


BB

. NOTE NO, 11
- JULY, 195L

THE COLLEGE OF ABRONAUTICSI:

CRANFITELD
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SUMMARY AND CONCTUSIONS

The usual technique of longitudinal stebility analysis
is adbpteé.but particular attention is paid to those elements
that contribute to damping, The cases of two delta plan form
aircraft of 450 end. 60° sweep angle are considered and, in the
light of the best available data, their derivatives and the
coefficients of the stability quartics are obtained for a range
of Mach numbers including the transonic range, An analysis is
made of the damping of the short period oscillation in each case
and this is compared with a requirement to damp to half-amplitude
in less than oné cycle. The results are dependent on estimates
snd assumptions that cannot be regarded as completely relisble
in the ebsence of experimental data, and quasi—static derivatives
are used in cases where frequency effects should properly be
includedy but the broad lmplications of the results are probably
acceptables They suggest thet the damping of the tailless h5o
delta 1s inadequate at transonic speeds, whilst that of the
tailless 60° delta may be adequate for values of the relative
density parameter, By = U/%pég, less than about 200, Various
methods of improving the damping are discussed briefly, and some

simple examples of response are included.

e

%  Part of thesis submitted at the College of Aeronautics, June,1953.
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1 Introduction

‘The delta planform is regarded as particuiarly well
suited to flight at transonic speeds since the advantages of high
sweep, low aspect ratio, and thin section can all be exploited to
minimise the effects of compressibility on the aerodynamic
coefficients and derivatives.,  Structural a&vantages are also

claimed,

"~ The longitﬁdinal demping characteristics of* the tailless
delta at transonic and supersonic speeds are however suspect and:
.reqnire investigation. In this paper the usual approach to long-
itudinal stebility emalysis is adopted but particular attention
is paid to those elements that contribute to the demping, The
cases of two delta plan form aircraft of 450 end 60° sweep angle
are considered and, in the light of the best avallable data,
their derivatives and the coefficients of the stability quartics
are obtained for a range of Mach numbers including the transonic
range. An analysis is made of the damping of the short perio&
mode in each case, and this is compared with a requirement to
damp to half amplitude in less than one cycle, Some simple
response calculations given in the appendix illustrate the more
important conclusions, The analysis is approximate and, in
particular, quasi~steady values of the derivatives are used al-
though it is clear for thé cases considered that the frequency
ney be an important parameter in the transonic range of Mach
mmbers, Nevertheless the broad implications of the conclusions
are probebly valid and it 1s believed that the detailed results

of the analysis will have considerable intrinsic interest.

2, Notation

2¢1s Axes and veloclty components

x;z ' reétangular Cartesian right handed co-ordinates with
origin at the aircraft centre of gravity; x forward
along the axis of symmetry, 2z vertically downwards

X,Z forces along the =x,z axes, respectively (1b,)

M pitching moment (ft.1b.)

UyW increment of velocity in directions x,z2 respectively
(ft./sec.)

q anguler velocity sbout pitching axis (rad./secs)
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increment in angle of pitch .

sngle between aircraft flight path and horizontal (rad.)
undisturbed (steady) true airspeed (ft./sec.)

wing angle of attack

moment of inertia about pitching axis through centre
of gravity

Uy JX * &
R TV Horizontal Datum
, —— Flight Path
S, Adreraft Reference
2 lw ‘ ‘
y
WIND AXES
2+2+ Adrcraft geometry

wing area = b3 = fbo_(141) (££.2)
taper ratio = Ct/co

tip chord (ft,.)

root chord (ft,)

wing span (ft.)

standard mean chord (S.M.C,) = 2c (1+\) = -f: = 5
1=0/(1+\)
mean agrodynamic _chord (MeAsCq) = (\-’I SO S
§ 1 7\?
~k3 * 1 S 5 :
> (142)° |

distance of C,.Ge from apex (ft,)

distance of leading edge of M,A,Ce. from apex
(A=n)(1+2n)
o - (EYN

spanwise position of MeA.Ce and S.M,C. from aircraft
b ix2h _ So (4-M)(1+22
SEIENT 3 TTam A (1en)

sweep of leading edge
pos:.’clon of CeG,y on ¥ .A.C. in f‘ractlon of Mm.C.

Xo—x %5 4 A=2N2

= frtanf\:%— c

centre line

-

c g 2('1+7\+?\2)
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. % SN Ml
A | aspect ratio = w L cot:“g j 7\% 3 cotf\c/ f_n1+?\__§_
2.3 Fundemental notation
wing angle of attack (degrees or radians)
M control deflection (dsgrees or radians), a downward -

deflection is positive (2 positive control angle nomally
gives rise to a negative moment)

e downwash angle (radians)

g acceleration due to gravity (f’c/sec%)
% time (séconds) “

W aircraft weight (1b,wt.)

m aircraft mass.= W/g (Ib.nass)

M, Mach muzber = V/a

a speed of sound in_air (ft/secs)

p density of air (slug/fté )

o pitching moment/ (%pV2SE) ‘

Suffix t refers to a tail, Further notation will
be defined in the texts, It may be noted that the revisions
suggested by Bryent and Gates 20 to stability notation have been
adopted here with the o‘bJect of presenting an example of their
effect, Appehdix I summarises the resulting relation between

the derivatives as here defined and as defined in other sources.




3+ The linearised equations of motion for dynemic longitudinal
stability

The basic assumptions made ares

1., The equations as developed apply to small perturbations from
horizontal flight,

2, Aeroelastic distortion effects are considered negligible,

3, Cross-coupling derivatives between the lateral and longitudinal
modes are neglected, ' :

Le Wind axes are used..

5e Bince power-operated controls are most likely with the type
of aircraft considered only stick-fixed stebility is
considered,

6., The variations of density and speed of sound with height are
neglected, As shown in Ref, 18 these variations at
high Mach numbers can have importent effects on the
prugoid motion but the effects on the short period
motion are negligible, Since we are here primarily
concerned with the latter it is felt that the neglect
of these variations is Jjustified,

The dimensional equations of motion in the usual

notation as developed under the gbove assumptions are:q’ 2

- h'a - - - - — N,
md + mgb Xu XWW. qu wa}'\r =X z
n(#-v8) - A AR qu - Lyl =2 . )
s I EA S RN SR 2N ]
BO- Mu~Mw-Mg- & =M |
u W q il o \
q = b J

N < bd Y ¢ b
-@l;-xﬁ)—(xy+~— o {CLG.--—C’- do x.00
at LT B oat) Hooats ° ’/f
i S Y gn 1 Eg X ‘
A A W ae
-zu—{zw-z—%-—-——’l}-—-‘*-(\-ﬂ-»’l — =2 L eesl2
v :mw LB J 6.56‘“? ) VA J_‘f d_"c‘ o) {,; e )
2
-k nmuef{n +?ﬁ_dvm+’ad"6~fg_g§_ =
i, *%u ig W i w2 T T Rl T }
B . B at; lat®  'mak y

where the aerodynamic effects of deflected control angle to trim

may be included in the appropriate derivatives and coefficients.

Here, it should be noted that the unit of time < is
defined by
T = m/%pSV s
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so that t = t/v = tLpSV/m,
and the relative density is

LJ.,]. = TQ/%PSE s

where c¢- lis the aerodynamic mean chord,

Also

x, = Xu/:é-pSV, etc,,
Xy = Xf/%pﬁﬁ, etca,
vxq = Xq/%’pSVg,etc.,
m, o= Mu/%pSVE s€tca,
me = I\aﬁ/—;—pséz

m, = ;zzq/ﬁgpsvéz,

x_ =X fipV°s, stc.,
m, = WL/iBpVSE

the notation is otherwise stan_élard_.

Le The Stability Quartic

‘For the complementary function, we set X, =%, =o = 0,

and following traditional lines we assume solutions of the formj

. £ # #
. -
0 = k1e7\t, w o= kZeM-', 6 = 1«:3637&JE »
where k’i ’ k2, k3 and A are constants, which may be complex,

and where one of the ks may be taken to be unity,

Substitution of these expressions into equations (2)
and division by ext results in three equations for these four

constantse

o
(k-xu)k,l-(xw * o
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The compatibility condition is then

- - ol ce-=2a | = o0
ARy {gw + by L U §
- . oy .
| T {9 aY i
-z -jz,q-(-—-)?\h—(/ + 1N eo(L)
u TN S e
! a my m g
- o, -(-:'j-mw+'j-:¥[7\57x2—':'9'7\ h
B B B / B
Expension of this determinent gives a quartic in

of the form:

mEend il i+ E=o0 cevesssesass(5)
where ”
A = 1 -—=
, By
Za N\ g mh iz M, X,
B=z+(~ﬂ—15 P x o —’-—q-+‘:}-:l[- 3
w xp”l #’; \.u lB ‘\\pu{ ),-" lB w HJI
‘ m ™ /2 s X m
C = z (xu+-.-g'¥+f-ﬁ-1> (-:-g-mu—xu-.-g-
LANCIMEY AR VR gy
¢ Z k m m X ,
+g’__§1-+ 1} {/—ﬁx —il——‘"-_—jma
W B g Y
fXe I m,x‘sﬁ
+ 7 | — .ﬁ'—x_--:-\-"-r-ﬁj
RN T A SR
X m s /7 g 7 m
D = Zr_é‘i‘g"nu— u":'g'/)-l-(_‘i" }i"' CLP‘J‘ —E
R AN i) TR i/
+gv'_2_g‘+1\ (X U TE X m—u+zf;-mﬁ0 +El-g-x
Ly ,} g W } uiiy L igw
. B
E:-.ic {n_z zZm ) .
ig L Y"wu wWou

The roots of the longitudinal stebility quartic are, in
general, two complex pairs, one pair corresponding to a short
period oscillation end the other pair to an oscillation of consid-
erably longer period which are subsequently referred to as the
'short period' and 'long period' modes of motion of the aircraft,

Thus the roots may be written 7\1 ,2 = 3:‘1,2 + 1s, ,2

where the subscripts 1 and 2 refer to the short and long period

motion respectively.
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A first spproximation to the roots cen be taken asg -

v’,“ 2
- B -/ E_[B
Ty TR s =/ 53 A} ?
. A s (7)
__aifD_ ) _/B_1ip_mY
2 = 2{0 2 %"Jc‘ZiE“gj%

These roots can be improved until the following
expressions are satisfled to the desired number of decimal placess

2 2 2 2
(Jc',I + 31) (x5 + SZ) E .

The mode of oscillation corresponding to a particular
pair of roots is stable if the real part is negative, and unsteble
if the real part is positive. The necessary and sufficient
conditions for stability are that all coefficients of the quartic
end in eddition Routh's discriminant

R = BCD - AD - B°E

must be of the same sign.

" The period and damping of the two oscillatory modes are
given bys
Period = 27w/s1 5 seconds per cycle
E4

Time to half amplitude = (1oge21) /f1 > seconds,
2

Also of interest is the number of cycles to deamp to half emplitude

given by

Time to half amplltudc
period
51,2 (8)
~0.11032 ;j‘h— .
1,2

Cycles to half amplitude =

H

When the two pairs of roots are obtained, the deter-
mination of k1, k2, k3 corresponding to each root is made by
substituting back into any pair of equations (3)s The calculation
of the complete resgponse of an aircraft to any given disturbance
requires a particular integfal as well as the complementary
function of the stzbility equations (2). Verious well known
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techniques are available for this (see, for example Ref, 2),

5, Formulae for the Aerodynamic Derivatives

It is readily shown (see for example, Refs, 2 and 20)

that

X -

u

Com
W

and
D

i
1

i

P
c]

I

- 1,

aCD“a
(=)

3(qs/V)
—_—l
3(aS/V)
acm
3(ad/V)
aCp
3(&c/v)

aCL

a(8c/v)

oC
m

- ZCD

=

..O..l."".(9)

-n-oac»o-.ot(1o)

tt..o-ut.'ot(11)

n.ol'n!tonot(12)

‘."DOCO‘O.Q(13)

for a trimmed aircraft

o.ninconca.-(14)

‘QQ.."OOO*.(15)

.I’Q.l’ll.l‘(16)

.l..l'..'.'.(17)‘

oceoccll'!ti(18)
cecssecnssas(19)

oo;-aoonoaoa<20)

® No account is here taken of any contribution of the propulsive unit



- 12 -
6. Determination of the Aerodynamic Coefficients and Stiffness

Derivatives

For thesé derivatives the control contribufions have

been neglected,

Drag Coefficien’c

The drag is assumed to consist of the sum of two parts,
the drag at zero 1ift and that due to 1lift, and a further sub-

division is as follows,~-

'.I.’o*t:a]E Drag
| i
Drag at Zero Iift Drag due to Lift
K N
f 3 : . .
Form Drag Friction Drag
- (assumed independent
| of 1lift)
7
Viscous Form Zero L:Lf‘c Wave Drag
Drag (inviscid flow)

The formula for drag coefficient is then given bys |

CD = CD(O> + KCL 00&‘00000--;-0(.21)

where CD(o) is the zero 1ift drag coefficient

and. K = aCD/BCLZ . 090..00.0".(22)

For the examples chosen the wing is assumed to have a symmetrical
section comparable to the NoAeCels L4 digit series with a mean

weighted thickness-chord ratio of 6 per cent. That is, where

/2 2
o (s/e)eay
'L‘2 = 'f'}g/2 = 00,0036, .;.........;(23)
% c dy '
o]

It is further assumed that the maximum thickness is forward at
the root and back at the tip relative to a mean position of 0,3c
and also that the wing is tapered down in thickness chord ratio

from root to tipe

The drag at zero 1ift has been estimated from test

results of ground-launched rocket boosted raodels3 ol with




Reynolds mumber in the range 6.106 to 20.106. These values were
faired into an assumed subsonic drag coefficient of 0,01, An
assumed friction drag coefficient of 0,005 was subtracted from

the measured zero lift drag coefficients at supersonic speed to
give the inviscid flow wave drag CDW (the viscous form drag was
assumed to be negligible at supersonic speeds), and the results
fell closely sbout the curve shown plotted in Figure 1. For that
Pigure p = lach engle = sin” (14L) = cot™ ,;f‘fl‘;I?-’l and A is the
sweep angle. TFigure 2 shows the estimated values of CD(O) against

M, for the delta wings of 60° and L;.5° sweep angle considered,

1
The drag due to 1lift hes been estimated from experimental data

for incompressible flow from Ref, 5 and at supersonic speeds from
the theory of Robinson in Ref, 6. These results are interpolated

£ % i ds by multiplying the i ible fl 1
: {'3.8%? ili}é)gnip_f Yy mulitliplying e incanpressiole ow value
T T acL/aa)cmp. .

-

The resulting values are shown plotted in
Figure 3,

1ift coefficient

The balance of forces normal to the flight path in un-
disturbed motion is

tpvso, = W
or ' :
2 e 2
CLB‘/Ll = M/('é‘pa S) = Constant. ,.Qa'.......(ZL}‘)

The slope of the 1lift curve has been estimated from the
theory of Weissinger in Ref, 7 and modified slightly by experiments
as shown in Figure 4, Frequency effects are taken to be negligibly
small (see Ref. 8 Chapter 3.3). Figure 5 shows the estimated
variations of (aCL/ da) with IMach muber for the two delta plan
forms considered., These curves are based on evidence cbtained

from Refe 19

Aerodynamic centre

Evidence derived fram Ref, 7 and some experimental data

have been used as a basis for the curves shown in Fige 6.
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Slope of the pitching moment curve at constant Mach number

We have
R WEA )
: f*—m) = h—-H 5"""1-:6‘ + C ,} s e sheen 0(25)
E‘ E) '\{1 ( O) 5 g\ an,I D 1‘ L) XX ] I» . .

hence we can determine (aom/ aa)M directly from the aerodynamic
coefficients already discussed,

Slope of the drag curve at constant Mach nmumber

From equation (20),

a0\ Y
Therefore ( D,P = 2KC i-—-—I-” cevscesasens(26)
L O Qf ‘~ o a
M,l LI,}

and hence (acD/aa)M can also be derived from the relations

. 1
given zbove,

Rate of change of 1ift coefficient with Mach number at constant

incidence
Ir A = ( acL/aa)M1
then S, = ( acL/ da )M1 a = Aa
3C..Y C
Ll JA L oA
and kﬁﬁf = 'aT-\ila = 1‘" ° 'é'ﬁ1 Qv‘t‘klcﬁo"i0<27)
a

Rate of change of drag coefficient with Mach number at constant

inecidence

From equation (20)

{,acDx _30(0) . o (ﬂz Lo X
\aiL/ T T = 3L/ L 3
a 1 1" a 1
aC._ (o) 2xC, 2
3L, i o, T UL G, verer
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Rate of change of pitching moment coefficient with Mach number

at constant incidence

¢, = Cp (h-HO) |
ra a h“'H :'J 5
1" a ™ e
= = C 0 (h-H) i A (29)
= 1, a.M1 + o N aM1 soeeooRee DR 9

The szbove relations are sufficient to determine all the
stiffness derivatives, that is, x , 2 ,m , X , &
u® “uw? Tu? Tw Tw
derivatives will be found plotted in the following diagrams Fig. 7
(x.)s Fige 8 (z,), Pige 9 (-m ), Pigs 10 (~x,), Fige 11 (-z,),
Fig. 12 ("mu).,-

and mW. These

7. Determination of the Damping Derivatives

The force-angular velocity derivative xq and the force~

acceleration derivative Xe can both be safely neglected since

spproximately

Xq 'ﬂ“f (HO'-h) x'W iotoo.tqncnt(j@)
and aCD

Xﬁ. ’:»’:‘,5—‘5 (Ho-h) ocya.nuoqtug(B'l)

The remaining damping terms have been estimated using
the theory of Mlthopp-Gerner,’ Lehrian, 0*'' angler,'?s'3
"% Rivner end Yalve. stuto, 0?10
1

Garrick,

Garrick, ' in reviewing some research on flutter,
derived certain analytical results for unsteady incompressible
flow past wings of very small aspect ratio based on an extension
of the classical theory of ReTo Jones, This analysis is also
reviewed in Ref, 9. ’

According to this theory

1(x) = 2npVs § ;s + (ds/ax) (x—xosﬂf

®
where @ = 6+a, and & = 8+&wq + ®/V , x is measured in the
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direction of the free stream from a datum point, X, denotes the
position of the lateral axis ebout which the wing is oscillating,
s = s(x) denotes the semi-span of a transverse strip of the

wing, and 1(x) is the 1ift per unit length in the direction of

the free stream.

Substituting
s = s(x) = Ax/l
%2 5.2
Ux) = _(91:/8)pVQ5A‘ (2x" - ;;}co)
Then ;:25 , >
i -
C; =1 Lix)dx where S = Ac
LT s
W o ZP
Py X3
{ @ {2 1 Tot
= e\ 55T/
- c
Therefore
- L aCL _,...W_A{..Z._l .}.CQ‘}
2 3T T = /

in the notation of Mangler and Garner, and becomes
Zﬁ == e (ﬂA/A)(B—Zh) c.u;o;:ovua.(}z)

in the notation of this report,

Similarly the pitching moment coefficient ebout the

point X=X is

e Z(x) (x—-x )dx
c = X
jn}
n’o
(B | % 7]
5 11% i
_ g g SRR SV
V e ¢ b E*&E £ n,F
Therefore §~ 2]
2 = - ! - = + L i\" J ;
a(%/\,) L. C C r’(mi
or

m - 'Z-T"tA(h"Jl)z 100000006000(33)

g

in the present notation,” so that mﬁf has a minimum magnitude
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of zero for the reference axis at the trailing edge, i.ca

x =26 or h = 1.0,
(o]

Garner, on the basis of the same theory, shows that
for a teper ratio N\ = 1/7 '

oC X
...32— L :—TA(% JL::"O"\"
3(#e/v) S )
ac { x 'X“t
S eI R AL It 4
(/) - c c /o

where XO/S for the tapered delta wing is given by

(1=0) (1220)

(1+7\)2

L h{1 + 2+ x )
5 (’i+7\)

ot ION

\N‘l\)

0

]

(4/3)(h+%) for A

i

141900 + 0,560 for N\ = 1/74

i

1/7,
- A (0.728 - 0.1#4.6}1) uol’acc..cn.(3£‘-)

Hence, for M

Y

i

in the notation of this report, It will be seen that the right
hand side of equation (34) is very similer to that of (32)
indicating that the effect of taper' is roughly the same as that
of a shift of pitchiﬁg axils,

Similarly for N = 1/7

mﬁ = =~ Ok ’)'LA(h—'I)Z - | ' ontoton.on'n(BB)

in the present notation.

This theory (Fig. 13) shows poor agreement with the
theory of Multhopp-Garner or Lehrian even for an aspect ratio
as low as 0,5 (see Figs. 14 and 15).

Iehrian uses the modified vortex lattice method due to
W.P, Jones. Her calculations show good agreement in incompresse
ible flow with the Multhopp-Garner method for the practical
CuG, range of O.h-ﬁ'xo/bo < 0.6, The Multhopp-Gerner method
extends Multhopp's subsonic 1lifting surface theory for steady
flow to harmonic pitching oscillations of low frequency. The



] B
local 1ift and pitching moments at a number of chordwise sections
are determined from a set of linear equations satisfying the
downwash conditions at two points of each section., By neglectlng
terms of second order in frequency (the theory holds for
u)/(‘l-l\/?) << 1, ‘and is therefore invalid near I, = 140), the
oscillatory problem is related to a corresponding steady one with

changed boundary conditions,

The theory provides what appears to be a relisble
prediction of the effects of compress:.blllty up to a Mech number
of sbout 0.9 and indicates large increases in deamping in pitch
within this range for low aspect ratios, It leads to equations

of the form, for M’l = 03

2. ; aCL . ; 1

‘3“ Zﬁ = - W = - ?.CLZ + CL5 - (XO/E)CLT;‘,
3G - -

Se malem ol | . [ 2+ 1}

9 5 =tz a(éﬁé/v) T2 ’}"Cm2 * Cn13 + (Xo/a) gw Oy * CLZ + CLJ (Xo/a) CL'lj
oC

2 i L __af

3 Zq = 2 a(qa/v) = z ECI'Q (X /-) CL’I"’

. Y AN /6)? ©

9 mq =tz 3(a5/7) - 2‘ m2 T %o ml m2 s/C L15' ?

where Cm is measured sbout the pitching axis at X s and CL’I s

Crps Crzs Cpys Cppe ©

of the delta planfom.

'3 are coefficients depending on the geometry

Similarly, for compressible flow,

B O |

‘ i o |
2y = %3‘?(16)1 +(2,6’2-1)IL2 L;fﬁ5-\x/-)lm/ﬁ

Lo,

; = A - 1

-%,.zq ==z Lo (XO/E)IL’I ¥ 8

9 q T2 P me o I 12 o T4 ‘3:’ K4
- a2 ] .
where £ = M M12 s and where IL1, Ih s L3 R IL’ 12 Im2’ ImB’Im

are coefficients depending on the equivalent wing in mcompressi‘ble
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flow (i.e. one with span reduced in the ratio B 1)

The theories of lMangler ,12 Ribner and I\-Ie.ai!:ves’cuto15 are

identiceland limited to frequencies where /! (M;:: ~1)€<<1  for
subsonic leading edges and supersconic Mach mmbers. = In the

present notation they lead to the simple relations

2y = - f% (3H-2h - 1) 2 ceveresenena(36)
v oo -,

z_ = - mA/(LE) |

m, = z(-h)

m, == % (2h2-3hH + -18-5- H+ %) my

me =z, (%;h) my

where H = EG

E = complete ellipé}o integral of. second kind with
A/ 2

modulus k = |- (1 - ksin 2,92 ax

I
k"= 1 = cotzu cotZA

i 1
¢ =K ’ ; (2 2 E + (1-k° )P:

F ='camplete e111pt1; integral of the first kind with
T 2 q
modulus k = | (1-k"sin®x) ™2 ax
:‘.g o]

H and 1/E as functions of u cot#”  are shown in Fig.18.
The results indicate that the 2;50 delta has negative

damping for the specified practical CoGe range of O.4 <x /‘3 0.6
at —'\]I = 1 2.

Ribner in Ref. 16, uses the assumptions of slender wing
theorys The resulting stebility derivatives within these assump-

tions apply at both subsonic and supersonic. speeds,
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The theory leads to the following formulae

iy

7y = A/l | 2y = - (ma/) (3-2h)

2, =" (=a/2)(1=h) ‘

o . 2 (l_h) 'thiocu(B?)
my = z, (5/8-h) ny = - (7a/2) (1)

my = - (ma/4) (2h%=3h + 11/8)

We may note that, not unexpectedly, the theories of
Mangler, Ribner and Malvestuto reduce to the above simple
relations when we set H=1E =1, l.c. when M1 =140, and are
identical with the results of the Low Aspect Ratio theory of
Gerrick, This theory, in effect, gives the slope of the s
za curves for A -+ 0, as shown in Figs. 14 to 17, but as can
be gathered from those figures the theory has 1ittle rellebility

for any but very small values of aspect ratios

Mangler has in Ref. 13 developed a theory restricted
to low frequencies and incidences but it is claimed to be valid
at M = 1,0, This theory indicates the important parameters
influencing the demping through the transonic range and demon- |
- strates the general trends, This theory leads to the folloxﬁ.ng

relationsg

a) !'Steady! derivatives (w-—30)

Py =7 Znh
m_ = 3 (&h) '
W W anact»ooat-o(BB)
2, =~ ZrA(1-h) ’
n, == (x/4)(2-h%30 + 11/8)

which are identical to the formulee given by Low Aspect Ratio
theory of Garrick and Ribner,

b) 'Prequency Dependent! derivatives (o » 0)
- (r/1)x(5) |
- (ma/1)(3-2h) + k(@)

Z
5

§

"

it




2=

Zy (5/8 = n) - (9/6L)x cotA -
- dra(me1)? + (5/8-B)k"(8) = (9/6k)m cot A

1]

Da,

¥

1

”.I..'Ql.'.(39)
which include the additional factors dependent on frequencys
B i_“‘ - l
k(@) =1 = % cot? k959 = 3In(B cot?h )|
- . 3 r‘ - 2 "'E -nov(L}-O)
k'(@) = gmeot”’/A 144959 ~ 3In (& cot™A )j

These relations are identical with those given by the Low Aspect
Ratio theory of Gerrick and Pibner if we set k(w) =1 and

k' (@) = 0, i.e, set 3 In(® oo‘tzfx ) = 4959 and neglect the
term (9/6‘14.)71;‘ cot?/\  which is small for low aspect ratios,

With the aid of the results of the various theories
which are illustrated in Figs, 14 to 18 and in the light of the
available experimental evidence the curves of Figs., 1S to 24 were
prepared for the two delta plan forms considered. No great
accuracy cen be claimed for these curves, particularly in the
transonic range, which can only at the best be regarded as
plausible guides to the truth,

It should be noted however that the theories on which
these curves are based assume that the frequency peremeter ® is
small, In the examples‘ chosen the frequendy parameter for the
ghort period' oscillation has in fact a meximum value of 0,6 which
cammot be regarded as small, and undoubtedly all the derivatives,
both demping and stiffness, may be apprecisbly dependent on
frequency for values of the frequency parameter of this order, In
the absence of reliable experimental data, however, it was con-
sidered that there would be little to gain from an attempt to

allow for these frequency effects in this analysis,

We cen conclude from this brief review of the demping
derivatives of the delta wing that

a) - the moment~acceleration derivative M, can be safely
neglected at sub-critical speeds,
b) within the practical C.G. range, the values of the

demping derivatives in incompressible flow are relatively
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insensitive to changes of aspect ratio for aspeét ratios
less than L,

there is a positive contribution to damping from the
derivatives Zy and. g at all Mach numbers., Thus
the possibility of overall instability (ie€e zy or
mﬁf > 0) at trensonic speeds arises from the increases
in Zyp and PR These derivatives can be decreased
by a forward shift of C.G, but the shift requires to be

Impracticably large to achieve a major improvement,

The ‘'stiffness' of the short period oscillation depends
largely on the variation of s and this derivative
increases with Mach number to a maximum in the transonic
speed range, This increase implies an increase in
frequency, which in turn implies that instability at
transonic speeds is more serious because the amplitude
of the oscillatory acceleration will grow all the more
rapidly and dengerously. Our concern is, therefore,
with the possibility of short period oscillations with

negative damping.,

Forrulation of a Standard of Minimum Ievel of Damping for a

Delta Planform

From equations (7) and (8), we have,

042206 f(m z_-p.m )/4
cycles to half amplitude =7 J qw 1w B .

—ZW-méj/iB

This relation is increasingly more accurate at high u . i.e. at

high altitude where the damping will be most critical.

If we now specify that the minimum allowable number of
p .

cycles to half amplitude shall be one, the meximum allowsble value

of m% is

- ny s =z ip - 0,2206 w/ :'LB(qu;W - p,lmw) eessal(ll)

We may compare this velue with the actual value of the

demping derivative, the difference A mﬁ = mﬁ*&ax - m,éj then gives

a measure of the comparative demping qualities of the delta planforms
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of varying sweepD.

The results of such an analysis are shown in Figs. 25
and 26, where the effect of varying sweep, Mach number, C.G.

position and relative density are illustrated,

Tt will be seen that there are &iminishing returns in
demping for increased sweep. = In fact, little adventage is to be
gained for sweep angles greater than about 600. Forward movement
of the C.Ge improves the damping but this is counterbalanced by
the increased stiffness of the oscillation for /\ >60°, & 15°
tailless delta appears to have inadequete damping in the transonic

range of Mach numbers,

These conclusions are of course, subject to some
measure of doubt insofar as the basic curves for the damping
derivatives, Figs. 19 to 22, are little morve than plausible
guesses, Nevertheless the trends of the results are almost

certainly significant,.

9¢ The Coefficients of the Stability Quartic and some deductions

We are now in the position to estimate the coefficients
of the stability quertic, from which we can deduce the frequency
and démping of the short and long period contributions to the
oscillatory motion of the aircraft. The values of the coeffic-
ients are shown plotted in Figs. 27 to 31 as funétions of ilach

nuber for relative density, By = 50.

Figs, 28 and 29 show that, except very near M1 = 1,0,
a good approximation can be made to the short period damping
coefficient B  and stiffness coefficigffmng; by neglecting X9
Zy /ﬁ1, and zq/hq. The quantitxfn%/@1iB is shown in Fig.32
to be a good first approximation to the short period frequency
paremeter to = 2xfG/V, where f is the frequency for the CuGe

position considered,

Figure 33 shows the cycles to demp to half amplitude
and demonstrates the need of a tailplane for the parameters
considered in the case of the 450 delta to correct the serious
instebility in the range O.97<i@% {1ebe The figure also suggests
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that p, should not exceed 200 for the tailless 60° delta to

remain adequately damped,

It is well known that the coefficients’ E and C in
the stability quartic are related to the static and manceuvre

margins respectively., Thus, it can be readily shown that

v} oC,. »dC_™ v aC -
R =..2.:.j...02 L _m: =2__..1..02 .......I.‘K aee(42)
i, L o0 e i dC L 9a ™
B . 3y, |
C. M, =const.
L™
where K is the static mergin (stick flxeé‘.) ==~ (ac jfac;) s

CLM1 =conste
and with some epproximation
By acL
s H
ip da h

where H_  is the manoeuvre margin (stick fixed),

C = =

Kn and Hm are shown plotted in Figse 34 and 35 and can be
compared with E and C in Figs. 31 and 29 respectively.

104 Possibilities of Improving the Damping Derivative mﬁ

Improvements to the damping derivative n@ can be made
by the addition of a forebody, foreplane, or btailplane or by
cropping the wing tips. '

Applying Munk's Slender Body Theory, an estimate of the
additional damping due to fuselage is,

_2
£ my £ - 2By (l-X)g /(s27) ,

where B_ = body base cross sectional area = mz/br,
1 = body length measured forward from wing apex,
x = distance from C,G. to nose,

Therefore

&mél ":"5" '12‘7‘:6-2 (I'X)z/(sczz) ‘.DOOQO"OI.(L}‘B)

For a representative case, where S = 1000 f‘t.z, g = 30 fte,

1 =20 ftay x = 35 ftey 4 = 10 £t., we cbtain gﬁ_mﬁ = - .o._o5,
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a small, but significant value at transonic speeds.

Cropping the tips, and thus reducing the aspect ratio,
is not quite so effective as reduction of aspect ratio by
increased sweepbéck. The change in mﬁ due to cropping is
closely equivalent to that due to a shift of axis according to

the geametrical relation

X 2
h = — = m—:—z—a‘-— (See section 7).
) 2(1+A0%) '

For example, for a CsGe at h = 0,25 with a 'true' delta, the
equivalent axis for a taper of 1/7 is h = 0437 (i.ce. xo/co== 0.70)»

From Figure 17 it is noted that for a 45° delta this
will give a substential increase in -mﬁ at I, = 1¢2, but this
is not the case for the 60° delta, From Figure 15 a slight
decrease in mér can be expecte& at subsonic speeds therefore the
tip cropping will not produce similar gains in o1l cases, but it
appears to be very effective with the 450 delta at transonic

speeds as shown in Fig. 36.

11s Some simple response calculations

As an example of the 'respbnse of the 45° tailless delta
we will consider the simple case of two degrees of freedam, i.e.
we will neglect disturbances in forward velocity, the elevon will
be assumed spplied instantaneously but the additional 1ift due to
control deflection will be neglecteds

The equations of motion simplify tos

Totiis p—

’ FiN f\é g i A
G AT - T O S 115
b ek M T v g /|

- jr—

1 3 (-Z-g- ';5 139. 5 | (bk)
- —1 + - Z W o= 0 sesseseesey
;1_B “1 ;) lB Wj o] L4 *

e pve

the solution of which isg
F .
s " - (L 2
1 - .._._._.....IS......:. exp (—%b%)sin%g!k—(%b)z + 1 "'! k
2

¢ 2
[V k=(3D) "

2] !24.‘:.

=L
Tk

.,-

o

nw.n--.W
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where
m, (z./p,+1) 5 m.
b = "':ﬁ g + A - ‘:‘g' !:frB 0;0:00(2-1-5)
B (zﬁ/u,]—’l) (Z'v'v/p"l -1) "B
and

2
W e, C »

R

i, (2/u41) my

= e

BT (ggfuy-1) B (g, -1)

The effect of lMach number on this response is vshown in
Figure 37 The increase in damping and frequency with Mach
mumber at subceritical speeds will be apparent, as will be the
dangerous instebility at 1\/1',l = 1,0 coupled with high frequency,
and the poor damping and high frequency at supersonic speeds is

also evidents

A second example of response illustrating the effect

of neglecting the damping in 1ift derivatives zq and Zg is
shown in Figure 38,
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APPENDTX

Definition of Derivatives

Factors to rélate derivatives etc, as defined in this

report to corresponding Americen and British derivatives and

coefficients as defined in sources listed below,

Derivative or Gerrick, | Ribner, ILehrian Duncan Perkins,
coefficient as Garner, Malvestuto, Hage.
defined in this | Mangler,
report .
(GCD')
Xy X - - a [PO0TE
* Xy - - Xy Cp, = Cpg
X - - - -lt -
x - - v 2 —x -
l{acL)
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c da
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2 i t
m m z G - 2—n LGy
q 8 Tq Mg 62 e} La.e
27 2% - 27 27
B S L # 7
t 2t 2% - 2% 2%
l
2 2t
b 5 U 2u - 2 = M o




Derivative or Gerrick, ; Ribner, Iehrian Duncan | Perkins,
coefficient as Garner, i Halvestuto. Hage.
defined in this Manglers
report
Standard Length k3 S k3 2 .1 g
3 3 Lt
PP L g: n
B B | =22 - =i 70
mc c c
& .3
w 3 0 5 ©
Cp Cp Cp Cp Cp
CL Cq, Cy, ZkL Cr, CL
2 2 2
C 5 O Cy e 1L G Cy
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A MEASURE OF THE ABILITY OF THE DELTA PLANFORM TO DAMP THE SHORT

PERIOD OSCILLATION TO HALF AMPLITUDE IN ONE CYCLE.
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