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Abstract 

The use of composites for deep sea applications requires a thorough understanding of the 

behaviour of these materials. While several studies have examined the influence of pressure 

on in-plane properties few data are available for the interlaminar fracture behaviour. This 

paper presents results from such tests performed in a specially designed pressure vessel 

mounted on a standard test machine, which allows pressures up to 1000 bars (100 MPa) to be 

applied during mechanical testing. Mode I and Mode II tests have been performed on a 

unidirectional IM7/977-2 carbon/epoxy composite. No effect of pressure was noted on Mode I 

fracture toughness. A data reduction scheme has been developed for Mode II loading and an 

increase in GIIC with increasing pressure was noted.  
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INTRODUCTION 

 

Composite materials are finding increasing applications underwater, where their low specific 

weight and excellent corrosion resistance offer significant advantages over metallic materials. 

In addition to permanent contact with sea water the deep sea environment also imposes high 

pressures which increase with depth. It has long been recognized that hydrostatic pressure 

affects the behaviour of polymers [1-3]. The main effect observed is an increase in modulus 

and yield stress. A linear pressure dependency of shear yield stress τ has been proposed [1] of 

the type : 

τ=το +µp  (1) 

where µ is a coefficient dependent on the polymer and p is the hydrostatic pressure. 

Modification of ductile-brittle transitions may also be observed as craze formation is 

suppressed at high pressure. Strain to failure may increase or decrease.  Several studies have 

also been performed to evaluate the influence of pressure on the mechanical properties of 

polymer matrix composites [4-10], at pressures up to 7000 bars (700 MPa). Typical modulus 

variations with pressure for unidirectional composites are increases of a few percent per 100 

MPa pressure increase. Tensile strength tends to decrease with increasing pressure [4,5] and 

this has been related to increased matrix yield stress and reduced toughness. In contrast 

compression strength generally increases with increasing hydrostatic pressure [6-8], and the 

failure mechanisms have been shown to change at high pressures. In-plane shear properties 

also improve with increasing pressure but the fibre orientation has been shown to affect the 

degree of improvement [9].  A review by Hoppel et al summarized data on hydrostatic 

pressure effects published before 1995 [10] and concluded that more experimental and 

theoretical research was needed in this area.  



All the composite work described above has focussed on in-plane properties. However, failure 

in composite structures is frequently caused by interlaminar crack propagation (delamination) 

and if deep sea structures are to be optimized the influence of hydrostatic pressure on the 

interlaminar fracture toughness should also be quantified. Very little work has been published 

on out-of-plane behaviour of composites in this context. A recent paper by Rhee presented 

results from compressive fracture tests in a pressure vessel on unidirectional carbon/epoxy 

dog-bone specimens containing implanted film defects [11]. A 32% increase in Gc was 

measured for an increase in pressure from atmospheric to 200 MPa. At low pressures multiple 

delaminations were noted whereas at higher pressure a single crack propagated. These results 

are interesting but the change in the failure mode and the mixed mode loading make analysis 

in terms of Mode I and Mode II fracture toughness difficult. A special test set-up has therefore 

been developed at IFREMER to enable such pure loading tests to be performed.  

Interlaminar fracture toughness tests have been performed for many years but have only 

recently been standardized [12]. Mode I testing is now routinely performed using the double 

cantilever beam specimen (DCB) [13]. Mode II testing is more controversial and no standard 

test method exists yet, but the four point ENF specimen proposed by Martin and Davidson 

[14] appears quite attractive, combining a simple test fixture with stable crack propagation. 

In the present paper Mode I DCB and Mode II 4ENF tests have been performed on 

unidirectional carbon/epoxy specimens, in water, in a pressure vessel at pressures of 4, 300 

and 900 bars. Pressure is related to the water depth by the expression: 

p = 0.101*H + 0.5*10-6*H²  (2) 

where p = pressure in bars and H = immersion depth in metres. 

These pressures therefore correspond roughly to surface, 3000 metres and 9000 metres depth, 

thus covering virtually all the possible sea applications (with the exception of the deepest 

marine trenches in which depths descend to over 11 000 metres). 



 

MATERIALS 

The materials tested are made from Cytec IM7/977-2, an intermediate modulus carbon fibre 

reinforced toughened epoxy resin. Unidirectional specimens were produced from prepreg in 

an autoclave at Cranfield University. The specimens were de-bulked and cured under 6 bar 

pressure, in a single ramp 180°C cure.  Specimens were nominally 3 mm thick and 20mm 

wide. Starter cracks were obtained by placing a 10 µm thick PTFE film at laminate mid-

thickness during lay-up. 

 

 

TEST PROCEDURE 

 
Specimens were tested in a 1000 bar pressure vessel mounted on a standard 20 ton capacity 

electromechanical test frame. Figure 1 shows an overall view of the test set-up. The load cell 

is outside the pressure vessel. As the friction between the loading piston and the vessel body 

is significant at the low loads applied during Mode I tests, all the specimens were 

instrumented with strain gauges and a calibration procedure enabled load cell measurements 

to be checked, as discussed below.  

Figure 2 shows the loading fixtures for the Mode I and Mode II tests. For the former 

aluminium blocks were bonded to the specimens for load introduction. For the latter the 

distance between the upper loading points was 60 mm and the distance between the lower 

supports was 100 mm.  A roller bearing is positioned so that the upper load points rotate about 

the specimen mid-thickness. The pressure vessel was closed, filled with tap water and 

pressurised. Strain gauge readings were allowed to stabilise before the tests were performed 

under displacement control at 2mm/min for Mode I, 1 mm/min for Mode II. A digital pressure 

transducer was used to record pressure and these data, together with the load cell output, 



crosshead displacement and strain gage readings were recorded on a PC-based acquisition 

system for subsequent analysis. 

 

The determination of GC values requires knowledge of three of the four parameters: load, 

displacement, crack length and modulus. For tests performed inside a pressure vessel analysis 

is complicated by two factors. First, the load cell of the test machine is located outside the 

pressure chamber.  Because of the friction in the seals of the chamber and the relatively low 

loads expected, it was not possible to use the machine load cell directly to measure the load 

applied to Mode I specimens.  In order to overcome this problem, all samples were 

instrumented with strain gauges. For Mode I tests the gauges were located on one of the DCB 

arms, for Mode II tests they were bonded to the lower surface of the specimen at mid-span. 

These strain gauges can be calibrated to act as load cells when the location of the strain gauge 

and specimen geometry are measured accurately (see Appendix). As strain gauges are 

sensitive to temperature and pressure readings were allowed to stabilise before starting to load 

the specimen. The second specific difficulty is that it is not easy to determine the crack 

lengths visually. Crack lengths were therefore back-calculated using the measured specimen 

compliance and assuming that the axial modulus of this material is independent of pressure 

over this range. This assumption is supported by published data [10] and by values measured 

for compliance at different pressures during fracture tests. In addition, for pressures up to 30 

MPa view-glasses enabled specimens to be filmed during part of the tests, so that some 

calculated crack lengths and measured displacements could be checked. Figure 3 shows an 

example of the field of view for a Mode II test. The Mode I data analysis is performed using 

Equation (3) for initiation values and Equation 4 for propagation: 
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The derivation of these equations is given in the Appendix. The term E1I was measured for 

each half specimen using the ASTM D 790 three point bend test protocol. The validity of the 

load/strain relationship (equation A3) was checked by performing load/unload cycles in the 

linear elastic regime on an Instron 4302 test machine equipped with a 500 N load cell.  Figure 

4 shows an example of the test-calculation comparison. 

 

In Mode II testing the load and crosshead displacement were recorded continuously, together 

with the strains at the centre of the specimen on the lower (tension) face. The loads are around 

20 times higher in Mode II than Mode I and there is much less error in the load cell 

measurements due to friction, but displacement values were considered to be more reliable 

than force as they could be checked directly by measurements of movements made through 

the view-glass up to 30  MPa. Figure 5 shows an example of the machine crosshead 

transducer versus image analysis measurement correlation. It is clear that the values are very 

similar, hence the recordings of the crosshead transducer were used in subsequent analyses. In 

this case the strain measurements enable the exact point at which the specimen loading begins 

to be identified. The expression generally employed to determine GIIC values is an 

experimental compliance calibration. As crack length could not be followed visually at the 

highest pressures (the view-glasses were only qualified for use up to 300 bars) an analytical 

expression was required. Such expressions have been proposed in the published literature 

[14,15] but their full derivations are not given. An analytical expression was derived here 

therefore, in order to determine GIIC and GIIP , Equation (5) : 
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The derivation of this equation is given in the Appendix. 

 

RESULTS 

 

Mode I 

Figure 6 shows three examples of load-displacement plots from the fifteen DCB tests 

performed (3 at 0.4MPa, 5 at 30MPa and 7 at 90MPa).  A small drop in the load is visible just 

after the end of linearity point showing that the crack initiation is slightly unstable, in spite of 

using a starter film of thickness within the ISO recommendation (<12 microns).  The crack 

initiation values are shown in Table I and it is clear that pressure has little effect on Mode I 

initiation.   Figure 7 is a plot of the average Mode I resistance curves obtained by analysing 

the data using eq.3 and eq.4.  For each specimen, the term EI was measured independently in 

three point flexure.  Table I also shows mean values of the crack propagation resistance GIP 

taken at a crack length a = 55mm and the minimum and maximum values obtained.  It is 

noticeable that the mean GIP decreases very slightly with increasing pressure, by around 10% 

for an increase of pressure from 4 to 900 bars. 

 

Mode II   

Twelve Mode II specimens were tested, 3 at 0.4MPa, 5 at 30MPa and 4 at 90MPa. Figure 8 

shows an example of the load-displacement plots recorded at each pressure. Once again the 

crack initiation is unstable and higher GIIC values are measured at initiation than during 

subsequent propagation. Values decrease towards a stable plateau. Figure 9 shows examples 

of the Mode II resistance curves. Table 2 presents the results obtained, for initiation and 

propagation. There is a significant increase in both initiation and propagation resistance 



values with increasing pressure. Values at 300 bars are 18% higher than those at 4 bars. At 

900 bars initiation values increase by a similar amount while propagation values are 25% 

higher than those at the lowest pressure. 

 

DISCUSSION 

 
The values obtained from these tests are given in Tables 1 and 2 and summarised in Figure 

10. Under Mode I loading there may be a small decrease in the fracture toughness but the 

drop is similar to the scatter in values and cannot be considered to be significant. Under Mode 

II loading there is a more significant influence of pressure. One possible reason for this is the 

influence of pressure on the friction between the two sliding surfaces. Friction forces will be 

directly proportional to the applied lateral pressure on the specimen faces so the work 

required to overcome these would be expected to increase the measured value of GIIC.  

On a practical level it is apparent from these results that within experimental scatter there is 

no detrimental effect of hydrostatic pressure on either Mode I or Mode II interlaminar fracture 

toughness for this carbon/epoxy material and for the range of pressures of interest for deep sea 

structures. This suggests that standard tests may be used to provide conservative values in the 

evaluation of the damage tolerance of composites for these applications 

 

CONCLUSIONS 

 
The present paper describes tests performed in a specially designed test fixture which allow 

hydrostatic pressures up to 1000 bars to be applied during standard mechanical tests. 

Interlaminar fracture tests under Mode I and Mode II loadings performed at 4, 300 and 900 

bars pressure have revealed little influence of pressure on Mode I fracture toughness of 



carbon/epoxy specimens. Mode II delamination resistance was increased by up to 25% for an 

increase in pressure from 4 to 900 bars. 

 

These results suggest that data from standard laboratory tests can be used to provide 

conservative values in the damage tolerance design of these materials for deep sea 

applications.  
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Tables 

 

 

Table 1. Mode I test results 

 Mode I delamination toughness, J/m2 
 Initiation (5%-Max) Propagation a= 55mm 
Pressure (MPa) 0.4 30 90 0.4 30 90 
Average 406 397 363 766 719 682 
Min 387 261 296 724 597 604 
Max 434 478 440 825 790 777 
 
 

Table 2. Mode II test results 

 Mode II delamination toughness, J/m2 
 Initiation (5%-Max) Propagation a= 55mm 
Pressure (MPa) 0.4 30 90 0.4 30 90 
Average 1548 1842 1812 944 1112 1186 
Min 1528 1713 1773 884 995 1072 
Max 1570 1929 1905 992 1165 1285 
 



 

Figure captions 

 

1. Test set-up, 1000 bar pressure vessel on 20 ton capacity test frame 

2. Test fixtures, a) Mode I, b) Mode II 

3. Field of view for tests under pressure, a) Mode I, b) Mode II 

4. Example of load-strain comparison, calculated and measured, Mode I specimen. 

5. Example of crosshead transducer versus image analysis measurements of displacement for 

a Mode II specimen. 

6. Load-displacement plots, Mode I, at different pressure levels. 

7. Average Mode I fracture resistance plots at different pressure levels. 

8. Load-displacement plots, Mode II, at different pressure levels. 

9. Examples of Mode II fracture resistance plots at different pressure levels. 

10. Summary of fracture tests, Mode I and Mode II versus applied hydrostatic pressure. 

A1. 4pt ENF test configuration and notations used in the analysis. 

A2. Shear Force and Bending Moment diagram section [A-C]. 

A3. Shear Force and Bending Moment diagram section [C-E]. 



11. Appendix: Data Analyses 

 

Mode I 

Load determination 
 
Using simple beam theory and stress analysis of a beam in bending, we have:  

I
hxMxb 2
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=σ   (A1) 

PxxM −=)(    (A2) 

Here )(xbσ  is the bending stress at the surface of the beam, M(x) is the bending moment at a 

distance x from the loading point, P is the applied load, I is the second moment of inertia and 

h the half thickness of the DCB beam.  Consider x to be the distance between the strain gauge 

and the loading point and E1 is the flexural modulus of the beam, the applied load was 

determined from the strain gauge using the following relation: 
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Calculation of GIC 

The general expression of the energy release rate GC is given by Williams [16]: 
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As in the previous section, P is the load applied to the sample, b the width of the sample, a the 

crack length and C is the compliance and is equal to C=δ/P with δ being the opening 

displacement. 

However, using simple beam theory in the case of the double cantilever beam, the compliance 

of the specimen can be expressed by the following equation: 
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Finally, G can be expressed as a function of P and d (and for any given time) by: 
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For the same time the crack length can be estimated using (A9): 
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These expressions enable GIP values versus crack length to be determined. The initiation 

values are calculated using the usual beam theory 
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The correction factors F and N suggested in ISO15024 [13] were not used in the study as it is 

a comparative study.  The crack length correction factor ∆ cannot be determined as no visual 

crack length measurement was available (see [13] for more details). 

 

Mode II 

 
Introduction definition of the problem. 
 
The notations used to carry out the analysis are described in Figure A1.  In the following 

section, y is the deflection of the beam, x is the long axis of the beam, parallel to the crack 

plane. 
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The aim of the calculation is to determine the deflection δ at the centre of the loading cradle 

which is the mid- point between B and D. 

 

In order to simplify the calculations, the coordinate system will be centred at the crack tip 

(point C in Fig. A1).  The deflection δ of the beam due to the cross head displacement can be 

expressed by the following equation: 
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The beam can now be described as two half beams which can be treated independently.  

 

Calculation for the 1st half beam crack end: determination of (yA-yB).   

 

The shear force T and moment M diagrams are plotted in Figure A2. 

 
Determination of yAB1 in section [C-B]: 

Here we have )(1 LayLy BAB −′== θ     (A12) 

 

Moment in this section is:  
4
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here  
12

3bhI =   , b is the width and h is the HALF thickness 

Therefore after integration: 
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Finally: 
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Determination of yAB2: in section [B-A] 

We have ( )xLPxM −=
4

)(      (A18) 

Therefore by integration of the beam equation similar to eq.A14, we obtain: 
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Calculation for the 2nd half beam crack end: determination of (yE-yD).   

The problem is very similar to the calculations carried out for section [AB], however, the load 

applied is P/2. 
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Determination of yDE1 in section [C-D] 
Here we have )(1 LaSyLy DDE −−′== θ    (A22) 
 

Moment in this section is:  
2
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Standard beam theory gives:  
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Therefore after integration, using the same methodology used in eq.A14 to eq.A16 we 

conclude that: 
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Determination of yDE2: in section [D-E] 

We have ( )xLPxM −=
2
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Therefore after integration of the beam equation we get: 
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Calculation of δ and the compliance C: 

Using equations A11, A20 and A28, we obtain: 
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The compliance is given by: 
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Finally, the Mode II delamination toughness is defined by: 
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If the flexural modulus is known, the crack length can be calculated using eq (A33): 
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1. Test set-up, 1000 bar pressure vessel on 20 ton capacity test frame 

 

 



 

 

 

2. Test fixtures, a) mode I, b) mode II 

 



 

3. Example of field of view through view-glass for mode II test under pressure. 
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4. Example of load-strain comparison, calculated and measured, mode I specimen. 
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5. Example of cross-head transducer versus image analysis measurements of displacement 

through view-glass, Mode II specimen. 
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6. Load-displacement plots, mode I, at different pressure levels 
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7. Average Mode I fracture resistance plots at different pressure levels 
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8. Examples of load-displacement plots, mode II, at different pressure levels 
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9. Examples of Mode II fracture resistance plots, at different pressure levels 
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10. Summary of fracture tests, mode I and mode II versus applied hydrostatic pressure. 

 
 

 
 
A1. 4 point ENF test configuration and notations used in the analysis 
 



 
 
A2. Shear Force and Bending Moment diagram section [A-C] 
 

 
 
A3. Shear Force and Bending Moment diagram section [C-E] 


