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Summary

If the variables assoclated with a linear resistance o
2—port are identified with the variables of special rela~
tivity theory, it is shown that a resisbtance 2-port trans-—
forms its port variables according to the Lorentz equations,
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If the linear 2~port represented in Fig. 1 is purely resistive, =
bilateral, and symmetrical then the port variables are related in

e, Port 1 _ Port 2 [

Fig, 1

any” one of the following three equations,




D

€4 Ty T2 1y

€g Ty =Ty 1o
IR e g

1y 811 ~821 €4

ig 821 =811 =)
i L [FP O NURE—

€4 a9 84g €g

B 8g1 11 1o
o il S woed e

If R represents the transformation (resistance) matrix in (1) then R
has determinant

det R = ri, - r%,

Equation (2) is the inverse of equation (1) and conversely. Thus,
the leading component of the transformation (conductance) matrix in
(2) can be written
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in which the non-physically realizable negative root is ignored.
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From (4) and (6)
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In the notation of attenuvator theory

resistance at either port with the other port open
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resistance at either port with the other port closed
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(6) and (7) can therefore be written

det R = ~ror, . (9)

Toq = fTolrg = rs) : : (10)

The transformation (transfer) matrix in (3) is easily expressed in terms
of the components of R, Thus,in view of (8), (9), and (10),
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If a load resistance r, is now connected across port 2, (3) becomes
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If ry is put equal to T, then (13) yields

r, = 12 ’ : (L)
or, substituting from (11)

r, = ,J=det R =A/rsro : (15)

Thus, if the load resistance at port 2 has the value given by (15) then
the resistance at port 1 will have the same value, The resistance r
as given by (15) is the well known 2-port characteristio resistance

of symmetrical attenuator theory. From (15),
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Tf (16) is substituted in (11) then equation (3) can be written
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Evidently, for a physically realizable 2—port,ro is the upper limit of L
We now venture to propose the following analogies:

e ~ x (linear distance)
i~ t  (time)

r ~ ¢ (speed of light)

r ~ v (linear velocity)
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and hence write, from (17),
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Equaticn (18) will be recognized as the space~time Lorentz transformation
of special relativity which transforms the description of events on the
Xp—axis of a Cartcsian co—ordinaste system S, to the x,-axis of a similar
co—ordinate system S, when S, is in motion relative to Sy with constant
velocity v.  The transformation is such that the equation

Xy = oty

describing the behaviour of a light ray along the x,~axis of the system S,
becomes

X2 = Gtg
in the system S,,

In the case of the 2—-port, port 2 and port 1 are analogous respectively
to the co-ordinate systems S, and S;. Equation (17) is a voltage=current
transformation which can be said +o transform the description of events at
port 2 to port 1 when the 2=port has "short-circuit" resistance ry e The
transformation is such that the equation

€4 = I‘oi1
describing the behaviour at port 1 when port 2 is terminated with a load
equal to the 2-port characteristic resistance becones

ez = r i,

at port 2,  Thus, the study of light propagation in special relativity
is analogous to the study of a resistance 2-port in iterative connexion,

It is evident that the Lorents transformation (18) reverts to the
Galilean transformation of classical physics if ¢ is allowed to have an
infinitely large value., Thus
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Analogously if ro is allowed to have an infinitely large Vaiue, the

transformation (17) reverts to

(24)
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Fig, 2

The theory of special relativity consists in the results obtained
from the application of the Lorents transformation to the study of physical
phenomena, = These results differ from those of classical physics which
is based on the Galilean transformation, = As an example, let us consider
the so—-called Einstein theorem of addition for velocities in one direction,

Suppose a particle in S, is moving along the x,—axis with speed wy =
dx,/dt,. According to (18), the speed of the particle as measured in S,
will be
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w, = %%i - dxp, + i?tz - Wo $WV' (25)
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If the particle is a photon then w, = ¢ and (25) reduces

w, = =X = g v (26)

which is consistent with the postulate of special relativity; that is,
the speed of light is the same in all inertial co—ordinate systems. If
- ¢ is made infinitely large, (25) reverts to the Galilean theorem of
addition for velocities, thus

Wy = Wg + V (27)
Consider now the case of the 2-port, The resistance at port 2 is
ro, = dey/di,. According to (17), the resistance at port 1 is
deg + r_di, Ty + 1
ry = %@L = = 2 = = (28)
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If port 2 is terminated with a load equal to the characteristic resistance
of the 2-port then r, = r and (28) reduces to

I‘2+I'G
e (29)

which is consistent with the theory of iteratively connected resistance L
2-ports, The resistance is the same at all pcrts, If r, is made
infinitely large, (28) reverts to

Ty = Tp b T (30)

corresponding to the 2-port of Fig, 2,

Similarly, other results obtainable from the Lorentz transformation
can be shown to have analogous interpretations in the case of the 2~port,
It is well known for instance, that the Lorentz transformation is equivalent
to a rotation of the co—grdinate system in Minkowski space, The M"angle
of rotation; is arctanh ?. The analogous quantity in the case of the 2~port

is arctanh ;g which is, of course, the 2-port attenuation constant.
c
We conclude, therefore, that the resistance 2—port transforms its port
variables according to the theory of special relativity,




