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Internal Ballistics'Using Two Different Propellant Grain Form Functions
J. Pike
Cranfield Institute of Technology

SUMMARY

The combustion of multi-tube propellant grains is represented either by the
Corner form function or an exact parallel burning layer expression. The
exact expression predicts significantly different burning characteristics
near the end of the burn to that of the Corner form function. When used in
a typical gun firing calculation, the exact expression gives pressure
histories which are closer to the experimental results. It also gives

longer burn times and a reduction in the muzzle velocity of the projectile.



Introduction

For guns using solid propellant grains the burning surface area of the
propellant during the firing depends by the grain shape [1,2]. It is often
assumed for simplicity that the burning area of the grains varies linearly
with the depth of the propellant burnt. This assumption leads to the Corner
form function [2] for the for the burnt volume.
i.e. z = (1-f) (1+38f) (1)
where z is the burnt fraction of the propellant, £ is the fractional depth
of the grain left to burn and 4 is a constant. The significance of the
constant 4 can be appreciated by differentiating equation (1) to give

dz/df = -(1 - & + 2 ¥f) (2)
where dz/df is proportional to the burning surface area of the grain and
negative ¥ gives a linearly increasing burning area with decreasing f as the
grain burns.

For most simple rain shapes equation (1) gives a good approximation to the
burning characteristics of the grain [1]. It is also used for multi-tubular
grains (shown for example in Fig.l1l) by redefining f to be based on 1.15
Dfrag, where Dfrag is the distance between the tubes or the outer tubes and
the outer surface, as shown in Fig.l. However, multi-tubular grains break
up or fragment before burnout and equation (1) is then a poor representation
of the burning. It is unclear whether this error in the rate of burning of
the final 15% of the mass is sufficient to cause significant changes in the
internal ballistics of the gun. To investigate this, computations using the
Corner form function are compared with those using an exact form function
based on a parallel burning layer assumption. This assumption is itself an
approximation to the actual grain burning characteristics. It assumes that
the grain burns at the same rate over the whole of the grain, thus removing
parallel layers of propellant as the burning proceeds. Although there are
some indication that this assumption is approximately true [1], it does
require that the pressure is nearly the same over the whole of the
grain(including the interior of the tubes!), the propellant material is
homogeneous, the external flow past the grain does not significantly affect
the burning rate and that mechanical fracture of the grain does not occur
before fragmentation. Whatever the influence of these effects, it is to be

expected that after fragmentation the parallel layer assumption gives a more
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accurate representation of the burning rate than the Corner form function.
In any case, the comparison provides evidence as to the importance of the
accuracy of burning models and will thus promote the introduction of more

accurate models if necessary.
2. Exact form function for a multi-tubular grain shape.

Prior to fragmentation the burning area and volume of the multi-tubular

grain shown in Fig.1, is given simply by

_ 2 _ .2
A= vzz(d1 7d2) + M(d1 + dz) (3)

_ 2 _ a2
V= g&(dl 7d2) (4)

where d1 is the outer diameter of the grain, d2 is the tube diameter and £
is the grain length. These are linear functions of f (which is assumed to

vary due to the burning), such that

d1 = do - (1-£)D (5)
dz = di + (1-£)D (6)
L= £° - (1-£)D (7

where do and di are the original grain and tube diameters and D is twice the
maximum thickness to be burnt through for the grain to be fully burnt. For
the 7-tube grain shown in Fig.l, D is given by

(d_ - 2Wcos(n/6)) % - a° + w°

4W (2~cos (n/6)) (8)

D =

where W is the distance between the tube centres or the web and is expressed

in terms of the diameters by _
W=1{(d -4da)/4 (9)
[+ 3

The volume is related to z by dividing by the origin grain volume (Vo). The

burning area is related to dz/df by multiplying the area by - D/ZVO.

Fragmentation occurs after a depth of (do - 3d1)/8 has been burnt through.



That is, Dfrag. is twice this distance, and fragmentation occurs when f is
Dfrag/D. The grain then divides into 12 slivers; 6 small inner slivers and
6 larger outer slivers. The calculation of their surface areas and volumes

is complicated. The expressions used here are

{i) Inner Slivers

® =7 - 2cos'1(g—2] (10)
= 2td o + Weos(n/6) - 2 dZ(sin(n/3-a) + a) (11)
= L(W°cos (n/6) - 2 dZ(sin(n/3-a) + «)) (12)
(ii) Outer slivers
« = m/3 -2c0s” (@ + aW? - a2)/(aa W) (13)
B = sin”'(d,/d sin(n/6 - a/2)) (14)
o= 1n_1(W/d2) (15)
S=m/6+a-B (16)
= &od, + 83) + d_W(sinB -(B+5)) + cod” - Z8a’ (17)
= £(zd W(sinp - sin(B + 8)) + <od” - 25d7) (18)

The variation of dz/df with f from the exact form function above and from
equation (2) with f equal to twice the burnt distance divided by D is shown
in Fig.2. Prior to fragmentation when £ = 0.6, the two models are very
close. After fragmentation the Corner form function predicts a continually
increasing burning area, whereas the exact shows a rapid decrease and a long
tail. When equation (2) is used in practice, f is non-dimensionalised using

1.15 Dfrag. so that burning is completed when £ =

When these relationships are used in computational codes, it is essential to
ensure that the mass of burnt and unburnt propellant is conserved. This is
best achieved by expressive dz/df as a function of z, so that integration
errors can be eliminated. From equations (1) and (2), we have for the

Corner form function
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g—? = '{(14-1?)2 - 4\92} (19)

For the exact form function, it has not been found possible to express dz/df
directly as a function of z and we have to use a parametric form, with dz/d4f
and z as functions of f for example, as given by equations (3) to (18). The
computationally efficient method of solving and using such relationships is
to construct a "lookup" table. That is z and dz/df are tabulated for a
range of f values and interpolation is used to find intermediate values. It
is more convenient if the table of'dz/df values is at equal z intervals and
this is achieved by interpolating the 1lookup table values between the
calculated values. The Fortran code for building a DZODF lookup table at MZ
equal Z intervals between 0 and 1, is given in the Appendix. The values
from this code are compared with those from equation (19) in Fig.3. We see
that after fragmentation when z = 0.85, the burning rates are very
different, with the exact form function falling approximately linearly to
zero as z increases from 0.85 to 1. 1Indeed the linear assumption could be
used as a quick "fix" to a computer code, to evaluate the significance of
changes in the form function, although this approximation is difficult to
justify theoretically as it does not give an acceptable relationship for

dz/df as a function of £.
3. Effect of form function on a typical gun firing.

The WAFBC1 internal ballistics code, written by E.F. Toro [3,4] has been
used to complete the conditions during the firing of a 3" Navy gun, for
which experimental pressure histories are available at 3 positions in the
firing chamber. The modelling of internal ballistic flows is still at a
stage when the computed results are not entirely trustworthy, but the
results from the code should be adegquate to demonstrate the effect of

varying the form function.

In Fig.4 the computed pressure distributions using the Corner form function
ahd the exact form function are compared with the experimental pressures.
The experimental pressures are shown for three positions in the firing
chamber. The computed pressures are for the breech in the top left hand

plot and at the three pressure gauge positions in the other three plots.
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We see that in all the plots the computed pressures are nearly the same
before fragmentation, which occurs at about 6us. Then the pressure
predicted by using the exact form function decreases much faster than the
Corner form function, until burnout occurs for the Corner form function at
6.7us. The two pressures then progressively converge to become nearly the

same again when the exact form function predicts burnout at 7.8us.

When comparing these results with the experimental pressure distributions,
it is difficult to justify an absolute time equivalence as the early
ignition of the propellant is not well modelled in the computation. Thus
the initial firing time does not form a useful reference. In Fig.4 the
experimental pressures have been matched to the rising theoretical
pressures, by amending each of the gauge pressure times by the same amount.
When the rising pressures are matched thus, we see firstly that the peak
experimental pressures are much greater than the computed pressures and
secondly that the falling pressures are matched much more closely by the
exact form function than the Corner form function. The use of the exact
form function, then removes one defect from the pressure history, but the
mismatch in the peak pressures indicates that a serious defect in the
modelling (or in the experimental results!) still exists which requires
further investigation. This is however beyond the scope of the present

report.

The differences in the pressure between the two form functions affects the
acceleration of the projectile and the predicted muzzle velocity is reduced
from 843 m/s for the Corner form function to 830 m/s for the exact form
function. This represents a small but significant reduction in the muzzle
velocity. Another change which could be significant is that burnout occurs
after 7.8 m/s instead of 6.7 m/s. This later burnout for the exact form
function causes burnout to be much closer to muzzle exit of the projectile
at 9.1 m/s, so increasing the risk of unburnt solid fragments of the
propellant leaving the barrel. It should be noted that the long burning
time of the large slivers from multi-tubular grains could be reduced by
using a "slotted" rather than a circular outer profile for the propellant
grains. Using such fluting the outer slivers can be made the same size as
the inner slivers or even smaller, whilst the burning characteristics prior

to fragmentation are virtually unchanged. Burnout then occurs more quickly




after fragmentation, in fact in little longer time than that predicted by
the Corner form function, as can be seen by referring to Fig.2. In Fig.2
the burnout of the inner slivers occurs at the kink in the exact form
function at a value of f just larger than the Corner burnout wvalue. This
could then be the final burnout time, although the effect on the pressure

distribution after fragmentation would need investigation.

Conclusions
The assumption of parallel burning layers gives a surface area variation (or
form function) for multi-tubular grains which varies significantly from the

Corner form function after grain fragmentation.

The exact form function predicts significantly longer times to grain burnout
and gives pressure histories in a typical gun firing which more closely

match experimental results.
The muzzle velocity is reduced by a small but significant amount.
It would be desirable to use the exact form function more generally in

computational internal ballistics codes, to improve the accuracy. Fortran

subroutine suitable for 7-tube grains is supplied in the Appendix.
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List of Symbols

Surface area of burnout propellant grain

Twice the depth to grain burnout

Twice the depth to grain fragmentation

Original outer diameter of grain

Outer diameter of burning grain

Tube diameter of burning grain

Original tube diameter of grain

Remaining fraction of depth of grain to be burnt
Length of burning grain

Original length of grain

Volﬁme of burning grain

Original grain volunme

Web of multi-tubular grain (distance between tube centres)
Fraction of grain volume burnt.

Form function constant in eq.(1).




References
Internal Ballistics Editor Hung, F.R.W. et al HMSO London 1951.

Corner. J. Theory of the interior ballistics of guns. John Wiley

and Sons, New York, 1950.

Toro, E.F. A weighted average flux method for hyperbolic
conservation laws. Prog. R. Soc. Lond. A423, 401-418 (1989).

Toro, E.F. Riemann problem based techniques for computing reactive
two-phase flows. Numerical Combustion, Lecture notes in Physics,

Vv.351, pp 472-481, 1987.



st dii Lii2he e kA o




T &

Fig.l Cross-Section of 7-tube Grain
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Fig.2 Variation of dz/df with the depth of grain left to burn fora 7-tube grain.



Fig.3 Variation of dz/df with the burnt fraction z for a 7-tube grain.
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Fig.4 Comparison of firing chamber pressures with computations using the Corner and exact form
functions.



APPENDIX

SURFACE AREA OF MULTI-TUBE CYLINODRICAL BURNING PROPELLANT GRAIN

PUTS DZSDF=L.5#CxA/V) AT EQUAL Z INTERVALS IN ARRAY DIODF

A=SURFACE AREA BURNING,L=TWICE BURMN DIST TO BURNOUT,VO=INITIAL VOLUME,
GRLEN,GROUDI,GRINDI ARE GRAIN LENGTH,OUTER CYLINDER DIAMETER & TUBE DIAM.
MZ IS NUMBER OF INTERVALS IN DIODF LOOKUP TaBLE (MZI<=100)

NBo DZODF IS A COUBLE PRECISION ARRAY DIMENSIONED 0:1000

OO D

SUBROUTINE TUBE7(GRLEN,GROUD I,GRINDI,MI,DZ0DEY
IBPLICIT REAL=BLA-H,0~1)
PARAMETER (MD=1(G00)
DIMENSICN Z{D:zsMDI»S€I:2MD3,DZ0DFLOMDD
IF(MLI.GT-MD)3TOP 7
PL =4,02DATANC1.0D0}
C30=CO0S{PIF6.03
YO =Pl/4.0=GRLEN=CGROUDI «%2=7 ,04GRINDI»®% 2)
WEB=(GROUDI*GRINDIIA/G..D
b =({GROUDI-Z2.0#%WEB®CI0I#*2=GRINDI*»2+WEB%%2) /4 . 0/HEB/(2.0-C30)
DFRAG=(GROUDI=3,0»GRINDII /4.0
CaLC BURNT YOL FRACTION Z4) & BURNING SURFACE S}
0o G001 LP=C,MZ
F=REALIMZ-LEFISREALCHMIS
C D1=BURNING GRAIN DUTER DIAMETER,D2=BURNING GRAIN TUBE DIAMETER
QQSGR@U§§W§E@@ﬁg)w@_
D2=GREINDI+{1.0~E)=«D
& GL=BURNING GRAIN LENGTH, a=BURNING GRAIN SURFACE AREA
- EL=GRLEN-C] s0=F)=D
IFP{D2-LE-WEBITHEN
CALGC AREA & VCLUME BEFORE FRAGMENTATION OF A SINGLE GRAIN
A=2PL/2.02(D1 2017 0%D2%D2)+PI2GL*(D14+7.0=D2)
Y2Pli4.0%{D1»D1=70%D2 =D2)»GL

ELSE
CALC AREA & VOLUME AFTER FRAGMENTATION
C IMNER SLIVER. ALFA=ANG SUBTENDZD EBEY SLIVER TO TUBE CENTRE

ALPA=PIS/S3.0=2.0%4C03SC(WER/D2)

IFCALFAL. GT . 0COTHEN
PZRIM=1 . 5%4LFARD?
SIKNER=2D.5aC30alHEdww2=0,373202%D02=(SINCPI/3 . 0=ALFAY+*ALFA)
AINNER=GL*PERIM*2,0=SINNER

ELSE
SIMNNER=J. 3
AIMNER=D.J

ERDIF

OQLTER SLIVER. ALFA,DELTA=AMGS SUSTEND TO GRAIN & TUBE CENTRE

ALFA=SPI/ 3.0=2.0%ACOSC(DI*CT1+4 . I WEB*WEB=D2%D2) /46 ,0O1/D1/WEB)

IFLALFA. BT -0CITHEN ’
BETA=4SINCDTI/D2=SIN(PI/S.I~ALFAF2.C33
GARMA=ASINCWER/DZ)
DELTA=PI/6.0+GAMMA=BETA
PERIM=ALFA2DT /2. 0¢DELTA=D?2
SOUTER=0.5%02 «WEB={ SINC(BETAI-SINCBETA+DELTA )

+ +0.125%ALFA%x DT =D T1=0, 25*DELTA=D2%D2

LBOUTER=GL#PERIML2.0«S0OUTER

ELSE
SOLUTER=0.0
AOUTER=0.0

ERDIF

225, 02 (A INNERSADUT ERY

Yeb. U2GLA{ SINNER+SOQUTE R}

ENDIF

€



C

S{LFI=A
ZLFY=1.0-V/V0

CO01 CONTINUE
C INTERPOLATE DZOCF=0.5%D»S/ V0 VALUES TO £4QUAL ZI SPACING

€002

0o

C003 12=0,M12
ZVALSREALCIZI/REAL{MED
D0 0C02 1i=0,M1-1
IFCIVALGEZ(II) oANDZVAL.LELZCTII*+13)1I=11
CONTINUE
DS=5¢I+13=-5¢13
DZ0DFCIZ3=0.5«D/v0*x (S{ID+DS~x{ZVaL~ ZCI)I /€I CT+1I=2C13))
KRITE(6,111020,1,2ZVAL,DZODF(IZ)

€003 CONTINUE

0111

FOR
RET
END

MAT(Z2X, 214s 6F11.5)
URN



