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Abstract 

Powertrain size optimisation based on vehicle class and usage 
profile is advantageous for reducing emissions. Backward-
facing powertrain models, which incorporate scalable 
powertrain components, have often been used for this 
purpose. However, due to their quasi-static nature, backward-
facing models give very limited information about the limits 
of the system and drivability of the vehicle. This makes it 
difficult for control system development and implementation 
in hardware-in-the-loop (HIL) test systems. This paper 
investigates the viability of using forward-facing models in 
the context of powertrain component sizing optimisation. The 
vehicle model used in this investigation features a 
conventional powertrain with an internal combustion engine, 
clutch, manual transmission, and final drive. Simulations that 
were carried out have indicated that there is minimal effect on 
the optimal cost with regards to variations in the driver model 
sensitivity. This opens up the possibility of using forward-
facing models for the purpose of powertrain component 
sizing. 

1 Introduction 

Optimising powertrain component size for desired vehicle 
class and usage profile is beneficial for reducing tail pipe 
emissions [1]. Backward-facing models, containing scalable 
powertrain components, are often used for this purpose [2, 3]. 
Backward-facing models do not require a driver model, and 
the vehicle speed trace is obtained from a given drivecycle. 
The speed trace is then imposed onto the vehicle model, to 
calculate the angular velocity and torque at the wheels. 
Subsequently, the angular velocity and torque at the Internal 
Combustion Engine (ICE) is determined “backwards” through 
each drivetrain component via efficiency models or maps. 
The efficiency maps are obtained from steady-state testing of 
real components, hence this is why backward-facing models 
are also considered as “quasi-static” models. These models 
also run with a relatively larger time step when compared to 
forward-facing models [3], resulting in quicker simulation 
times. These attributes have enabled backward-facing models 
to be used extensively in the area of powertrain component 
size optimisation [4, 5]. 
 
However, because of their quasi-static nature, backward-
facing models give very limited information about drivability 

of the vehicle [4]. Backward-facing models also make it 
difficult for control system development and implementation 
in hardware-in-the-loop (HIL) test systems. 
 
Alternatively, forward-facing models feature a driver model, 
and it gives insight to the drivability of the vehicle. Whilst it 
is acknowledged that forward-facing models provide better 
understanding of the dynamics and physical limits of the 
powertrain [3, 6], there have been very little research in the 
area of utilising forward-facing models for the purpose of 
powertrain component sizing optimisation. With the potential 
advantages of forward-facing models over backward-facing 
models, this paper aims to investigate this area. 
 
To achieve this, both backward-facing and forward-facing 
models are coupled with an optimiser to minimise the 
vehicle’s fuel consumption. Sections 2 and 3 introduce the 
forward-facing and backward-facing models respectively. 
Section 4 describes the methodology, along with development 
of the vehicle model, the driver model, and the drivecycles 
used in the optimisation routine. This is followed by Section 5 
with the simulations results and Section 6 with discussions. 
Section 7 then concludes the findings of this paper. Although 
a conventional powertrain is used as a case study, the 
methods and modelling approaches used in this paper can be 
applied to different types of powertrains including those in 
electric vehicles and hybrid electric vehicles. 

2 Forward-facing model 

Forward-facing models represent dynamic models with the 
correct causality. A forward-facing vehicle model features a 
driver model, which provides torque demand in the form of 
desired ICE torque and brake torque (positive and negative 
torque), to meet the speed trace from a drivecycle. The 
topology of the forward-facing model used in this 
investigation is shown in Figure 1. A basic driver model 
typically uses one or more Proportional-Integral (PI) 
controllers to achieve the torque demand, with reference to 
the desired speed trace. This is discussed further in the next 
section. The torque produced by the ICE propagates through 
the transmission and final drive ratios, before ending up as 
torque applied at the wheels. This is then exerted to the 
vehicle mass via force on the tyre contact patch. The vehicle 
speed that results from the applied force is propagated back 
through the drivetrain, and returns to the ICE as angular 
velocity at the crankshaft. Brake torque is applied directly at 
the wheels. 
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Unlike backward-facing models (Figure 2), the speed trace is 
not “imposed” onto the vehicle model in forward-facing 
models, and therefore there will inevitably be a small margin 
of error between the actual vehicle speed and the speed trace. 
It is the role of the driver model to minimise this margin of 
error. This is similar to the role of a real-world test driver 
carrying out an emissions test for vehicle type-approval. 
 
Forward-facing models provide insight into the vehicle model 
drivability, and it captures the limits of the physical system. It 
also makes control development and implementation on HIL 
systems easier. However, with the presence of multiple state 
equations in a typical forward-facing model, vehicle speed 
(and subsequently drivetrain angular velocity) is computed 
via multiple state integration, resulting in the need to run the 
simulation in smaller time steps. This results longer 
simulation times when compared to backward-facing model. 
 
Furthermore, resizing the powertrain will alter the dynamics 
of the system, potentially requiring the driver model to be re-
tuned to maximise the performance of the system. This will 
also be one of the areas investigated in this paper. 

3 Backward-facing Model 
The ability of the vehicle model to meet the demands of the 
drivecycle is the principle assumption of a backward-facing 
model [3]. Based on the speed trace, the resultant force at the 
tyre contact patch is calculated, where it is converted into 
wheel torque and propagated back to the ICE via the 
drivetrain, along with angular velocity. As a result, there is no 
driver model present. With both speed and torque imposed 
onto the powertrain components, a backward-facing model 
can also be considered as acausal. 
 
During the optimisation routine, the powertrain component 
sizing is determined by the ability of the component to 
address both the speed and torque imposed on the component 
(i.e. the power requirements). 
 
Backward-facing models rely on efficiency maps that were 
created based on torque and speed data, and usually produced 
during steady-state real world testing. This results in the 
calculation being relatively simpler than forward-facing 
models (essentially lookup tables instead of state equations), 
and can therefore be run over relatively larger time steps. 
 
Unfortunately, the very nature of using steady state maps 
hinders the performance of backward-facing models when it 
comes to representing dynamic effects. The acausal nature 
also means that backward-facing models are difficult for 
control system development and implementation in HIL 
systems. 

4 Model Development 

The vehicle model used in this investigation features a 
conventional powertrain that is found on majority of the 
vehicles on the road. It contains an ICE, clutch, manual 

transmission, and final drive. It also includes environment 
losses such as aerodynamic drag and rolling resistance. The 
ICE displacement and final drive ratio is scalable, and used as 
decision variables by the optimiser to minimise the cost 
function. 
 
The forward-facing vehicle model is shown in Figure 1. A 
backward-facing model is also created as a benchmark against 
the forward-facing model. The backward-facing model is 
shown in Figure 2. 
 
Based on Figure 1, it is observed that the transfer of power 
information is bi-directional in the forward-facing model, i.e. 
the direction of effort (torque) is opposite to the direction of 
flow (speed). The driver block in the forward-facing model is 
also absent in the backward-facing model. 
 
In the backward-facing model, power information is mono-
directional (effort and flow are in the same direction). 

 
Figure 1: Forward-facing vehicle model 
 

 
Figure 2: Backward-facing vehicle model 

4.1 Vehicle Model 

Both forward-facing and backward-facing models include the 
following parameters: 

• Scalable ICE model 
• Vehicle mass information (to calculate inertial load) 
• Identical transmission ratios. 

 
The following environmental forces are also imposed on both 
models: 

• Aerodynamic drag 
• Tyre rolling resistance. 
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4.2 Scalable ICE model 

The aim of the ICE model is to be scalable and sufficiently 
capture the operation and efficiency envelopes of an ICE. 
This model is based on the Willan’s line ICE model, as 
proposed by Guzzella [7] and Rizzoni [2], and modelled by 
Shankar, et al [8]. Validations of the models were carried out 
by Shankar, et al [9] and Wu, et al [10]. 
 
In this paper, a baseline ICE model that is naturally aspirated 
and spark ignited was selected, which is widely available on 
the market today [11, 12]. 

4.3 Driver Model 

For the forward-facing model, two PI controllers were used in 
the driver model. A common integrator was shared between 
the two controllers, and the integrator was reset when there 
was a change in the sign of the error (from positive to 
negative or vice-versa), as a form of basic anti-windup. This 
implementation is shown in Figure 3. 
 

 
Figure 3: Driver model with two PI controllers 
 
The two PI controllers were used to modulate positive torque 
(ICE) and negative torque (friction brakes) respectively. The 
two sets of P and I values, along with the ICE displacement 
and final drive ratio, form the six decision variables that are 
manipulated by the optimiser to minimise the cost function. 

4.4 Drivecycles 

Three types of drivecycles were used to evaluate the sizing of 
the powertrain to minimise the cost function: 

• New European Drive Cycle (NEDC) [13] 
• Real-world cycle [1] 
• Artemis cycle [14]. 

 
The real-world cycle is shown in Figure A 1 in the Appendix, 
and it was derived from series of real-world usage studies 
undertaken by Cranfield University [1]. It combines speed 
traces from usage in urban, A-road, B-road and motorway 
sections. 

4.5 Methodology 

The optimisation routine can be represented in a standard 
form [15, 16]. Given a set of decision variables, X, and a cost 
function, ϕ, the optimiser aims find Xmin to minimise ϕ, within 
bounds of G, where G represents the design constraints. 

 
To optimise the vehicle for the lowest amount of fuel 
consumed to complete a drivecycle, the cost function (ϕ), 
decision variables (X), and constraints (G) are shown in Table 
1. 
 
The drivecycle speed deviation is used for the forward model 
only, and it is calculated as the root mean square (RMS) error 
between the vehicle speed trace and target drivecycle speed 
trace. 
 
Term Definition Units 
ϕ 
 
X 
 
 
 
G 

Fuel consumed (FC) 
 
ICE displacement 
Final drive ratio (FD ratio) 
P and I values (for forward-facing model) 
 
 1.0 < ICE displacement < 5.0 
1 < FD ratio < 10 
0 < Drivecycle speed deviation < 1 

kg 
 
litre 
- 
- 
 
litre 
- 
kph 

Table 1: Terms used for Simulations 1 and 2 
 
The P and I values are mapped out as follows: 

• P1 is the accelerator pedal gain 
• I1 is the accelerator pedal integral 
• P2 is the brake pedal gain 
• I2 is the brake pedal integral. 

5 Results 

5.1 Simulation 1 

Purpose of Simulation 1 was to identify the combined effect 
of optimising the powertrain size and driver model. It also 
allowed the forward-facing model to be benchmarked against 
the backward-facing model in terms of component sizing and 
minimisation of the cost function. A fixed vehicle glider mass 
of 1000kg was used to simulate a typical E-segment family 
saloon [17]. The glider mass is defined as the total mass of 
the vehicle minus the mass of the powertrain. The results of 
this simulation are shown in Figure 4 and Figure 5. 
 

 
Figure 4: Optimisation of engine displacement for minimum 

fuel consumption for a given drivecycle 
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Figure 5: Resultant fuel consumed for each drivecycle 
 
In Figure 4, the optimised engine displacement for each 
drivecycle is shown. In Table 2, the optimised P and I values 
for the driver model are shown. It is noteworthy that the 
values vary greatly from one drivecycle to another, and there 
is no observable trend. 
 

  P1 I1 P2 I2 
NEDC 82.70 3.74 328.57 9.83 
Real 
World 48.48 0.40 492.38 9.62 

Artemis 67.08 4.41 480.35 0.26 
Table 2: Simulation 1 results, forward-facing model 
 
Time taken to complete optimisation (forward-facing model): 

• NEDC: 35.2 minutes 
• Cranfield: 50.8 minutes 
• Artemis: 95.5 minutes. 

 
Time taken to complete optimisation (backward-facing 
model): 

• NEDC: 2.5 minutes 
• Cranfield: 4.2 minutes 
• Artemis: 7.1 minutes. 

5.2 Simulation 2 

In Simulation 2, only the P and I values were optimised for a 
given drivecycle and fixed ICE displacements. The cost 
function is the same as Simulation 1. 
 
The purpose of this simulation is to observe the sensitivity of 
the cost function towards variations in the P and I values. The 
simulation was carried out using forward-facing models only 
and for different sets of drivecycles and ICE displacements. 
 
Three vehicle types, as shown in Table 3, were used as a case 
study. 

 
 ICE displacement 

(litres) 
Vehicle mass 

(kg) 
Vehicle 1 1.5 1000 
Vehicle 2 3.0 1500 
Vehicle 3 5.0 2000 

Table 3: Three vehicle types used in Simulation 2 
 
The results in Table 4 show the results of the P and I values 
for each type of vehicle. The P and I values combines the 
results from all three drivecycles, and are represented as the 
standard deviation (Std Dev) and mean values respectively. 
The full set of results is shown in Table A 1 in the Appendix. 
 

Vehicle 1 
  P1 I1 P2 I2 
Std Dev 1.52 5.30 205.13 1.35 
Mean 10.75 3.12 235.93 1.52 

 

Vehicle 2 
Std Dev 16.23 4.46 78.33 2.73 
Mean 18.56 5.30 147.51 2.00 

 

Vehicle 3 
Std Dev 7.42 5.51 106.67 5.47 
Mean 26.04 3.50 209.72 3.64 

Table 4: Results of P and I values for each vehicle type 
 
By taking the average of the mean P and I values for each 
vehicle type, the “global mean” was then calculated, as shown 
in Table 5. 
 

 
Table 5: Global mean for the P and I values 
 
To study the sensitivity of the cost function towards 
variations in the P and I values, the simulation was re-run and 
the global mean P and I values were imposed on all vehicle 
types and drivecycles. The result can be seen in Figure 6, 
where “Optimised” refers to the fuel consumption of the 
vehicle using the respective optimised P and I values and 
“Global Mean” refers to the fuel consumption of the vehicle 
using the “global mean” P and I values. 
 

P1 I1 P2 I2
18.45 3.97 197.72 2.39

Global	
  
Mean
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Figure 6: Sensitivity of P and I values towards the fuel 

consumption for each vehicle type and drivecycle 

6 Discussion 
Referring to the results from Simulation 1, it is noteworthy 
that the optimised component sizes were similar for a given 
drivecycle. The component sizes between the forward-facing 
and backward-facing models were closer for NEDC, but 
further away for Artemis. This could be attributed to the 
NEDC being less transient than the Artemis drivecycle in 
terms of acceleration levels. Hence, the “quasi-static” nature 
of the backward-facing model is not penalised as heavily in 
the NEDC as it is in the Artemis cycle. 
 
In Simulation 2, it is observed that there is minimal effect on 
the cost function with regards to variations in the P and I 
values. This result opens up the possibility of using forward-
facing models (with co-optimisation of the driver model) for 
the purpose component size optimisation. The advantages of 
forward-facing models, as discussed previously, is the insight 
that it will provide regarding the drivability of the vehicle, 
along with easier integration of the vehicle model in a HIL 
environment. 
 
However, the simulation times of backward-facing models 
were also observed to be was an order of magnitude faster 
than the respective forward-facing models. 

7 Conclusion 

This investigation has given some insight into the possibility 
of using forward-facing models for the purpose of powertrain 
size optimisation. Results have suggested that this is possible 
when the driver model is also co-optimised along with the 
powertrain components. 
 
The additional simulation time overhead imposed by forward-
facing models will also be reduced over time with ever-
increasing computing power. Therefore, the prospect of using 
forward-facing models for the purpose of powertrain 
component sizing is indeed achievable. 
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Appendix 
 

Vehicle 1 
  P1 I1 P2 I2 

NEDC 11.05 0.03 470.43 0.60 
Real World 12.09 0.08 147.61 3.07 
Artemis 9.11 9.24 89.76 0.89 
 

    

Std Dev 1.52 5.30 205.13 1.35 
Mean 10.75 3.12 235.93 1.52 
 

Vehicle 2 
NEDC 8.97 0.43 171.42 0.19 
Real World 37.30 9.20 60.01 0.67 
Artemis 9.40 6.27 211.09 5.15 
 

    

Std Dev 16.23 4.46 78.33 2.73 
Mean 18.56 5.30 147.51 2.00 
 

Vehicle 3 
NEDC 20.26 0.07 265.76 0.72 
Real World 34.41 9.85 86.71 0.25 
Artemis 23.44 0.58 276.70 9.95 
 

    

Std Dev 7.42 5.51 106.67 5.47 
Mean 26.04 3.50 209.72 3.64 
Table A 1: Results from Simulation 2 

 
  Vehicle 1 
  Fuel 

Optimised 
(kg) 

Fuel 
Global 
Mean 
(kg) 

Speed Dev 
Optimised 
(kph) 

Speed 
Dev Gbl 
Mean 
(kph) 

NEDC 0.28 0.29 1.53 0.60 
Real 
World 0.69 0.71 1.68 0.82 

Artemis 0.62 0.63 2.00 1.24 
  Vehicle 2 
NEDC 0.40 0.41 1.87 0.85 
Real 
World 0.98 0.99 2.00 1.11 

Artemis 0.89 0.89 1.87 1.67 
  Vehicle 3 
NEDC 0.53 0.55 1.60 1.11 
Real 
World 1.29 1.30 1.93 1.38 

Artemis 1.18 1.18 1.99 2.07 
Table A 2: Comparison between optimised and global P and I 

values 
 

 
Figure A 1: The real-world drivecycle 
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