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Abstract

Rising global temperatures may increase the rates of soil organic matter decomposition by

heterotrophic microorganisms, potentially accelerating climate change further by releasing

additional carbon dioxide (CO2) to the atmosphere. However, the possibility that microbial

community responses to prolonged warming may modify the temperature sensitivity of soil

respiration creates large uncertainty in the strength of this positive feedback. Both compen-

satory responses (decreasing temperature sensitivity of soil respiration in the long-term)

and enhancing responses (increasing temperature sensitivity) have been reported, but the

mechanisms underlying these responses are poorly understood. In this study, microbial

biomass, community structure and the activities of dehydrogenase and β-glucosidase

enzymes were determined for 18 soils that had previously demonstrated either no response

or varying magnitude of enhancing or compensatory responses of temperature sensitivity

of heterotrophic microbial respiration to prolonged cooling. The soil cooling approach, in

contrast to warming experiments, discriminates between microbial community responses

and the consequences of substrate depletion, by minimising changes in substrate availabil-

ity. The initial microbial community composition, determined by molecular analysis of soils

showing contrasting respiration responses to cooling, provided evidence that the magni-

tude of enhancing responses was partly related to microbial community composition. There

was also evidence that higher relative abundance of saprophytic Basidiomycota may

explain the compensatory response observed in one soil, but neither microbial biomass nor
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enzymatic capacity were significantly affected by cooling. Our findings emphasise the key

importance of soil microbial community responses for feedbacks to global change, but also

highlight important areas where our understanding remains limited.

Introduction

Soils contain a massive stock of terrestrial carbon (C) [1, 2], estimated at approximately 2500
Pg C, much of which is considered vulnerable to climatic warming [3, 4]. Respiration releases
approximately 119 Pg C annually from the land surface, ~50% of which is due to microbial
activity [5, 6]. In the short term, soil microbial respiration increases approximately exponen-
tially with increasing temperature over the typical range of soil temperatures [7] and a positive
correlation between soil respiration and temperature has been observed in many field and labo-
ratory studies [4, 8, 9]. This has prompted the view that rising global temperatures will increase
the respiration rates of microorganisms that decompose soil organic carbon (SOC) [10–12];
increased CO2 emissions through enhanced SOC decomposition have the potential to increase
climate forcing by up to 40% [13, 14].

However, in long-term warming studies the initial stimulation of soil respiration often
declines over time [8, 15, 16]. This can be explained partly by loss of the most readily-decom-
posable SOC pool, but there have also been suggestions that microbial communities respond to
warming in such a way as to compensate for the increase in soil temperature, promoting a
gradual reduction in respiration rates in warmed soils [17–20]. Mechanisms behind such
responses could include physiological responses of individual microbial phylotypes, genetic
changes within species (adaptation) and ecological responses associated with change in com-
munity composition.

Karhu et al. [21] used a soil cooling approach [22] to investigate the potential for compensa-
tory community level responses to warming in a range of soils from different climates and eco-
system types. This study investigates the same soil samples incubated by Karhu et al. [21] but
comparing only the cooling treatment to the control.

Enhancing microbial community responses (responses that increased the mid- to long-term
(90 days) effects of the temperature changes on rates of respiration after cooling) were found to
be much more common than compensatory responses (responses that decreased the effects of
the temperature changes on rates of respiration after cooling). This was especially true for
high-latitude soils. Therefore, it explains the unbalanced soil distribution grouped by soil respi-
ration responses in this study and also the limitations to complete some statistical analyses.
Critically, although enhancing responses were more common than compensatory responses,
the full range of potential responses was observed and it is important to understand the mecha-
nisms underlying these contrasting responses.

The aim of this study was to investigate whether initial microbial community composition
and/or shifts in community composition in response to temperature change could explain the
three different microbial respiration responses (enhancing, compensatory and no-response)
observed by Karhu et al. [21], testing the following hypotheses. Firstly, we suggested that the
dominance of enhancing responses after cooling is caused by changes in community composi-
tion overshadowing potential acclimation or adaptive responses within individuals and popula-
tions. This hypothesis predicts greater changes in community composition in soils exhibiting
enhancing responses than in soils exhibiting either no-response or compensatory responses,
particularly for soils sampled at high latitude, where low temperatures may apply the greatest
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selection pressure [23], despite a general decrease in microbial biomass turnover at low temper-
atures. In contrast, for compensatory response, a limited number of changes in microbial com-
munity composition were expected after cooling.

Secondly, Karhu et al. [21] found that the reduction in respiration rates in cooled soils
showing enhancing responses increased over time relative to controls. This may be related to a
reduction in the ability of microbes to break down low quality/recalcitrant organic matter,
whose decomposition has been shown to be highly temperature sensitive [24, 25]. Fungi and
some bacterial species play a key role in the decomposition of recalcitrant organic matter and,
if enhancing responses are associated with development of a microbial community decompos-
ing a reduced diversity of substrates, we hypothesised that the abundance of diverse microbial
populations degrading recalcitrant compounds will decline. In contrast, the abundance of
microbial populations degrading recalcitrant organic matter will increase in cooled soil exhibit-
ing compensatory response [26, 27].

Finally, we investigated changes in total microbial biomass, biomass-specific respiration in
substrate-unlimited conditions and dehydrogenase and β-glucosidase activities, which have
been suggested as explanations for the compensatory responses previously observed in mono-
cultures, soils under substrate-unlimited conditions, and in models incorporating microbial
community dynamics [28–31].

Materials and Methods

Soil properties

Intact topsoil cores (100 mm diameter x 100 mm depth) were taken from different ecosystems
and climatic regions (20 cores per site) and transferred to the University of Exeter at tempera-
tures similar to that of their origin [21]. The permission to collect soil samples for each location
was sought from the appropriate authority (see Table 1). Soil properties including pH and
water, C and N contents were characterized as described in Karhu et al. [21] and each soil was
identified by geographic/climatic area including 1 (Sweden/subarctic), 2 (Scotland/cool tem-
perate through to sub-alpine), 3 (England/temperate), and 4 (Italy, Spain/Mediterranean) and
ecosystem type: A (arable), C (coniferous evergreen forest), D (deciduous broadleaf forest), G
(grassland), and H (ericaceous heath) [21].

Soil incubation and respiration measurements

The mid- to long-term response of soil microbial respiration to changing temperature was
determined using the soil-cooling approach [22], as described in Karhu et al. [21]. Briefly, soil
replicates from the 20 cores were divided into four treatments: pre-cooling, control, cooled and
re-warmed. Control samples were incubated at mean annual temperature (MAT) of their site
of origin, plus 3°C for the duration of the whole experiment (174 days). Pre-cooling samples
incubated at MAT plus 3°C were destructively sampled after 84 days, when respiration rates
had stabilised, and the temperature treatments commenced. Cooled treatment samples were
transferred to MAT minus 3°C on day 84 and incubated at that temperature until the end of
experiment (day 174). Re-warmed samples were transferred back to MAT plus 3°C after 60
days of cooling, and incubated at MAT plus 3°C until the end of the experiment. Soil respira-
tion data were used to determine whether an enhancing or compensatory community-level
response to temperature had altered respiration rates compared to the “no-response” case [21].
The magnitude of enhancing or compensatory responses was calculated as the normalized con-
trol respiration rate, at the percentage C loss corresponding to the total percentage C loss in the
cooled soils, divided by the normalized cooled respiration rate at the end of the incubation
(RRMT). Therefore, RRMT describes the microbial community level respiration response to

Temperature Sensitivity of Soil Microbial Community Respiration

PLOS ONE | DOI:10.1371/journal.pone.0165448 October 31, 2016 3 / 19



prolonged cooling [21]. Ratios above and below 1 indicate enhancing and compensatory
responses, respectively. Ratios close to 1 imply that temperature sensitivity of soil respiration
does not change in response to prolonged cooling (i.e. “no-response” soils).

For the purpose of this study, soils were classified into different response groups: (1) soil
exhibiting compensatory response (3A), (2) soils showing enhancing responses (1C, 1D, 1G,
1H, 2C, 2H, 4C, 4D), and (3) soils with no-response (1A, 2D, 2G, 3C, 3G, 3H, 4A, 4G, 4H),
based on respiration rate data in Karhu et al. [21].

Molecular analysis of microbial community composition and biomass

Sub-samples (250 g of soil sample) for DNA extraction were frozen (-20°C) at the end of the
pre-incubation period (pre-cooling, day 84), and at the end of the 174-day incubation period
for cooled, control and re-warmed treatments. Frozen samples were shipped in dry ice to the
laboratory and then stored at -80°C until DNA extraction. Molecular analysis of DNA
extracted from soil microbial communities (multiplex terminal restriction fragment length
polymorphism (M-TRFLP), quantitative polymerase chain reaction (qPCR) and amplicon pyr-
osequencing) did not include tropical soils (hence, n = 18). Total DNA from each triplicate was
extracted and purified with the UltraClean1-htp 96 Well Soil DNA isolation kit according to
the manufacturer’s instructions (MoBio Laboratories, USA). The quality of extracted DNA was
checked by agarose gel (1%) electrophoresis (100 V, 40 min). Total DNA was quantified in 1 μl

Table 1. Authorities who issued the permission for soil sampling.

Site MAT Authority who issued the permission Contact at the sampling
time

1A 5.1 Swedish Agricultural University Goran Bergkvist

1C 2.8 Umea University Reiner Giesler

1D -2.0 Swedish Polar Secretariat Magnus Augner

1G 5.1 Swedish Agricultural University Goran Bergkvist

1H -6.1 Swedish Polar Secretariat Magnus Augner

2C 8.4 Land where there are no restrictions regarding access or soil
sampling, and where no endangered species or UK SSSIs (Sites
of Special Scientific Interest) were sampled

2D 8.4 University of Stirling Philip Wookey

2G 3.1 Land where there are no restrictions regarding access or soil
sampling, and where no endangered species or UK SSSIs were
sampled

2H 4.6 Land where there are no restrictions regarding access or soil
sampling, and where no endangered species or UK SSSIs were
sampled

3A 10.2 Cranfield University Jim Harris

3C 10.7 Forestry Commision Alice Holt Office

3G 9.9 North Wyke, Rothamsted Research Jennifer Dungait

3H 10.3 RSPB Aylesbeare Common Toby Taylor

4A 14.3 Tuscia University Cristina Moscatelli and
Sara Marinari

4C 18.5 University of Jaen Jose Antonio Carreira de
la Fuente

4D 15.4 Tuscia University Cristina Moscatelli and
Sara Marinari

4G 16 Forest Sciences Centre of Catalonia (CTFC) Maria-Teresa Sebastia

4H 16 Forest Sciences Centre of Catalonia (CTFC) Maria-Teresa Sebastia

doi:10.1371/journal.pone.0165448.t001
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DNA samples in 96-well plates with the Quant-iT™ PicoGreen1 kit (Invitrogen, Canada)
according to the manufacturer’s specifications. Fluorescence was quantified using a Cyto-
Fluor1 4000 Multi-well plate reader (PerSeptive Biosystems, USA).

Microbial gene abundance, as a proxy of the microbial biomass, was estimated by qPCR for
control, cooled and rewarmed soils at the end of the experiment; qPCR assays were performed
in triplicate using a CFX96 Touch™ Real-Time PCR Detection System (BioRad, Australia). Each
qPCR reaction was performed in 20 μl with the QuantiTect1 SYBR1 Green PCR kit (Qiagen,
USA), 250–300 nM of each primer targeting bacterial 16S rRNA gene (1132R, [32]; 1108F,
[33]), archaeal 16S rRNA gene (Cren16S957R, [34]; Cren16S771F,[35]) and ITS gene (ITS1F,
[36]; ITS2R, [37]) and 10 ng of total DNA previously quantified by Quant-iT™ PicoGreen1 kit.
The amplification conditions were as follows: preheating at 50°C for 2 min, then at 95°C for 15
s followed by 40 cycles at 94°C for 15 s, 60°C for 30 s and 72°C for 30 s. Serially diluted 16S
rRNA gene amplicons from Paracoccus denitrificans (Bacteria), Nitrosotalea devanaterra
(Archaea) or ITS gene amplicons from Suillus variegatus (Fungi) were used as standards. Melt-
ing curves were performed to confirm the purity of the amplified product. Amplification effi-
ciency (E) of the primers was within the prescribed values (0.9<E<1.1) with linearity
(r2>0.99). Gene abundance is expressed g-1 soil dry weight. The sum of gene abundances of
Archaea, Bacteria and Fungi was used to estimate total microbial biomass. Fungal:bacterial
ratios (F:B) were also calculated based on the qPCR data. M-TRFLP analysis employed univer-
sal 16S rRNA gene primers or internal transcribed spacer (ITS) region primers (Applied Biosys-
tems, UK) to target bacterial and fungal communities, respectively, with sample preparation
and data analysis as described in Singh et al. [38].

Eight soils, representing the full range of respiratory responses and the clearest examples of
the different types of response, were selected for more detailed analysis of microbial commu-
nity composition by pyrosequencing: one soil with compensatory response (3A), three with
enhancing responses (1H, 4C, and 4D), and four with no-response (2D, 2G, 3C and 4A).
Microbial community composition of each soil was determined in triplicate. Bacteria and
archaea were targeted using the universal 16S rRNA gene primers F515 and R805 [39, 40] and
fungi using a newly designed ITS primer ITS1F-Kyo1 and ITS2 [36, 41]. Primers were linked
to Roche 454 adapters and the multiplex identifiers listed in S1 Table and PCR amplification,
purification and quantification were performed as described in SI Material and Methods. The
sequence data are available in NCBI’s (National Center for Biotechnology Information)
Sequence Read Archive under BioProject PRJNA281794.

Determination of microbial biomass

Microbial biomass was measured by chloroform fumigation-extraction (CFE) and substrate
induced respiration (SIR) at pre-cooling (day 84) and for all treatments (control, cooled, re-
warmed) and at the end of the incubation (day 174). Standard fumigation protocols were
applied as described in SI Materials and Methods. Microbial biomass was estimated as the dif-
ference in DOC concentration between fumigated and control samples (CFE-flush). Given the
range of different soil types investigated, no correction factor was applied to these data.

For SIR, soil samples (10 or 30 g for the organic and mineral samples respectively) were
amended with either 2 ml of 15 mg glucose C g-1 soil C or 2 ml deionized water (control). SIR
was calculated as the difference between respiration of glucose-amended and control soils.
Measurements were conducted at both the cooled (MAT minus 3°C) and control (MAT plus
3°C) temperatures, with samples being incubated for 24 h or 6 h for soils collected from cooler
temperatures (subarctic, Scottish and English soils) or higher temperatures (Mediterranean
and tropical soils), respectively. SIR was used to estimate microbial biomass and to calculate
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mass-specific respiration in non-limiting substrate conditions (Rmass). SIR (MAT plus 3°C)
was divided by CFE biomass, using the approach outlined in Bradford et al. [17]. Biomass
determined by SIR and CFE was also corrected for C-loss by interpolating between the control
sample biomass values measured at pre-cooling and at the end of the experiment. This enabled
calculation of control treatment biomass at the same C loss as for the cooled samples at the end
of the experiment [21].

Enzyme activity

Potential enzyme activity was determined for cooled and control treatments at the end of incu-
bation. β-glucosidase was chosen as a model extracellular enzyme, because it catalyses the rate-
limiting step in cellulose decomposition and is produced by a wide range of microorganisms
[42]. The dehydrogenase assay measures intracellular activity and is commonly used to esti-
mate overall microbial activity [43]. Temperature sensitivity was assessed at a temperature
range natural to the soil (i.e. reflecting seasonal changes in soil thermal regimes, which vary
substantially according to site of origin) by performing assays at four to six temperatures,
including MAT plus 3°C and MAT minus 3°C, as used in the long-term incubations.
β-glucosidase activity was assayed as described in Alef and Nannipieri [44], except that sam-

ples and all reagent and buffer amounts were scaled down to enable the assay to be conducted
in Eppendorf tubes. Dehydrogenase activity was assayed using the INT method [45]. A brief
description of each protocol is included in SI Materials and Methods. Calibration curves and
calculation of results were as described previously [44, 45]. β-glucosidase and dehydrogenase
activities were efficiently measured in 17 and 13 soils, respectively while both activities were
determined in all soils (n = 18).

Data and statistical analyses

The Q10 values for enzyme activity were calculated from the equation y = aebT, where
y = enzyme activity, a = enzyme activity at 0°C, T = temperature in degrees Celsius, b = the
temperature dependence coefficient, which gives a constant Q10 = e(10⇤b). A linearised equa-
tion was fitted to ln-transformed enzyme activity data using SPSS linear regression. Baseline
enzyme activity (a), or its temperature sensitivity (Q10), were considered to differ statistically
significantly between cooled and control treatments if the 95% confidence intervals for the
(back-transformed) fitted parameters did not overlap.

Independent samples t-tests were used to detect statistically significant differences in micro-
bial variables (SIR, CFE, or qPCR biomass, Rmass or F:B ratios) of control and cooled treat-
ments within each soil at the end of the incubation experiment or between each respiration
response group. Similar tests were applied to determine statistically significant differences in
the percentage of total OTUs. The significance of differences could not be determined between
the compensatory response soil, for which n = 1 as previously demonstrated by Karhu et al.
[21], and the no-response or enhancing response soils. Linear regression analysis was used to
relate the magnitude of the respiration responses (RRMT) in different soils to changes in these
microbial parameters, soil properties and other parameters describing microbial community
composition across all data. Analyses were conducted using SPSS Statistics 22 (IBM, USA).

Statistical analysis of the M-TRFLP samples was based on the complete sample profiles as
expressed by the pattern of M-TRFLP peaks and the relative abundance (percentage) of indi-
vidual peaks in each profile [38]. To determine whether information on the initial microbial
community composition could help to predict the respiratory response, Canonical Variates
Analysis (CVA) was performed on M-TRFLP data (precooling treatment samples) using Gen-
Stat 14th edition (VSN International Ltd, UK) and coordinates were obtained (S1 Fig). Each
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CVA axis shows the best separation between groups defined by their respiratory response and
using microbial community structure data obtained at the end of the incubation.

Pyrosequencing data analysis was performed using the ‘Quantitative Insights Into Microbial
Ecology’ (QIIME v1.6.0) software package [46]. Strict quality filtering steps were performed
before affiliation to phylogenetic clusters and operational taxonomic units (OTU; SI Materials
and Methods).

Results

Differences in initial microbial community composition

CVA did not separate clearly the initial microbial community structures of soils associated
with different respiration responses (S1 Fig), but there was a significant correlation between
the initial microbial community structure (the second CVA axis) and RRMT (Fig 1a). This
explained 49% of the variability observed on this axis, which discriminates soils showing
enhancing response from no-response. In contrast, CVA1 and RRMT (Fig 1b) were not signifi-
cantly correlated. Although C:N ratio in soils had previously been found to be related to the
respiration response [21], microbial community (CVA1 or CVA2) and C:N ratio were not cor-
related when all soils were tested (S2a and S2b Fig).

Changes in microbial community composition (based on
pyrosequencing) in response to cooling

Generally, OTUs associated with Actinobacteria, Acidobacteria, Chloroflexi, Planctomycetes
and Verrucomicrobia phyla had the highest relative abundance (Fig 2) and Actinobacteria com-
prised mainly (approximately 80%) Actinomycetes. The relative abundance of Actinobacteria
OTUs was significantly higher in 3C (no-response) than in other soils, comprising almost 22%
of the bacterial community (control). For fungi, Ascomycota and Basidiomycota OTUs were
generally dominant or comprised at least 50% of the fungal community except in 2D and 2G
(no-response soils), which were dominated by unidentified fungi. Moreover, Basidiomycota
OTUs were negatively correlated (P<0.01) with the respiration response (S2 Table). The most
dominant Basidiomycota species in 3A belonged to the species Clitopilus, a saprophytic genus,
(12.3 ± 6.1% of the entire fungal community), while Basidiomycota dominating fungi in 3C
and 1H were ectomycorrhizal fungi. In contrast, Ascomycota were dominant in most Mediter-
ranean soils: 4A (no-response) and 4C and 4D (enhancing responses). Archaeal OTUs were a
minor component, representing, on average, 4% of all prokaryotic sequences.

Potential rates and drivers of change in microbial community composition were explored
by comparisons, at the end of the experiment, of: 1) pre-cooling and control soils (C and nutri-
ents availability effect); 2) pre-cooling and cooled soils (temperature effect) and 3) control and
cooled soils. Generally, the relative abundances of OTUs did not change greatly after cooling or
after incubation in all soils tested and were restricted to<2% of total OTUs (Fig 3a and S3 Fig,
S3 Table). No significant differences were observed when comparing the percentage of OTUs
changing between soils with enhancing response and soils with no-response. The greatest num-
ber of OTUs changing was observed in 1H (S3 Table), an arctic soil exhibiting a strong enhanc-
ing response, contrasting with some Mediterranean soils with enhancing responses (4C, 4D).
The average percentage of OTUs changing (control compared to cooled treatment) was also
inversely related to site MAT (Fig 3b), although this correlation was no longer significant after
removal of one arctic soil (1H). Cooling had a limited effect on F:B ratio, determined using
qPCR data corrected for C loss (S4 Fig), increasing only in a limited number of soils, and show-
ing no correlation with RRMT or C:N ratio.
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The effect of temperature on microbial biomass and Rmass

Overall, CFE microbial biomass was lower in the control soils at the end of the incubation, but
when corrected for differences in total C loss, cooled and control soils did not differ signifi-
cantly. This indicates that these differences were due to different labile C availability (reduced

Fig 1. Linear regressions between a) RRMT and CVA1 or b) CVA2. Black diamonds represent each soil (n = 18).

doi:10.1371/journal.pone.0165448.g001
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total C loss in the cooled samples), and not to a direct effect of temperature per se. C loss cor-
rected CFE-biomass differed significantly (P<0.05) between some individual soils (Fig 4) and,
in general, changes in biomass could not explain the observed respiration responses. Even
when small differences in biomass of cooled and control treatments were found, differences
were not in a consistent direction.

In contrast to previous studies, cooling did not increase substrate-unlimited, biomass-spe-
cific respiration (Rmass; SIR/CFE at the end of the experiment) in the soil with a compensatory
response (3A) (Fig 5a). In addition, there were a few statistically significant differences in Rmass

of cooled versus control treatments in soils exhibiting no-response or soils with enhancing
responses, and, overall, there was a weak negative relationship between Rmass and RRMT (Fig
5b). In addition, as highlighted by Karhu et al. [21], it should be emphasised that when RRMT

(i.e. not substrate-induced respiration) was divided by SIR, CFE or qPCR biomass, the overall
patterns did not change and enhancing responses remained much more frequent than com-
pensatory responses.

Fig 2. Community composition based on pyrosequencing. The relative abundance of each microbial phylum (Archaea, n = 1; Bacteria, n = 13;
Fungi, n = 4) is indicated for precooling (pc), control and cooled treatments.

doi:10.1371/journal.pone.0165448.g002
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Enzyme activities

β-glucosidase and dehydrogenase activities in control and cooled treatments were not statisti-
cally different (S5 and S6 Figs, S4 and S5 Tables) and enzyme activity per CFE microbial
biomass (parameter a, activity at 0°C) was not related to site MAT. The Q10 values for β-gluco-
sidase and dehydrogenase activities varied between 1.5 and 2.2 (S4 Table), and 1.3 and 3.1 (S5
Table), respectively, and did not differ between cooled and control treatments within each soil.
The only exception was a higher Q10 value for dehydrogenase activity in cooled treatment of
soil 2G, a no-response soil (S5 Table). There was no correlation between site MAT and Q10 val-
ues across all data.

Fig 3. Number of OTUs changing (mean ± S.E) in response to time of incubation (comparing precooling vs. control) or cooling
(comparing cooled vs. control soils) or both (comparing precooling vs. cooled). a) in different respiration response groups, b)
linear regression between the number of changing OTUs and site MAT with or without 1H. Grey bars represent each group with
standard error bars. Error bars for compensatory group were not added (n = 1). Black diamonds represent each soil (n = 8).

doi:10.1371/journal.pone.0165448.g003
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Fig 4. Microbial biomass estimated using a) SIR, b) CFE and c) qPCR methods and corrected for
carbon loss in the control treatment (interpolated between pre-cooling and control treatment end of
experiment biomasses, so that the MAT plus 3˚C soils were compared to the cooled (MAT minus 3˚C)
soils at a similar C loss, corresponding to the maximum C loss of cooled samples at the end of the
experiment. Each soil is identified by geographic/climatic area including 1 (subarctic), 2 (Scotland), 3
(England), 4 (Mediterranean) and 5 (tropical), and ecosystem type: A (arable), C (coniferous evergreen
forest), D (deciduous broadleaf forest), G (grassland), H (ericaceous heath) and E (evergreen broadleaf
forest) (21). Mean ± S.E. is presented (n = 3). Black bars (control treatment), grey bars (cooled treatment).
Statistically significant differences (P<0.05) are marked with an asterisk.

doi:10.1371/journal.pone.0165448.g004
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Fig 5. a) Rmass at the end of the experiment for control (black bars) and cooled treatments (grey bars). Statistically significant
differences (P<0.05) are marked with an asterisk. b) Rmass ratio (control/cooled) regression with RRMT. Black diamonds
represent each soil (n = 20). Code for soil origin provided in the legend to Fig 1.

doi:10.1371/journal.pone.0165448.g005
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Discussion

The role of the initial microbial community composition in explaining
enhancing, compensatory or no-response

Our results suggest that the initial composition of the soil microbial community influenced the
respiration responses observed, although unmeasured variables (e.g. soil or environmental fac-
tors) could have affected both microbial community composition and respiration response [47,
48], and interrelationships do not necessarily imply causality. However, the strong correlation
between RRMT and the second CVA axis values indicates that some component of the micro-
bial community affects the community’s capacity to react to prolonged temperature changes.
Finally, a correlation between microbial community composition and soil C:N ratio was not
detected, contrasting with Karhu et al. [21], who reported C:N ratio to be the only soil or site
variable correlated with the RRMT responses across all data. Karhu et al. [21] confirmed that
the average RRMT values were greatest for soils with a MAT below 7°C or above 14°C. There-
fore, microbial community composition and some environmental factors interacted directly or
indirectly to influence respiration rates, as confirmed by Matulich and Martiny [49].

The community in soil with compensatory response (3A) did not seem to differ from other
soils (along the first CVA axis) at the initial stage or after cooling, but statistical analysis could
not be performed, as this was the only soil exhibiting a compensatory response. However, this
soil was dominated by a limited number of Basidiomycota, mostly saprophytic fungi, while the
other soils were dominated by ectomycorrhizal fungi. Fungi are important for decomposition
of recalcitrant C and Cline and Zak [50] confirmed the importance of the initial fungal coloniz-
ers in structuring microbial communities and subsequently influencing organic matter decom-
position rate. In single-species cultures, respiration of different Basidiomycota species has been
shown to acclimate to temperature [24] and there have been suggestions that fungal dominance
can enhance C sequestration [51]. Both fungal phyla were identified using a DNA-based
method that does not give information on microbial activity, and it is not possible to confirm
the importance of saprophytic Basidiomycota for controlling microbial respiration based on
this method, but the result suggests that further work is required to link respiratory responses
to temperature to particular functional groups of microbes.

Shifts in microbial community composition with temperature change

Generally, there were few changes in community composition between pre-cooling and the
end of the experiment in the control treatments. This suggests that the microbial communities
were already well adapted to the MAT + 3°C temperature during the pre-incubation period
and that the approach adopted minimised changes in labile C availability/SOM quality after
the pre-incubation period. This was also supported by the stabilisation of respiration rate dur-
ing the 84-day pre-incubation period [21]. Also, there were no significant differences between
soil microbial communities in cooled and pre-cooled treatments. Moreover, changes in fungi:
bacteria ratio associated with a specific respiration response were inconsistent, suggesting that
control of the respiration response may result from higher activity of some microbial degrad-
ers. Therefore, it appears that the initial microbial community remained stable even after tem-
perature change or a gradual loss of soil C. This result may indicate that microbial community
composition under temperature change is not the sole determinant of the diverse microbial
respiration responses detected, and that the responses observed may be determined by other
factors, such as interactions between species, soil properties and disturbance history [52].
Moreover, our molecular biology-based results were obtained after analyzing DNA only, and
therefore give no information on active populations.
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Some support was obtained for our prediction of greater changes in microbial community
composition at lower temperatures, with site 1H showing a particularly large change, mostly in
fungal populations that may involve cold-adapted fungi [53]. As suggested by Rinnan et al.
[54], bacterial populations from colder regions were less impacted by temperature. This sug-
gests that temperature represented a much stronger selection pressure at low temperatures,
with this potentially helping to explain the greater respiratory responses observed in high-lati-
tude soils [21]. However, further work is required to explore how the developing cold tolerance
affects respiratory responses to warming in different microbial groups.

Biomass and biomass specific respiration rates and enzyme activity

There were no changes in microbial biomass that could explain the overall patterns of respira-
tion responses observed, and the pattern of responses persisted when expressed per unit bio-
mass [21]. This emphasises that changes in total microbial biomass were not the key factor
controlling the sign or magnitude of the microbial community response. As indicated above,
analysis of only DNA provides no information on active members of the community and fur-
ther work is required to determine if changes in active microbial biomass could be involved
[55]. It has also been argued that thermal adaptation should be investigated in conditions
where substrate availability is non-limiting (Rmass, [17]), and substrate induced-respiration has
been expressed per unit microbial biomass to test this. However, no changes were observed in
Rmass that could explain the patterns observed in respiration responses. Our approach largely
accounts for changes in substrate availability, suggesting that changes in Rmass observed in pre-
vious studies that were attributed to thermal adaptation [17, 56] may have been related more to
changes in labile C availability following long-term warming [17], or in response to sugar addi-
tion [56].

Microbial models have predicted that “thermal acclimation” (i.e. compensatory response)
should lead to decreased enzyme pool sizes with warming [57], but no differences were found
in potential enzyme activity between cooled and control soils. This could indicate that C is allo-
cated to enzyme production prior to growth, as suggested by Steinweg et al. [31], and our
results suggest that enzyme activities were not directly proportional to biomass, in agreement
with Allison [58] and Moorhead et al. [59]. Moreover, no change was observed in the tempera-
ture sensitivity of enzyme activity with cooling and Q10 values varied within similar ranges to
those reported in earlier studies [30, 60, 61]. Measuring potential enzyme activity does not
provide the information that is required to evaluate fully the effects of temperature on enzyme
production and stability, and detailed studies of enzyme kinetics are required to advance
understanding of long-term temperature responses.

To summarise, our results have advanced our understanding of potential mechanisms
underlying microbial respiration responses to changes in temperature. Initial microbial com-
munity composition seems to play an important role in determining the respiration response,
although the possibility of unmeasured factors affecting both community composition and
respiratory response cannot be ruled out. However, there was no support for the hypothesis of
greater change in community composition with cooling in all soils exhibiting enhancing
responses than in soils with no-responses. In contrast to the apparent importance of the initial
microbial community composition, changes in microbial biomass, substrate-unlimited mass-
specific respiration or potential enzyme activities did not appear to underpin the respiratory
responses. Further study is required to identify the role of specific groups in promoting
enhancing versus compensatory responses, such as a potential role of saprophytic Basidiomy-
cota indicated here. If this could be achieved then it may be possible to identify ecosystems in
which the soil C stocks may be vulnerable or resistant to future climate warming.
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