 1.07 73 0.270 2.1
kivap4 42204 0.80 101 0.242 1.8 0.71 103 0.267 2.1
kivap5 25054 0.38 41 0.077 1.2 0.34 53 0.105 1.4
kivap6 42204 0.80 101 0.384 1.1 0.67 109 0.281 2.0
kivap7 56904 1.23 67 0.234 1.7 1.03 64 0.172 2.8
kivap8 76504 1.65 54 0.228 1.9 1.33 52 0.229 2.3
kivap9 86304 1.76 54 0.233 2.2 1.41 44 0.184 2.7

Table 9: GPU performance: engine design application, best case.

this application. The coefficient matrices are non-symmetric, but with a sym-
metric sparsity pattern, and they have no more than 19 nonzero entries per
row. They are obtained from the simulation of the cycle of a Diesel engine, at
various positions of the piston inside the cylinder; the extreme cases (kivap1
and kivap9) were extracted with the piston at the bottom center, while kivap5
is close to the top center.

In table 8 we can see the behavior of the simplest preconditioners; near
the top center the linear systems are significantly harder and both INV K and
INV T methods suffer. From table 9 we can extract the following considerations:

• With the appropriate parameters INV T can be quite competitive, some-
times even better than LLK;

• Finding the correct set of parameters for INV T is a non-trivial task;

• LLK is easier to tune; indeed, the fill factor of 10 is easy to derive as
being roughly half of the average number of nonzeros in the test matrices;

• The speedups for the GPU version over the CPU are not too high, but they
are in line with the results from the model test cases given the relatively
small size of the matrices involved.

We should also note that in our experience, keeping with similar performance
in terms of iterations, the number of nonzeros for the LLK preconditioner is
often less than the corresponding number for INV T .

6.4. University of Florida Collection

To complete our experiments we have picked a subset of the matrices in
the University of Florida Sparse Matrix Collection [26]. To this subset we have
added the engine design matrices of the previous subsection, and five matrices
from simple elliptic problems:

• The cases pde060, pde080 and pde100 are from the three-dimensional
version of the convection-diffusion equation used previously;
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Matrix M NNZ Matrix M NNZ

A 500k 531612 2629578 thermal2 1228045 8580313
A 1M 995100 4892218 thermomech TC 102158 711558
ML Laplace 377002 27689972 nlpkkt80 1062400 28704672
bcsstk16 4884 290378 parabolic fem 525825 3674625
raefsky2 3242 294276 pde060 216000 1490400
lung2 109460 492564 pde080 512000 3545600
FEM 3D thermal2 147900 3489300 pde100 1000000 6940000
poisson3Db 85623 2374949

Table 10: UFL Sparse Matrix Collection Linear system sizes

INV T (1, .01, 2, .01)
Matrix NONE GPS AMD

tpr it tslv tpr it tslv tpr it tslv

A 500k 4.32 69 0.482 4.87 85 0.435 5.05 81 0.666
A 1M 9.31 66 0.537 9.12 66 0.512 9.28 78 1.073
ML Laplace 32.50 † 11.537 — — — — — —
bcsstk16 0.31 34 0.065 0.31 37 0.072 0.30 38 0.074
raefsky2 0.27 53 0.099 0.28 53 0.100 0.28 53 0.121
lung2 0.68 † 3.839 — — — 0.50 † 3.133
FEM 3D thermal2 2.48 7 0.046 2.69 6 0.041 3.08 6 0.044
poisson3Db 3.14 75 0.327 2.51 72 0.362 2.89 60 0.336
thermal2 11.48 994 12.600 14.92 † 10.994 12.21 † 19.158
thermomech TC 0.89 4 0.118 0.73 4 0.117 0.85 4 0.118
nlpkkt80 26.79 † 14.462 — — — — — —
parabolic fem 3.72 593 3.580 5.88 673 3.400 5.17 716 8.175
pde060 1.70 48 0.167 1.63 49 0.200 2.31 47 0.252
pde080 3.86 62 0.305 3.85 65 0.389 5.86 56 0.474
pde100 10.29 87 0.672 11.02 72 0.635 11.72 55 0.889

Table 11: Effect of renumbering on INV T , UFL collection

• The cases A-500k and A-1M arise from a finite volume tetrahedral mesh
discretization of the thermal diffusion in a solid (copper) bar.

In table 10 we report the size of the linear systems.
Renumbering, or reordering, and its effect on preconditioners has been inves-

tigated by many authors. Some works relevant to this paper appeared previously
in [13, 15, 16]. In these papers it is argued that a fill-reducing ordering is in
general to be preferred. We have thus tested this with the AMD minimum de-
gree algorithm [3, 2] compared with the natural ordering and with the Gibbs,
Poole and Stockmeyer variant (GPS in the tables) of reverse Cuthill-McKee
numbering [37, 36].

As it turns out, AMD is practically never beneficial as detailed in tables 11
and 12. The effect of GPS is on average less than expected in our tests. In our
opinion, this could be due to the differences in the memory hierarchy inside the
GPU device with respect to normal CPU hierarchies.

Finally, we emphasize that the different effect of reorderings (such as GPS)
for the (limited) tests we performed makes it difficult to give general statements
on the interplay of sparse matrix orderings and preconditioning.



D. BERTACCINI, AND S. FILIPPONE 31

LLK(8, .01)
Matrix NONE GPS AMD

tpr it tslv tpr it tslv tpr it tslv

A 500k 6.96 71 0.482 6.33 89 0.511 10.47 93 1.081
A 1M 11.37 60 0.542 11.22 60 0.549 20.25 77 1.232
ML Laplace 28.33 † 9.320 0.00 0 0.000 37.07 † 9.189
bcsstk16 0.32 78 0.139 0.33 71 0.126 0.38 74 0.131
raefsky2 0.39 117 0.202 0.39 117 0.200 0.51 119 0.204
lung2 0.50 70 0.226 — — — 0.71 24 0.257
FEM 3D thermal2 2.91 11 0.060 2.85 10 0.055 3.81 12 0.048
poisson3Db 11.63 143 0.484 2.95 136 0.620 7.17 † 3.693
thermal2 12.65 † 12.341 11.63 † 11.425 16.85 † 18.621
thermomech TC 1.05 4 0.021 0.83 3 0.012 1.11 4 0.020
nlpkkt80 25.63 † 12.167 — — — 275.74 † 83.389
parabolic fem 4.79 559 3.362 3.49 603 3.158 8.91 683 7.837
pde060 2.00 45 0.173 2.07 45 0.194 4.06 46 0.258
pde080 4.68 56 0.293 4.97 56 0.345 10.50 56 0.517
pde100 9.06 77 0.653 9.32 62 0.570 20.59 49 0.850

Table 12: Effect of renumbering on LLK, UFL collection

7. Conclusions

We have revisited some aspects of preconditioners based on approximations
of the inverse of sparse matrices. We reviewed some algorithms based on the
inversion and sparsification of incomplete factors and on inexact biconjugation.
Some new results on their computational construction costs show that the bi-
conjugation and the threshold-based sparse inversion have a setup cost that is
quite similar.

The observations in sec. 4 have been confirmed by the numerical experiments,
where we made use of the PSBLAS/MLD2P4 framework. Setup of the precon-
ditioners has been performed on a CPU platform, while the solution phase has
been carried out on an NVIDIA GPU accelerator. The AINV preconditioner
setup cost has been measured to be within a modest factor of an equivalent
INV T preconditioner, and sometimes even better.

Carrying out the solution phase on the GPU platform has been demonstrated
to be effective in terms of performance, making the approximate inverse precon-
ditioners appealing on such a platform, as opposed to the situation on conven-
tional CPUs where incomplete factorization preconditioners employing sparse
triangular systems are usually more effective. This is true even if approximate
inverses usually suffer a disadvantage in terms of number of iterations to con-
vergence. The speedups that can be obtained are in line with the expectations
from the evaluation of the computational kernels of sparse matrix-vector prod-
ucts. Very small test cases may not be amenable to an effective parallelization
on GPUs because of their architectural features. In particular, they need a very
large number of threads, each with its own workload, to achieve full exploitation
of the computational capabilities.

Further work will be needed for an implementation able to take advantages
of parallelism potentialities in INVT/INVK construction phase. In particular,
we would like to clarify issues such as the effects of renumbering, scaling strate-
gies, and estimation of preconditioner parameters. We also plan to embed the
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considered preconditioners in the updating framework proposed in [10], [8] and
as local solvers in parallel Schwarz and algebraic multigrid-type frameworks.
Finally, we plan to set up a package based on PSBLAS/MLD2P4 framework for
approximate inverse software freely available in the near future.
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