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Summary

In this paper a method is developed, based on that of Sacks, Ref. 12,
for predicting the normal force distribution on thin bodies of non-circular
cross-section. Both the indirect anddirect aerodynamic problems are addressed

and the technique is shown to offer a possible means for the design of lifting

bodies.



1. Introduction

The large majority of missile bodies are, essentially, axi-symmetric in
form. However, the move to non-circular cross-sections is now well
established, prompted by improved storage and carriage characteristics and
made possible, both technically and economically, by modern manufacturing

methods.

Ref. 1 provides a useful review of research on the aerodynamics of
missiles having non-circular cross-sections, highlighting the aerodynamic
advantages that such shapes possess when incorporated into monplanar
bank-to-turn (twist and steer) configurations and describes some of the
theoretical and experimental contributions to this field of study. One of the
more valuable, and simple, predictive methods which has emerged is that due to
Jorgensen, Ref.2. In this technique slender-body theory is used to relate the
overall normal force and pitching moment chracteristics of a slender,
axi-symmetric, body to those of another slender body having a constant,
non-circular, cross-section geometry and the same longitudinal distribution of
cross-sectional area. The method uses Bryson’s approach, Ref.3, Chapter 10,

to determine the section inertia coefficients and, thereby, the ratio

~ C (non-circular) C,, (non-circular)
F =N = _M (1.1)
N CN (circular) CM {circular) )
of the bodies. The overall normal force coefficient on the body of

non-circular section, arising from potential flow, is then taken to be

CN {non-circular) = FNCN (circular), (1.2)

where the latter is known, together with a similar expression for the pitching
moment. This use of a slender-body factor FN, in association with force and
moment coefficients for the circular-section body which themselves are not
necessarily based on slender-body theory, parallels that of Nielsen, Ref.3,
Chapter 5, where wing-body interference factors based on slender-body theory

are employed.
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Validation of this procedure, by Jorgensen, is based on experiment on
pointed bodies at supersonic speed, and, in the case of bodies of elliptic
cross-section, gives good agreement. See Ref.4. Similar validation may be
demonstrated at both supersonic and subsonic speeds using the data from
body-alone tests reported in Ref.5. These tests were performed on two pointed
bodies, one of circular section the other having a constant elliptic section
of aspect ratio three and both having the same longitudinal distribution of
cross-sectional area. Similar validation for non-pointed bodies does not

appear to have been reported.

In Ref.6 the present author has developed a method for predicting the
lifting characteristics of thin bodies having elliptic cross-sections. This
has evolved from the work of Spreiter, Ref.7, which uses the theory of complex
mappings of incompressible flows to generalize the earlier ideas of Munk and
Jones to obtain expressions for the lifting pressure differential and load
distributions on wing-body combinations. By adapting this approach to the
case of an elliptic cross-section, it was shown that the longitudinal

gradient, nose to tail, of normal force (see Fig.1 for notation) is given by

dCz 2anb {b dc

_ db
dx SR(b+c) ax "’ (2b+C)E§ ’ (1.3)

where b(x) and c(x) are the semi-major and semi-minor axes, respectively, of .
the elliptic cross—segtion, SR the reference area, o the angle of attabk and Z
the force normal to the X,y plane. A similar expression may be obtained for
the longtiudinal gradient of CY by a simple exchange of b with ¢ and a sign

reversal. These relationships may then be used to establish the factor

dC

——2 (non-circular) b de + (2b+c) db

dx b dx dx
F(x)= G = |57 iR , (1.4)
z z (circular) 2 Re e

dx dx

together with a similar relation for FY(X), where Re(x) is the radius of the
‘equivalent’ axi-symmetric body having the same longitudinal distribution of

cross-sectional area.

The results of Ref.6 are more general than those of Jorgensen in that

they deal with load distributions on bodies whose elliptic cross-sections may



not be geometrically similar, i.e. they may have a longitudinal variation of
their aspect ratio b{x)/c(x). Such extra generality is valuable since it
makes possible the aerodynamic analysis of more complicated body shapes such
as those described in Ref.8. However, in the case when the cross-sections are
geometrically similar, we have

b0 _ctx) _ R = f(x), (1.5)

b c R
M M M

where the subscript M refers to the position of maximum cross-sectional area.

Also, on differentiation,

M
Substitution from 1.5 and 1.6 into 1.4 then gives

F = b/c

and, in a similar manner,
FY = ¢/b,

which are in agreement with the results of Jorgensen.

In Ref.6 particular emphasié was given to applying the method to ’thin
bodies’ i.e. bodies which are thin but not necessarily slender, in that they
may, for example, have blunt noses. This was seen as a useful extension to
the approximate ’thin body’ method, presented in Ref.9, for axi-symmetric
bodies with blunt noses. As a partial verification of the accuracy of the
method a comparison with the exact solution for ellipsoids was then made.
Having blunt noses, ellipsoids are ideal candidates for the comparison.
However, being geometrically similar in cross-section, these bodies do not
test the effect of variation of b/c on FZ and FY. This comparison is
described in Ref.10, the method for obtaining the exact results being given in

Ref.11. It was found that, for a range of section aspect ratios

= b/c = 4,

)



and over a range of body fineness ratios
5 - 20,

these being representative of those experienced in = missile technology, the
approximate method gave accurate predictions of the normal load gradient.
Substantial error arose only in the two to three per cent of body length near
the nose and tail. When integrated over half the length, these approximate
normal force distributions produced values for CZ’ CY and centre of pressure
position which were well within the bounds of accuracy of most ’engineering’

methods.

From the foregoing it can be seen that the approximate method has been
validated for pointed bodies at both subsonic and supersonic speeds and blunt
bodies at low subsonic speeds, all bodies being of elliptic cross-section.
This leaves plenty of scope for more extensive validation both experimentally,
measuring overall pressure distributions, and theoretically, using surface
singularity (panel) or field (C.F.D.) methods. One obvious way in which the
study may be extended is to develop techniques suitable for bodies of

cross-section other than the ellipse.

Some idea of the range of body cross-sections which are of interest can
be obtained from Ref.l and among these are bodies having corners. The latter
will be subject to flow separation and vortex formation even at very low
angles of attack and it is questionable whether the associated force and
moment characteristics possess any portion which can be predicted by a
potential flow method. Such extreme configurations tend to be confined to
applications where efficient storgage is of overiding importance. This still
leaves ample scope for developing approximate techniques for the design of
’lifting-body’  configurations, which, by their nature, require to be

aerodynamically efficient.

The proposed generalization of the approximate technique can be
approached in several ways and these are briefly reviewed by Nielsen in Ref.3,
Chapter 10, the application there being to the prediction of stability
derivatives of wing-body combinations. Of the methods referred to the two
most suitable for the present purpose is that due to Sacks, Ref.12, and that
due to Bryson, Refs.13, 14, 15 and l6. These methods require the use of

complex mapping procedures in order to relate the flow around the body



cross-section to that around a circle and then use residue theory to evaluate
the integrals which arise. Arguing that the mapping procedure needed to be
more general Skulsky, in Ref.17, developed a numerical mapping technique,
based on the mapping theorem between circles and polygons, which approximates
the body cross-section by means of an n-sided polygon. This technique is
essentially computer oriented and in application to smooth bodies requires n
to be quite large in order to smooth the resulting data. In more recent times
this method has been utilized in the ’vortex cloud’ method for lifting bodies,
Ref.18. Further work along closely similar lines is described in Refs. 22 and
23.

In the present paper a generalization of the approximate method of Ref.6
will be described. This technique is based on that of Sacks, Ref .12, and
seeks to explore the application of the method to the aerodynamic design of
lifting bodies. Unlike Ref.6, which uses Spreiter’s approximation for the

pressure coefficient
Cp = - 2¢X/Um,

the more accurate form appropriate to bodies of revolution (see for example
Ref.19, Section 20.5) will be used. When applied to a body of elliptic
cross-section this gives rise to simpler relations than 1.3, 1.4, and, in the
case of such bodies having cross-sections which are geometrically similar over
the whole body length, the factors F. and F_, are the same as those of

Z Y
Jorgensen.
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2. Normal Forces and Their Longitudinal Distribution

The geometry of the body and flow is illustrated in Figs.l and 2. Fig.l
shows the body geometry and the onset flow for the case when the angle of
sideslip, B, is zero, whilst Fig.2 shows the system of body axes for the
moving body. We study the flow over the body by making UR = -Uw, the body

being stationary.

We are particularly interested in the distribution of the Z and Y forces
along the x-axis. If p is the surface pressure on the rigid body of surface

S, then the force resulting from this pressure will be

F=-ijﬁds, (2.1
S

where n is the unit outward normal vector to the surface and the integration
symbols describe a surface integral taken over the whole of S. See for

example Ref. 19, Section 10.5. Now

n=ni-+nj+nk, (2.2)
i J k
where
n, = Cos (n,x)
nj = Cos (my) p. (2.3)
n = Cos (n,z)
k

these being the direction cosines of the acute angles (n,x), (n,y) and (n,z)
made between the normal and the X,y and z axes, respectively. As a result the

components of F may be written

~ oo 3

X = F‘i = - pnldS
Jg
Y = F = - pn dS (2.4)
J JJ J oy
s
Z = Fk = - pnde
J gl J

which, in an inviscid, irrotational, flow, are all zero.

Now the integrals in 2.4 may be written in the alternative form of

integrals taken over the orthogonal projections S of S. See Fig.3 and Ref.20,



Section 8.7. We have

\
J,[ [ “Cos(n, y)} dz dx,
S(x,z)
and -, (2.5)
J-J [ Cos(n, z)} dy dx,
S(x,y) )
where the quantities in the ( . ) brackets are of unit magnitude and whose

sign will depend on the orientation of the surface S to the directions y and

z, respectively. In more detail

\
=x_r nj
Y = - r J.p[i m ] dz d(-X)
X=X S(z)
N a—
and >, (2.6)
:x_r nk
z = _r Jp{t Cos(n,z)] dyp d(=x)
x=xN E(y) )

where the inner integrals are taken at a fixed value of x, over the whole face

of the local sections, S(z) and S(y), of the orthogonal projections in the X,z

and x,y planes, respectively, (see Fig.3) and X, and X, are the co-ordinates
of the nose and tail, respectively. It follows that the longitudinal

gradients, nose to tail, of these forces may be written as

dC n,
Y = 1 dY:-i—jc(«:-—’—]dz, 2.7)
B 1 N )
d(~-x) szmSR d(-x) SR S(2) Cos(n,y)
dC 1 dz
z - = - l__ J‘C [+ ...—_._.] dy ( )
1 .2 - ’ 2.8
d(-x) EpUmSR d(-x) SR S5 Cos(n,z)

where SR is the reference area.

In order to resolve the signs of the integrals consider the geometry of

the body section at a given x, Fig.4. We have

—t— T ——
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dy = - ds Cos(nm-x) = ds Cosy

and - - dz = ds Sin{n-y) = ds Siny,

where s has a positive orientation in an anti-clockwise sense.

e
But X =z + A,

where A is the angle made by the normal to the positive sense of the

y-axis. Thus

dy = - ds SinAx = - ds Cos (g—x] »

(2.9)
and dz = ds CosA.

Now the angles

{n,y) = A and (n,2) = [g - A],

thus it follows that we must take the positive sign in 2.7 and the negative
sign in 2.8. As a result we may re-write the expressions in the form of

circuit integrals around the perimeter of the section, C, giving

.
Zc(:Yx) = - é—R § CpCosA ds
and o ° L (2.10)
dc_ .
T T 5 55 C Sim ds.
. )

If now we combine these to produce a complex force gradient defined by

dC dC dC

F Y .z
d-x) =~ di-x) ‘ta=x (2.11)
then from 2.10,
dCF 1
a= - - S_R § Cp(CosA - iSinA) ds
1 .
=-——§C(dz+1dy)
S P
R
i . i -
-Ts - =-3 : 2.12
SR § Cp(dy i dz) SR § Cp d o ( )



where ¢ is the complex variable

y + iz ' (2.13)

o

and

[

y - iz (2.14)

is its complex conjugate.

The pressure coefficient is given by

2
Cp =1- (l%l-} , (2.15)

0

where the total velocity vector
a=[—U+¢]E+[—V+¢]E+[—W+¢]é, (2.16)
x] x vy z] =z
U, V and W being the onset velocities, ¢x, ¢y and ¢z the perturbation
velocities arising from the body and éx, e , e unit vectors. Thus
y z
U=-UCoso ,V=-U Cos o Tan B, W=-U Coso Tan « (2.17)
0 i © i o i

and

vz_ 2 2 2 _ _ _ 2 2 2
g- =U "+ V- + W 2U<]>x 2an>y 2W¢z+ ¢x +¢y+¢z

_ 2 2 2 2
= Um 2{U¢x + quy + W¢z] + ¢x + ¢y + ¢z , (2.18)
giving
C =§—{U¢ + Vo +w¢}-l_ [¢2+¢2+¢2]
P 2 X A z 2 x v z
U U
@ ©
U e¢ V ¢ W ¢ 1
_ o x . 4 =z - 2 2 2
—ZUU+UU+UU 2¢x+¢y+¢z' (2.19)
© © o ® o Um

We need to express C, and thus the normal-force gradient, in terms of
p

the complex transverse onset velocity
Q=V+iWwW, (2.20)
and the transverse complex potential

F=¢+iy. (2.21)

10
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Thus

U2 = 0%+ Ve W= U e (Vo iV - W) = U+ QO (2.22)

Now the components of the transverse fluid velocity relative to the body are

(Fig. 5) defined as

v =¢ -V,w =¢ -W, (2.23)
hence
v -iw =(¢p -ip) - (V- iW).
r r y z
But from 2.21

@O oy,
do 38y a8(iz) Ty z’

since ¢ =y and ¢ = -y . It follows that
y z z y

. _dF =
Vo~ 1wr =35 Q. (2.24)

Defining q and q as the tangential and normal components of the relative
s n

transverse velocity to the body, respectively, then (Fig.5)

. iy iA
v +iw = qge” + qe
o r s n

and its complex conjugate

v - iw = (g +iq)e¥ . (2.25)
r s n

r

From 2.24 and 2.25 we obtain

o dF = ix .
= (a-d: Qle iq

s n

or
2 _ {dF = 2 _ L. (dF _ =) w2
q = [d—cr T e 21qn(——do_ ]e q . (2.26)

But, from Fig. 5,

11



which from 2.26 gives

2
2 2 _ (dF _ = 21y . [(dF =) ix
Vo wo= [E ] e 21qn(—a—&— ]e . (2.27)

On substitution from 2.22 and 2.33 into 2.18 we obtain

q2=(¢> —U)2+v2+w2,
r r

X

and on further substitution from 2.27 this becomes

2 2
2 _ _ dF =} 2y _ . [dF =) iy
q = [¢x U] + (——do_ Q] e Zlqn[—dO‘ ]e .

Thus
2 2
U - gq i 2
_ R P = 2 _ [dF =17 2ix
Cp—~—-——U2 =— U™ + QQ (¢XU) (E Q]e
4] [o0]
. dF =) iy
+ 21qn[%— Q}e }
1 2 (dF 2 2ix dF ix
pg 1 . oy 1 g
-GE 2U¢>x-¢x- [—a-a_-- ]e +21qn[$— ]e + QQ}) . (2.28)
[+

It is customary to ignore ¢2 in comparison with 2U¢ (see Ref.19, Section
X X

20.5), which then reduces 2.28 to

2
c =L Joug - [9E - §| €¥% 4 2iq [4E - §le® + ! . (2.29)
P U2 x do ni{do
© .
Substituting for Cp into 2.12 we obtain
dC -1i 2 .
—F = wWhedr-§ |4 -3 ez‘xd5+2ii{5q dF _ 5leXds
2 x do nldo
d(-x) U’S
o R
+ § QQde} |,

12
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which, on recalling, from 2.13, that

do = dy + idz = ds(Cosy + i Siny) = dse*
and
do = dy - idz = ds(Cosy - i Siny) = dse X = doe ?% |

gives
dCF -1

2
- dF - dF -
= 2U§¢do‘—§[————Q]do~+Zi§q[—— ]ds
2 x do nlde
d{-x) UmSR

+ § Q0 dob . (2.30)

Now in the case of a body of revolution we express the approximate
surface boundary condition in the form

B dR
a =U g7 (2.31)

where R is the body radius at the axial position x and S—I; is the surface

gradient in the x-sense. See Ref.19, Section 20.2.

The corresponding result for the general slender body, with a smooth
perimeter to its cross-section (see Fig.6) and a smooth variation of this

perimeter with x, is

q =U dv

a ‘a'(TX‘T (2.32)

where v is the outward normal to the body, in the o-plane, at a general

station x. As a result 2.30 becomes

dcC ~1i 2
F_ = ~ 2U§¢d5‘-§[§—g-6]do-+2m a-‘f(l-f—x)[g{--'}ds
d(-x) U’S, x

+ §; QQds} |

13



which on expansion gives

dC ~-i 2
F = - 2U§¢Xd3—§(%§]do
d(-x) U’s
o R
+ 20 ——-do=— §d¢+21U3E dv
d(-x) d0'
~ 2iUQ § s + QQ § do }. (2.33)
d(-x)
Examining the integrals in 2.33, we see that
fﬁ do = f§ & = 0,
whilst

2
%(%] do is proportional to the two-dimensional normal-force predicted by the

Blasius relation (see Ref.19, Section 15.6) which, because F does not,

generally, contain a circulation term, is zero. Also

jgd( 0% = I (2.34)

the rate of change of cross-sectional area.

It follows that

dc ~2i
F - ‘f ¢, do+ Q §—da siud 95 9P ud (2.35)
d(-x) U;sR d(-x) do d(-x)

Looking at the first integral in 2.35 we note that the contour of
integration (the perimeter of the body cross-section) is a function of x.

Thus

§¢do:_3§¢do~ (2.36)

14




Now the surface of the body may be defined by either

z Zl(x,y) _
or . (2.37)

Y (x,2)
1

(o
I}

where 21’Y1 are functions with appropriate smoothness and differentiability.
In Ref. 12, Appendix A, Sacks shows that

8z 8y
§¢xd5-=g;§¢d5‘—‘l.c¢zg- !

1 .
dy + i JC ¢y 3% dz, (2.38)

where the circuit integrals are taken around the cross-section at x. Now from

Fig.7 we see that

Az = Av/SinA = - Av/Cosy

and

Ay = Av/CosAx = Av/Siny;

or the slopes of the body surface are

.
.a_zl - .A_]_)_ - A_v / Cos
ax  BAx = T BAx X
and .- (2.39)
iﬁl =4y _ bv / Sin
3x _ Bbx = Bx X

V.

It follows that

¢ _dy ¢ dz
- _ & - av z .y
§¢Xdo~—5§§¢d0‘+ c-&— Cosx & ! Sinx

But

ds CosA = ds Siny = dz
and

-ds SinA = ds Cosy = dy;
hence

- _ 0 - dv . . '
3(; ¢ do = =— 35 ¢ do + & o (g + i )ds . (2.40)

15



Using the Cauchy - Reimann relations

¢, =¥

z \'%
and

o . .. .8F _ .dF
¢z+l¢y—¢y+l¢y—l(¢y+lwy)_l'5§7—lﬁ‘

It follows that

- _ 0 - . [ dv dF
§¢xd0‘—&—§¢d0‘+l§&a}—ds

_ 9 - dv dF
——'a—x§¢d0' 1 m'&;dsu (2.41)
Substituting from 2.41 into 2.35 produces
dCF -2i 5 L dF _ ds
= — U—3§¢do+o§——do-iuq : (2.42)
d(-x) U’S dx do d(-x)
o R
From 2.21
F=¢-iy
and
¢ =F + iy;

thus it follows that
§¢dé=§fd5-+i§|ﬂd5'.

Now on the body surface the stream function ¢ = 0, and since the contour of

integration lies on the surface then

fF Y do = 0 . (2.43)
Thus 2.42 becomes
dc 21 ds
F - _ {Ui§fd5+6§dido—iU6 } (2.44)
d{-x) UmSR ax do d(-x)

For small angles

Coso*l-"-'l, Tan B 2 B8, Tan a = « ;

16
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thus

and

Q =V - iW = U@ - ia).
The cross-flow velocity normal to the x-axis is, Fig.8,
U Sinc = U o = -Uc.
0 i © i i
If F1 is the complex potential per unit of cross-flow velocity, then

F = —UO‘iFl. (2.45)

Also
V = -U ¢ Cos® = Uc Cos?®
o i i

Il
C
w

and

W = -U ¢ Sind = Ucs Sin®
® i 1

il
i
c
R

implying that

B = cr1 Cos® , a = -criSim? ,

whilst
G = Us (Coso - iSin®) = Use™ . (2.46)

It follows that

dc 2i ds ) dF

F o= 5 Uzari L § Fodo+ iv%e e + Ulcle ™ 35 —! 4o
d(-x) U°s 3x d(-x) ! do
o R

or

dC_ 2ic. (8 o o OS o ¢ 9F,

= i) S § Fldo - ie —_— O‘ie —do
d(-x) SR 9x dx do

Since we have already assumed that o, << 1, then it is appropriate to discard
the non-linear term in o*f, giving the linear approximation

dC 2ic, (8 ds

LI _—3§f do - ie® — L, (2.47)
d(-x) s, lox ! dx
or
dc_ 2ic 8 o o
= — § Fdo - ie'’s (2.48)
d(-x) SR ax !

when ¢ is independent of x.

17



3. Bodies of Elliptic Cross-Section, Re-visited.

Before consideration of the problem of bodies of more general
cross-section it is a valuable exercise to apply the new technique embodied in
2.47 to the case of an elliptic cross-section, thereby facilitating the
development of the method and providing a validation of its accuracy. For
this purpose we map the flow around a circular cylinder in the {-plane to the
flow around an elliptic cylinder in the o-plane, Fig.9. These mappings are
well known andare are described in Ref.2l, pp.154-156. We have in the C-plane
a cylinder of radius

R = ~(bc), (3.1)
where b and c¢ are the semi-major and semi-minor axes, respectively, of the
ellipse in the o-plane. The mapping (Joukowsky)
b2-c?

4C

maps the circular cylinder and the flow around it in the &-plane to an

o=+ (3.2)

elliptic cylinder and the flow around it in the o-plane. Conversely, the

L= % {0‘ + (0‘2 - b+ CZ] 1/2} (3.3)

maps the elliptic cylinder and the flow around it in the o-plane to a circular

mapping

‘cylinder‘ and the flow around it in the {-plane.

We have an onset flow Umcr1 at an angle 9 to the positive € and y

directions and this gives rise to a complex potential per unit of velocity

2
F Q) = e s C_R 1

=t (b+<:)2 19
+ —e .

= Le T (3.4)
Alternatively we may write
2 2
R . R .
Fl(c) = {C + T } Cos® ~ i {C - —c——} Sinsg , (3.5)
from which
R® R®
FI(C) = {C + = } Cos® + i {C - —C——} Sin® (3.6)
and
R® - R’
F(Q) = {E + —} Cos® + i {c - —} Sin® . (3.7)
' 3 3

18
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Now we require

:{; Fw6 = § F@ do g4z, (3.8)
C@ CC dg
where
bz—c2
0‘(C)=0‘(C)=C+ T (3.9)
and
o . b2 2
o(g) = L + = (3.10)
4z
Hence
- 2 2
4o .y -2 — (3.11)
dg 4g
' and
- - - - - b%-c3) -
\ F(@)do = F @ [1— - )dc. (3.12)
Co_ CC 4

In these expresssions Ca is the contour in the o-plane and CC its image circle

in the -plane.

Now the critical points of the mapping 3.2 are given by

¢ =t %[bz—cz] V2 o %{(b+c)(b—c)}l/2, (3.13)

1,2

whilst

_ b - cliz
CI’Z/R = % [m] . | (3.14)

Since b = ¢ then

EWORS

and the critical points are not outside CC’ whilst the image points are not
outside Co_. It follows that singularities in the complex velocity, arising

from the mapping, will not occur outside CO_.

19



From 3.7 and 3.12 we have

oo - . RY - R? | b -c?) =
§ F (c)do = é; {[C + — ]Cos 9 + i[c - — ]Sim?} {1 - ]dc . (3.15)
c ! c g g 4Z®
c c
We note that the only singular points of the integrand are at E = 0, i.e.
within Cc. It follows that this integral is given by
2 2 2 2 2 2
ff F (0)d5 = 35 {[4R - (b e )] Coso - i[4R + (b -c )]sm@} g, (3.16)
C C 4 4L

o

where, from the theory of residues (see Ref.19, Section 14.23) the terms in
l/i, only, have been retained and Cm is a circle whose radius tends to

infinity. Thus

2 2 2 2 2 2 =
3(; F (0)do = {[4R - (b -c )]cOsa - 1[4R * (b -c )]Sinﬁ}jg a¢
1 4 4 -
C c I
o oo}
= {%(c2 + be)Cost - %(b2 + bc)Sim?} X 2mi
=7 {(b2 + bec)Sins + i(c2 + bc)Cosﬂ} (3.17)
and
8_§ Fae = wdfeb+ 2%+ b Csine
ax c 1 dx dx
- .
. dc db
+ 1[(2c + b) I + C H] Cosﬁ} . _ (3.18)
Now the cross-sectional area (of an ellipse) is
S = mbe (3.19)
and, thereby,
ds dc db ‘
=2 = - el 3.20
= n[b =t dx] , ( )
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. whilst

je1® as _ mi(Cos® - i Sim?)[b
dx

= n(Sin® + i Cosﬂ)[b -—

db
dx

db
&] . (3.21)

Substituting from 3.18 and 3.21 into 2.47 then gives

dCF = 4n10i @ Sin® + i c 9—8 Cos®
d(-x) ~ S, dx dx ’
or
dCF:—ﬂ ib.@a-{-c.c.l__c_s
d(-x) SR dx dx ’
Comparison with 2.11 then gives
\
dCz _ 4una b db
d(-x) =~ S dx
R
{
and \
dCY 4np de
a-x) = - s_ ¢ a&-
R
J

(3.22)

(3.23)

(3.24)

The corresponding results from References 6 and 10, based on Spreiter’s

approach, are

\
| dCz 2nbo b + o) db . dc
d(-x) SR(b+c) dx dx
and S (3.25)
dC 2ncf
Y db dc
d=x) = T S_(b+e) {C ax et HE} '

In general the results of our present analysis are different from those

i of 3.25. However, we note that when b = ¢ = Re, where Re(x) is the radius of

the ’equivalent- body of revolution’ having the same axjal distribution of

cross-sectional area S(x), then both 3.24 and 3.25 become
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dCz dnta dR
- €
ax) - s, R.(%) 3%
and - (3.26)
dC 4nf dR
Y= - — R (x) —°
d(-x) SR e dx

Also, in the case of a body whose elliptic cross-sections are geometrically
similar, we have from 1.4, 1.5, and 1.6 that
b

Fx) = —.
z R

N

TN

But

S(x) = w belx) = nRj(x)

and, in particular,

S =nbc =1n R2 ;
M M M M
thus
bM b{x)
F o= —= (3.27)
z C c(x)
M
In a closely similar manner
c cl(x)
F =M (3.28)

vy b bx)

=

The corresponding results from 3.24 and 3.26 are

b a—; be (X)
F=—-——c—ﬁ2—-=——-——,f‘r‘om1.6,
z RI=° R R (x)
edx M e
b; b b(x)
= — = — = , from 1.5
R c c(x)
M M
and, similarly,
oo .t_:E c(x)

vy b bx)

=

Thus the two methods give the same result and the comparison with the exact
results for ellipsoids, described in Ref.10, are still valid.
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4. Bodies of a More General Cross-Section.

Leaving aside the class of body cross-sections of polygonal shape, which
may be generated from a circle by means of suitable mappings (see Refs. 17 and
18), we will concentrate on those which may be generated by means of mappings
described by Laurent series. Such mappings include, as special cases, the
well known Joukowski, von Mises and Karman-Trefftz mappings, used to generate
aerofoil shapes, and that already used in 3.2 to generate elliptic
cross—sections. See for example, Ref. 24, Chapter 7. They may be looked upon

as the most obvious means of generalizing the results of Section 3.

A description of the evolution of this class of mapping, which maps from
a circle to an (arbifrary!) cylinder, is given in Ref.19, Sections 15.8 -
15.10. From Fig. 10, we seek a mapping between the flow about a circular
cylinder, whose centre is located at Co in the ¢ plane, and that about an
arbitrary cylinder in the ¢ plane. The onset velocity is Umt)‘le_i19 and we may

take the mapping in the form of a Laurent series about the origin

o«
o= ¢ 6™ (4.1)
m=-%
and
do . E mG ™ (4.2)
dc - m - °
m=-00
Now the complex velocity in the ¢ plane is
dF _dF / do 4.3)

de ~dg / 4T

and the boundary condition at infinity requires that

g_lie-c-lf-—)Uce-wasCo-aw
de ° dl w i ! ’
i.e.
do
EZ—)IaS o, > o,
or



{»0a 0, >0m .,

In order that do/d{ > 1, in 4.2, as { 5> =

must be zero, and

We may, therefore, re-write 4.2 in the form

do _ _ 2 n+1
a = 1 - LnC /¢ (4.4)

n=1
and

o(g) =g + )jcn/c“ . (4.5)

n=1

The complex potential per unit of cross-flow velocity is

T -19 R i
F(Q) =(g-C e + T2 e, (4.6)
which is an obvious generalization of 3.4, which describes the case
Co = 0. The associated complex velocity per unit of cross-flow velocity
is
dFl -0 R2 1o
a—z = € - -————i e » (4.7)
€-¢)
o
where the cross-flow velocity is Umoi. Alternatively, we may write
R? RZ
FI(C) = {(Q—Co) + —(——c—jzo—)-} Cost - 1{(C"c°) - E—_—C—O—T}Sln‘@, (4.8)
from which
_ R2 R?
= - id (- - — }Sin® 4.9
FI(C) {(C Co) + (c_co)}Cosf) + 1{(§ Co) (c_co)}Sm (4.9)
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and

-
F(O) = {(E-C ) + — }Cos@ + i{(Zj—C ) - _R }Sim? . (4.10)
(£-¢ ) ° (- )
Also,
_ [24]
c=0c=C+ }:cn/c“ (4.11)
n=1
and
Q) = + zcnxz‘“ ) (4.12)
n=1
giving
dg‘ x =n+l
— =1~ ¥nC/g . \ (4.13)
dc n=1 "

Now the zeros of the derivative 4.4 are the critical points of the

mapping (o) and may be obtained by writing 4.4 in the factorized form

< S ¢ S ® S
do 1 2 3 k n
- = |1 - — - = - =] ..l - =] .... = - = , 4.14
e O | S | O I (e -3 (419
and solving for ¢ = Cl, Cz, ... etc. Expanding the factorized polynomial
gives
do s
I = 1 __{nglcn}/g + ..., (4.15)

and when compared with 4.4, which has no term in c'l, shows that

Lg =0 (4.16)
=1

n
i.e. the centroid of the critical points of the mapping 4.5 must be at the
origin in the {-plane.
The above arguments apply equally well to mappings of finite degree, k,
expressed as

k .
o(Q) = & + zcn/c“ , (4.17)

n=1



with

k
=1- InC /™ (4.18)

n=1

do
&

and

k
Lg =o0. (4.19)

n=1

Additionally, if the critical points are located within the circle CC then the

image points will lie inside Co~'

Thus we require that

1A

(4.20)

We need to consider now the possible body cross-sections which can be
generated by 4.17 and, for the purpose of substitution into 2.47, we require

an expression for the cross-sectional area, S. The circle C_ in the {-plane

C
is defined by
¢ =¢ +RE (4.21)
c [+]
where 6 is measured positive anti-clockwise from the € axis.
The image Ccr under the mapping 4.17 is given by
0 k C
c = +Re + ¥ “ie : (4.22)
© ° n=1 (Co + Re )"
i.e.
c =y +iz =re? (4.23)

defines the complex co-ordinates of all points on the closed curve Co_. The
body cross-sectional area S is the area enclosed within Co_ and, in polar

co-ordinates, we may express the area as

27
s=1 j r’dy = nR’ (4.24)
2 [ e
where R is the corresponding radius of the equivalent body of revolution.
e
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See for example Ref.20, pp 336-339. However, from 4.23 this becomes
2 - '
s=1 J y° + z9dy = mR®, (4.25)
2 c c e

¥=0

which is fine provided we know y and z in terms of 7.
Cc Cc

Now

<
I

r‘c(y)Cosy
and , (4.26)

N
It

r (y)Siny
c

so we may obtain S from 4.24 provided we know r (y) which, in general, we must
(o3

obtain from 4.22 and 4.23.
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5. Bodies Obtained When Co = 0, k=2; Joukowski Mapping.

Having developed a procedure for generating a wide class of body shapes
and also the means for determining the normal force gradient, equation 2.47,
it is rewarding to explore these shapes in a systematic manner which
introduces a growing degree of complexity into their description. This
parallels the procedure used to describe aerofoil sections of increasing

geometric complexity. See for example Ref.24, Chapter 7.

Let us begin with the case Co = 0, k=2. Then from 4.14

C 'q
do _ 1 _ 2
a - [l c] [1 c]

(g +¢) €8,
= 1- + -
g g
¢ g
= 1+ 122 , (5.1)
C
since, from 4.19,
g, +¢,=0 . (5.2)
It follows that
2
Clcz cx )
o = - = + =, (5.3
S SR <
where, in the general case,
¢ o=-¢ =€ +in, = |C]e? (5.4)
1 2 1 1 1
and
_ 2 2,172y _
[g,] = [&] + )77 =R (5.5)
Also Tand = n /€ ,Sind = nl/lcl| and Cosd = El/|§1| . (5.6)

The body shape, Co*’ generated in the o-plane is given by

c_= Re'® + R"le"e(gl + inl)2

28



or

o y z
e _ "¢ +i _c
R R R
2
= 616 + o gl tm
- R
2 2
- 'S 3 (C)[n,) _ (m e
= Cos6 + iSin8 + {[El + 2i §1 ﬁl ﬁl {Cos® iSine)
or
y AN AN
=c = {1 + {El] - [—}ilJ } Cosf + Z[Ex] {—R—l]SIDQ
and . (5.7)

AN
[e]
1]
N
.
Aoy
'
[
s,
|3
—
Q
O
1]
[¢2]

+
e,
[

]
r—
el ]
fh
[

N
+
r—
|
N
[
[\
S’
wn
s
s}
[es]

The geometry is illustrated in Fig.1l, where the two critical points,
CI,CZ lie on a common line, defined by the axis £’ through the origin, and
which makes an angle 8 to the positive direction of the £-axis. The image

points 0,0, of CI,CZ, under the mapping 5.3, are given by

o, 2§1

and . (5.8)

13 HO+T)
o, =20 =-2¢ =-2|g|e” = 2]|g e

2¢, + in ) = 2|¢ |e'®

As shown in Fig.ll, they lie on a line, defined by the axis y’, making an
angle p to the positive direction of the y-axis. However, from 5.8, we may

conclude that

i

o] = 2lg| = |o,|
whilst (5.9)

=
1]
[e7]

If now we select cartesian co-ordinates, y’,z’ which are rotated through
the angle p = & relative to the axes y,z, Fig.ll, we can express the
co-ordinates y’,z’ of a general point P on Co_ in terms of the co-ordinates

[+ [+

yc,z . From Fig.1l, lower diagram, we have
C
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]

z’ (z ~y Tand) Cosd = z Cos8 ~ y Siné
L] [ [+ ‘c

(z& - yn)/| | (5.10)

and

lc1 | (chl-ycnl)nl

= Sec 8 + z’Tan 8 = +
Ye T ¢ c Ve g [T TE,
_ (5.11)
- (ycgl * chl)/lcll ’
Examining the case 8 = &, then
Sine = nl/lcll , Cost = El/|§1| ,
which on substitution into 5.7 produces
\
2 2
el 8B e ) B
CI cl
and L. (5.12)
z 2 2
o)) e 0 ) )} e
C1 cl
7
Further substitution from 5.12 into 5.10 and S.11 then gives
£)° )
zc(é) = 0, yc(S)/R = 1+ [ﬁl] + [—El] . (5.13)

I
i.e. the point in the {-plane where CC crosses the positive £ axis

corresponds with the point in the o-plane where Co~ crossesthe positive y’

axis and the distance of this point from the origin is given by 5.13.

Examination of the case 8 = 3+m gives
Sin6 = Sin(é+m) = -Sind = - nl/lcll

and

Cos® = Cos(8+m) = -Cosd = - EI/ICII ;
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from which

I I

y y £ 2 2
2/(3+m) = 0, (&) = - 2°(8) = -1 - [ﬁl] - [gl) ; (5.14)

i.e. the point in {-plane where C,_ crosses the negative £’ axis corresponds

<
with the point in the o¢-plane where Co_ crosses the negative y’ axis, and
the distance of this point from the origin is the same as that for the

crossing of the positive branch of the y’ axis.

Similar analysis may be made of the crossing, by Co_, of the z’ axis.

Thus when 6 = & + n/2, Sin@ = €1/|C1| and Cos@ = - nl/lcll, which yields
. z’ . £ 2 n 2
. = LN LS B - |1
yc[8+§] = 0, R (64-2] 1 (Rl] [Rl] . (5.15)
Also, when 6 = 8§ + g_n .
, 3m} _ z’ 3n) _ _ 2z’ T
yc [6"’—2—-] - 0 > ﬁc [6“‘2—-] = RC [6+§] B (5.16)

Clearly Co_ must have some regular form. That the shape is an ellipse,
whose major axis lies along y’ and minor axis lies along z‘, may be shown as

follows:

Assuming the major axis is of length y’(38) and the minor axis of length

C
z’ {6 -%], then from 5.11, 5.13 and 5.7
C

y’ 2 FooN2
i = {6 - (@) oo - f8) (R o

7
c \

2 .2 2 2 P 2,2 2 .
B “R +€1—n1]€1 + ZElnl.ICose + 2§l'nl + [R €1+nl]nl.|5m6

- 2 2 2
[R*+eieni) Ig, |

= (51Cose + nISinG]/lcll , (5.17)

31



whilst -

z
< = (£Sine - n Cos8)/ |C | . (5.18)
7 1 1 1
z’ | 3+—
[
1t follows that
’ 2 ’ 2
y 4
[+ + o]
yc(a) z’ (5"'E )
c 2

(§1Cose + nISinG)z + (EISine - nlCose)z

1< |°

1

=1, (5.19)

which is, of course, the equation of an ellipse. Thus Co_ is an ellipse whose

£ 2 2
semi-major axis ....y;(a) = R{h’[ﬁl] + [%1] }

and
T £1° AN
semi-minor axis ....zc [6+§] = R{l- [ﬁl] - [El] } .

Special cases arise:

(a) when |§ll = R, in which case y’c(5) = 2R, z; [&%] = 0;

i.e. a flat plate of width 2R at angle & to the y axis,
and
(b) when | | = € =m =0, in which case y’(3) = 2’ [5+.1£] = R;
1 1 1 [ c 2

i.e. an identity mapping of the circle Cc.

In the general case, since we can vary the direction ¢ of the onset
velolcity Umo-i at will, no particular advantage arises from the generality of
8 and it suffices to use the cases & = O, 1)1: O ,and & = %, El = 0, in which

the major axis is aligned with the y and z directions, respectively.
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It appears, then, that this case is essentially the same as that of
Section 3. However, it is interesting to pursue it a little further as a

pointer to procedure in more general cases. To this end we note, from 4.10,

that
2 2
?1@) = [é + ’f_] Cos® + i[i - }Z—)sma (5.20)
<
and
2 2 2
- g £+
do [1-91] [1-5] =1-—= = 1-—=" (5.21)
dg < < C g
Hence

2, 2
2 2 g +n
§ f‘l(g‘)dc; = § C o+ R Cos® + i|C - R Sing 1 - 1_21 dc {5.22)
Co CC c g <

and, in a similar way to 3.15, 3.16, we have

o R® -(g5+7°) R® + (g%n7) )
jE F (6)do = 35 —————|Cos® - i|—————|Sin® }dZ
Co Co < <

A gl

d

i
|

{[Rz - (Efﬂ)?)] Cos® - il:R2 + (Efﬂf)] Sing

il

C

2]

Zni{ [Rz - [Efﬂ)f]]Cosﬁ - i[RZ + [Efﬂ)?”Sim?}

2 2 2
2 E1 T’l g1 T’l
2nR 1+ |— + |—"|ISin® + ijl - |—}| ~-|— Cos®
R R R

2l b . . C
= ZHR{ R Sing + i R Cosﬁ} , (5.23)

where b=y (3) and ¢ = zc(a + né) are the semi-major and semi-minor
e

axes, respectively, of the ellipse Ccr
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Differentiation then gives

3 = =y = dR b . {c
5§§C F (¢) do = 4n R& (fé] Sin® + l[ﬁ] Cosg

(o

hence

3 = = = _ dR | (b) . . (c

3% . F (o) do—4nRa{[§] Sin 9 + i [R

f)
2 d b . .
+ 2n R dx [E] (Sin 9 - i Cos ®8).

Also
. —i% dS ., ds I ds . .
ie Ix - ' ax (Cos® - iSin®) = ix (Sind + i Cos?),

where the area S of the ellipse Ccr is

S = 1 be.

(5.24)

(5.25)

(5.26)

{5.27)

In this case S is known, but in the more general case we would need to use the

relation 4.25, in association with that corresponding to 5.7.

34




-3

ad

It follows from 2.47, 5.25 and 5.26, that

dC oo
F i dR |c 2 d b ds
dR{b 2d {b ds .
i [onm B(2) + o (1) - 28] }

Now

b _ . El 2 . m, 2

R ~ R R |’
and

Upon adding these equations we obtain
b+ c=2R, or R = (b+tc)/ 2

and upon subtraction

From (5.31)
b_ 2b c 2c
R b+c’R b+c
thus
db
d (b] _ 2dx 2b , [db , de
dx (R b+c (b+c) |dx X
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(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)



Taking the terms in 5.28 in order we have

dR fc
4“Ra—)—(‘ [E) = 4TIC-d—)—<~

=21zc-d—b+d—c
dx dx}’

and

ds _ dc db
ax =" [b—dx ¥ C&]’

from which the [] bracketed term multiplying Cos® is - 21103—; . Obtaining the

multiplier of Sin® in a similar way, we find that 5.28 reduces to

F o _ i .. db. dc
I = SR 1b&Sm19 °Ix Cos®} . (5.36)

It is interesting to note that this agrees exactly with equation 3.22,which
was specifically developed for the case 8 = O, where the major axis is
alignedwith the y direction. See Fig. 9. The implication of 5.36 isthat the

form of the relation is independent of &8, but b and c¢, and, thereby, %}% and
dc

I will change with El and -

36

——



R T ™ T T

Finally, although in this case S is known, we may verify the validity
of 4.24, 4.25. We have '

1y

c =y +iz =re’ =r (Cosy + 1 Siny)
(o4 [o4 [} Cc C
or
y =71 Cosy
[+ [+
and
z =r Siny .
c (o3
Hence
z
< () = Tany
y
[+
or
z
d c _ d'a’ 2
I8 y—(e) —a—éSecz,
(o4
giving
A ¥ N2 z
dy - 2 d c _ c d c
% = Cos v a—a {—y—: (9) = (F:) 36 yc(e) . (537)

The area of the cross-section is therefore

1 1 2 dy
o
21 z
1 2 d c
[+ [+
but
4 3(9) = iz_c-z_:l_{° /-
ds 1y =1¥.de "% de [/,
(o}
hence
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21 dz dz dy

=1 ——C - _C - __C
S _[o Y 38 zZ_ 35 zZ_ 35 de _. (5.38)
In the present case we may write

y = A Cos6 + B Siné } (5.39)

B Cos8 + C Sine

N
]

where
2
o
B = 2R (%] (%] - (5.40)
and
2
xR

which yields

dyc 3
—aé—=—ASm9+BC059
and » (5.41)
%c=—BSine+CCose.
Substituting from 5.39 and 5.41 gives
ch dyc 2
yc& mzcde = AC - B,
or
2n
1 2 2
S=E(AC—B)J.o de = n (AC - B7), (5.42)
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which, on further substitution from 5.40, becomes

il 1]
;‘U =
™ ~
N
— A,
—
' ]
pr——
m m —
——
] N
pT———
o[BS
| R
&
{
N
T
7U| JY
et
N
Fannmmann
70| =
~——
[\
-4

or
S = 7w bc, as required. (5.43)

Having explored these elliptic cross-sections at some length, let us

now proceed to the more general case o = 0, k > 2, which is a

particular sub-class of the von Mises class of mappings.
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6. Von Mises Mapping; Case §°= 0, k = 3.

The elliptic cross-sections obtained in Section 5 offer a useful basis
for the design of lifting bodies, particularly if the ©body section
aspect-ratio is varied longitudinally. Such shapes formed the basis for the
experimental studies described in Refs. 5 and 8. However, these shapes are
uncambered with respect to their lateral axes and, in our exploration of the
present technique, it would be a valuable addition if we can develop methods
for generating bodies which have such a camber. A practical example of such a

body is the NASA Space Shuttle.

One of the simpler examples of such a body may be obtained by taking
an additional critical point, CS. It is not suggested that by taking three
critical points we shall be able to design cross-sections having a wide range
of geometric form. However, it will serve to illustrate some of the procedure

involved.

We have

g c c
do _ _ _ 2 _ 3 (6.1)
a = (1 c][l c][l c]’

where, from 4.19,

g, + g, +¢ =0 (6.2)

This latter condition corresponds to requiring the centroid of the triangle,
having vertices c1’c2'c3’ to be at the origin. See Fig. 12 (a).

On expanding 6.1, using 6.2, we have

99: =1+ CICZ + C2C3 + CSCI _ CIC2C3 ) (6.3)
dg c 2 c 3
which, upon integration, gives
o =C - Cxcz + C2€3 + CSCI N Clczzs, (6.4)
C 2g
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p

s

k.

‘w - g “

the constant of integration being zero, as was assumed in the

original formulation 4.5. It follows from 4.5 and 6.4 that

C — — -
1= §1C2 §2§3 C3§1
and (6.5)
cg ..

2 2 717273

|

The image Co_ of the circle CC = Re16 under the mapping 6.4 is

given by

CIGC
e  +

c = Rele

+ 1 -210
c R

—ze =y +iz . (6.6)
R C [+

Generally the critical points will be complex and we may write

C =C +iCcC
1 11 12

and (6.7)
C

1t
O
+

C_..
2 21 22

On substitution into 6.6 we may then obtain

y Cu 21 12 sz )
=[1+-——)Cose+—C0529+——Sin9+—Sin29
R 3 2 3

2 R R R

&l

-and > . (6.8)

&l

z Cn CZI C12 sz
i [1———2]Sin9————3—Sin26+—-2— C0529+-—5 Cos 26
R R R R ’
Most bodies of interest will be symmetric with respect to the z -
axis; e.g. Space Shuttle, and we seek to impose this symmetry by our choice of
critical points. However, since the direction of the onset velocity Umo‘i may
be chosen at will, we may relax this requirement to having symmetry with

respect to the z - axis or the y - axis.

Symmetry with respect to the z - axis requires that when 6 =

n/2 and>" then ~ ¢/R=0 and that
2

y y
CT gy =t (E
R G V=g G+¥
» {(6.9)
2z T ya
—R'c(;"lll)= }—z—c(—‘*'w)
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where Y = 6 - n/2. In order to achieve these conditions it is necessary that ]

C. =C_ =0,
12 21 |

and 6.8 becomes !

\
yc Cn sz }
— =1+ —"1 Cos 8 + —" Sin 26 !
R [ Rz] r3 Symmetry

y w.r .t. (6.10) i
zc C11 sz z-axis }
-R— = [1 - —2—] Sin 6 + -—5— Cos 26

R R

J

In a similar way, symmetry with respect to the y-axis requires

that when 6 = 0 and n then zc/R = 0 and that

Y. y.
=(68) = <= (-8)
R R (6.11) |
z, z, !
P—l—("e) = - R_ (e)
This is achieved by the necessary condition that
C =C =0
12 22
and 6.8 becomes
\
J Cn C21
=2 =11+ —| Cose + —= Cos 26
R R2 RS Symmetry
S w.r.t. (6.12)
z C11 C2 y - axis.
R—° = [1 - ——2—] Sin6 - _51 Sin 26.
R R )
We now need to establish whether our choice of critical points can

be such as to produce these conditions.

Writing
=& +in, (6.13)
n n n
then, on substitution into 6.2, we have
. -0
EI+EZ+E3+1(n1+nz+n3)

or k

53 = "€1 - 52
and . (6.14)
=" -m,
ol
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From 6.5 and 6.13 we obtain

[EIEZ B 771772] * (&:263 B 772773] * [6153 - n1n3]]

* i[[gan * g27’1) * (€2n3 * E3772] * (gln3 * ESHX]]

and

2¢, = [63 [glgz - "17’2] T My [&:17'2 * g2"1]]

+ i[EB[Elnz + é‘znl] + nB[Elﬁz - ’71"2]]'
Hence, using 6.14,.
- Cu - E1€2 UL 52 * ”2’
- C12 - g17'2 * §2n1 - 253173 ’

2 C21 = g3{"51€2 B 7717]2] B nB[ElT'Z * g3.’,1]

and

2C. = Es[glnz * gznl] MR {glgz - T717'2) :

which is zero if nl = nz. Also

2C21 =7 n3gl [nz - nl] = 0.

Thus for this choice of critical points, which are

(6.15)

(6.16)

(6.17)

symmetrically

disposed with respect to the m-axis, as in Fig.12(b), O‘C will, from 6.10, be

symmetric with respect to the z-axis. In addition we shall have
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whilst
i
and
or
C
“u
R2
and
22
R3

Alternatively, by

-C
1

which is zero if &1 = 512.

Y Y
I i
1 Sy
Tas Y
-
+
+
[T
pots =
= o
[

Y
1
i
N
o
=

2 2 2 2 2
= - - + 4 = - + 3
El T)1 nl El 7)1

choosing n, = 0 or n o= -0, then

2 - E1712 * Eznl = nl(gz - g1)’

Also

2(:22 = E3(€1172 * EZ.nl) = €3n1(€2 - gl) =0

Thus for this second

choice of critical points, which are

(6.18)

(6.19)

symmetrically

disposed with respect to the €&-axis, as in Fig.12{c), o will, from 6.12, by

symmetric with respect to the y-axis. Also we shall have

whilst

and

¢, =& *in
¢, =& -
¢, = -2 .
2 2
n T T 3€1
2 2
€ = _EI(EI * nl]’
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_]

| .

or

fo- 3y 2 ’ 2

RTRON

2
R \R 7/ MR
and - (6.21)

£ \ 2 2

C21 El El n

_.5. = -} - + |—

R (R ) IR R )

By taking values of g’l/R and nl/R such that the values of &, ,Z lie
inside Cc’as in Fig. 12 (c), we may readily generate families of cambered
shapes. Some examples of these are shown in Fig. 13. The degenerate case is
obtained when Ejl/R = 0, hence §3 = 0 and Co~ becomes an ellipse. As we make
€1/R more negative, nl/R being fixed, so the extent of the camber produced

increases. The reverse camber is obtained by a change of sign in El/R.

The shapes generated in this exercise all have symmetry with respect
to the y-axis. We may generate the same set of shapes, but now having
symmetry with respect to the z-axis, by simply interchanging €1with nland
writing the expressions for Yo Z, interchanging El with n, and writing the
expressions for Yo 2, in terms of Yy = g - 8, where ¥ is the angle measured
from the vertical axis of symmetry. We may demonstrate this by first taking

C12 = 0 in 6.8 and then substitufing from either 6.19 or 6.21. In the case of

z - symmetry (C, = 0)

2 2 2 2

Ve rE; rnlw (nx\ (El‘ rnlw .
E—— = <] + '1—2-— -3 -}2—- Cos O + i ﬁ* + —i Sin 26

\ J \ \ . J \ J
and S, (6.22)

foo )2 32 [ ) foo Y2 (.. Y2
E—l_i +3l Sin9+5 i A Cos 26
R ~ R R R R R ’

\ 7 \ J ./ \ \ 7 J
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whilst in the case of

y_-_symmetry (C_ = 0)

2 2 2 2 )
yc (,nl\ !El\ fgl\ Vgl\ (.nl\
§~=1—R— +3}—2— Cose—ﬁ- 7 +§— Cos 26
\ J . J \ ) \ J
and , ) ) ) - (6.23)
(1 ) £ TR £ o= ) £ )
Ze 1+ o 3 -g—l Sing + S .l Sin 26
R R R R R R
\ J \ J \ J \ . J
7/

If now we re-write 6.22 in terms of Y, and interchange El and n, we

obtain
2 2 2 2 )
K g1 . 5;'1 gl n . .
1+ B —3R— Siny + T =l tir Sin 2¢ = (i)
and > (6.24)
2 2 2 2
1 - ! + 3|2| YCosy - S I + ™ Cos 2y = (ii)
R R R| VIR g | (Cos 2 = b
7

Thus 6.24(i) has the same form as the zc/R equation in 6.23 and 6.24(ii) has
the same form as the yC/R equation in 6.23. By taking 6 and ¥ over the same
range of values we see that 6.24 generates the same shape L with respect to
“the y-axis, as 6.23. This confirms that 6.22 defines the same family of
shapes as 6.23, but rotated through a right-angle.

From this exercise we see that considerable variety of body
cross-section is possible, even with the restrictions that we have placed on
the location of critical points. An even greater variation of shape will,

presumably, be possible by taking a larger number of critical points.

Having examined the cambering produced by the presence of the third
critical point €3v let us now turn to obtaining the related expression for the
gradient of the normal force. We have, from 5.20, the relation for f’l(z),

whilst from 6.3 and 6.5

o
di' do, =, _ _11 21 . (6.25)

46




It follows that

dZ

- R - 2 C -
=jE Z + —|Coso + i|T - = |Sin® 1——_—§d§,
CC < < <

since the term containing C21 will not contribute to the residue. Thus

R%- C R%+ C _
S}; ———1|Cos® - i|——L!sino}aZ
o g <

[Rz— c ]COS'[? - i[R2+ C ]Sim? j[';
11 il

[

§ F (&)de = 5; F (592 gz
1 1
C CC

(6.26)

~

3§ F (5)do
c 1
o

atll IJ%I

C

3
2ni{[R2- c“]cOsa- i(R2+ ., Sinﬂ}

J

«©

(Cl 1
— Cos®
R R

\

(6.27)

!
[\
2
~
Pt
+
IO
)M
2}
e
=]
<@
+
et
I

We may obtain the cross-sectional area from 5.38 and 6.8, where we
confine ourselves to the class of symmetric body previously discussed and
illustrated in Fig.13. Since C12 = O in both these cases of body symmetry we

may substitute this into 6.8. Thus we have

1 dy
el L —g Sin6 - Z%SinZe + ——2—2-C0526,
R R R
and
1 dz 11 C21 22
- = =11 - —|Cose - 2—-Cos2e - 2—"sin2e,
R do R R R

from which

47



l y c _ 2 c
R%| ° de ° de
[ Cu\ C21 C22 1 Cl 1’ C21 22 ]
= 1+ ———2— Cos6+ —2C0526+ -——S—SinZB - T Cos6- 2—5—(:0529" ZTSinZG
L\ R 7 R R o b\ R V. R ..
[ C“\ CZl C22 1 Cll\ 21 |
+ ||1- —*|sine- —Sin26- —Cos26|| |1+ —|Sine+ 2—-Sin2e- 2-22cos20
| R R R R R 3
L 4 - =\ J .
Cu‘ : c21 ‘ sz i
=1 - |— - 2|— - 21—=! + terms in Sin® Sin26, Cose8Cos28, etc.
2 3 3
R | R R

It follows that

_ c c
S_z,[ Y. 38 "% as (9°
1 .2 an 212 szz o
=_R 1— —2 "2—5— ’2—-3—- Jde
R R R o
or
2 112 C212 222
§ = mRGI- || - 2= = 2=
R R R
since

21 21
J SinB Sin206 d6 = J Siné Cos26 de ... etc.
[+] [+]

are Zzero.

(6.28)

In 6.28, C21 will be zero when the body is symmetric about the z-axis and C22

will be zero when the body is symmetric about the y-axis.

From 6.27, 6.28 and 2.48 we then obtain
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PR

-t

dCr 2i01 0 C11 C11
T 7 {ZnR 1 + > Sin® + i |1 - Cos ®
R X R R
2 2 2
, C o C
- i e Par?|1 - - 2|2 - 2| 2R
R R R
2noe 8 (C . Cc
= =— {R7J2i}f1 + L Sing - 2|1 - 11 Cos?
S ox 2 ﬁ
\R
) C11\ 2 (C21\ 2 sz 2]
Cos?® - 'iSing 1 - T - 2 T - 2 —‘—3-—
V R V. \R J \R J -
2no C (c 12 (c )2 (c )4
= 4{ 1+22]+% +2% +2—§-2- i Sino
R R™ ) (R™ ) \(R™J
11 (Cu\ : C21 ’ sz ’ ]
+ > + 2 3 + 2 3 Cosd
\R 7 R R -

Hence, from 2.11,

dCz dna 3 ) 2na dRz ) sz
d(—x) = SR 5—)-{ NZR = —S-R— Nz d_f— + R a—x—' (630)
and
dcy 2 N aR? 2 dN,, a1
al-xJ) ~ SR Y dx dx ’ ’
where, we define,
(C ) (c )2 (c ) z )
xR J \R J \R J R
)
and (6.32)
(C ) (C ) 2 (C ) 2 c 2
11 11 21 22
Ny =l-2|1= | + 15| *2|=% *Z[T
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In these expressions we have, in the case of bodies with

z-symmetry,

i
@

C , C__ given by 6.19, and C
1w 22 21

whilst in the case of bodies with

y-symmmetry,

1
©

C , C given by 6.21, and C
11’ 21 22

In addition we may obtain the relative loading factors F and F
rA

Y,
where
dCz dC
_ o =+ z .
Fz = 30 {non~-circular) I (circular)
_ 2ma d 2y , 2ad

since Nz = NY = 1 for the circular section. Now

S=1rR2
[

is defined by (6.28), where R is the radius of the body of revolution having
€

the same longitudinal distribution of cross-sectional area. If we write

2 Re ’ Cn ’ C21 ’ sz ‘
K% = =1 - |2 - 2|2} - 2|-&] ,
R R R2 R3 R3 {6.33)
then
d 2] . d 2.2
Fo=& {NZR } T dax {kRR } (6.34)
whilst
F =9 Invr? s [i2 R (6.35)
Y dx Y dx R

In the special case where the cross-section is geometrically similar at all

stations x, then
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dN dN dk

N

ax ~dax " ax — 9
and
.
NZ
F.= =
k
R
[ (6.36)
NY
F. = —.
Y kz
R

7
Having demonstrated how cambered cross-sections may be generated by using
three critical points, let us move on to consider the extra generality

provided by four singular points.
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7. Vgn Mises Mapping - Case §°= 0, k = 4.

The procedure follows closely that of Section 6. We have
do < S g ] { S ] .
= = {1 -=2]|1-22|{1 - 231 - 24}, (7.1
z [ cl] [ cz] { C3 c4 )

g +g,+g, + ¢, =0 (7.2)

This last condition requiring the centroid of the quadrilatral, having

where

vertices cl, Cz’ Cs, §4, to be at the origin, Fig.14(a).

Expanding 7.1 we obtain

do (C1 * c2) c1§2 (C3 * c4) §3C4)
a—c— = 1 - + > 1 - + 2 .
< C < <

But, from 7.2, Cl + Cz = -—CS - Ca, hence

€, +&) ¢g (g, +&) &g,
1 - + 5 1 + + 5
c c S c

(cl+ c2)2 - CICZ- C3c4 - (cl * CZ)(CGC‘I B CICZ)

Q-lCL
~l9

=1 -

g g
£L,L.8,
* 4
g
C 2C 3C
=1__;__2.3-_§, (7.3)
< g <
where
3
2
Cx = (cx * cz) - c1c2 - C3C4
1
Cz = é(cl * Cz)(C3C4 - CICZ) i (7.4)
and
1
C:s =73 €1C2C3C4 : )
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o ‘ . 2

s i

On integration

C

@]
O

+

2
¢ g

o=+

wlo
+
U|U

Y

and the image of the generating circle Re16 under this mapping is

Q

. . . C .

16 -10 2 -218 3 -3160 .

e + — € + — e =y + iz .
2 c c

R R®

~ |_O

Writing

and substituting into 7.6, we may obtain

y C C
—= = (1 + —%)Cose + —1%5ine + —2Cos20 + —23Sin28

R R R R> R

+ %Cos36 + ——j—-z—SinBG ,

R R
and
z Cu CIZ sz sz
= = (1 - —)Sin6 + > Cos8 - —-—5—Sin26 + —3-C0829
R R 'R R R
C
31

>1sin3e + -——z—?—COS39 .
R ‘R

(7.5)

(7.6)

(7.7

(7.8)

(7.9)

We will concentrate on a class of bodies having symmetry with respect to the

z-axis. For this we require:
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(i) S =0when 6 = % and "
R 2 2
and y y
.. c T _~__c _1_{__
(ii) r ('é"” lﬂ) = B (2 ll’)
zc z n
[od
-R—(‘z-'*‘l’)—R— (-2“"/’) s
where
14
w——z-— e .
Now
E[z} _Ci_fa Ca
R {2 Rz R3 R4
and

so in order to meet condition (i)

c_=¢C_ =¢C_=0. (7.10)
12 21 32

Inserting these values into (7.8) then allows us to write

y 14 sz C31
—5[—+zp} = - [1+—]Sin|[;-———Sin2¢:+-————Sin3x,b
R 2 R3 R4

and
y ¢ sz C31
Rc [—g- ]=[1+———1—%} Sinl//+—5-Sin21p-—4—Sin3w
' R R R
or yc E.g.w—_i,_‘i E_
R |2 - R |2 :
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and

Also
zc[n C11 sz C31
——+w]=(1——] Cos p ~ —— Cos 2 Yy + — Cos 3 ¥
R {2 Rz R3 R4
c|m
R[i"”]

Thus both conditions (i) and (ii) are met if (7.10) is imposed.

The equations defining ¢ become
[+

yc Cll CZZ C3l

E— {l + —2} Cos 6 + —3 Sin 2 8 + -—;‘ Cos 3 6
R R R

(z - symmetry) (7.11)

z C
-R-S [l——;l]Sin6+——§EC0529~-%Sin3e
R R R

We need now to choose the position of the critical points in order to meet the
z-symmetry condition (7.10). For this purpose we will follow the procedure
of Section 6, where we chose the critical points to have symmetry with
respect to the m-axis in order to produce a body cross-section having symmetry
with respect to the z-axis. As will be seen , this choice is a sufficient
one to produce the required symmetry, but it may not be a necessary one.
This issue we will leave open (perhaps indefinitely!)

Fig 14{(b) illustrates the geometry of our choice. We have, from (7.2)

4 3

Yy & =0, Y m, =0, (7.12)
=1

and, from Fig.l4(b), we have chosen

€1+€2=0’ g3+€4=0
(7.13)
771 = nz, T'a =M,
Hence

4

Z £€ =0, is satisfied,

n=1 n
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whilst

gives

n=Nn=-N=-N. (714)

_ 22 o2 2 _
11—51 2"1+E3’ sz_o
C12 =0, sz - [gz . 52] | (7.15)
1 1 3
_ 1 ez, 2)(p2, 2 _
C:n T3 [€1+ nl} (€3+ n1]’ Csz 0 .

By way of an afterthought on the choice of critical points, we can see that

the choice

g, =-6& »mn =, 0 (Real points)

n, ="M, C3 = §4 0 {Imaginary points)

is another possible one. If then we substitute into equation (7.4) we obtain

2 2
Cx—cu—cl”ns’cxz_o
cC =0, C =C =0
2 21 22

1 2
C3-5€1 1)3-—(331,C32—0

Such an arrangement means that the body generated has symmetry with respect to
the z-axis (C12= C21= O)and, in addition, symmetry with respect to the
y—axxs(C12= sz = 0).

This double symmetry can be a useful property, particularly when dealing

with winged configurations (see Ref.26), it will not be pursued further here.
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Before examining the range of body shapes generated by (7.11), (7.15), let us

obtain the expressions for the gradient of normal force. From (7.3)

— =) =1 - -2 -3 \ (7.16)

remains the same as (6.26) and (6.27) the terms containing C21 and C31

not contributing to the residue. Also on using {7.11)and (5.38) we find that

2 Cll 2 CZZ z C31 2
R R R
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C C. 2 C_.\2 C_\2
+ B [1—2 {—’—;J + [__1_;] + 2[—2—2} + 3[i] ] . (7.18)
R R RZ R* ‘

Hence 3
dCz _ _2ma d N RZ
d(-x) ~ S, dx z
and v, (7.19)
v 2me d [ g2
d(-x) = S dx V'Y
R J
where
C11 Cn 22)°? c z )
v, ove ) [ (2 s [
“ R R R R
and \ (7.20)
Cll Cll 2 sz 2 C3 2 C
N, = 1—2(—2] + [_2] + 2[_3] + 3[—1] =N —4(———‘ 1]
R R R rR* z L rY

Let us return now to the range of body shapes which may be generated by
the geometric equations (7.11) and {7.15). Some idea of what is possible is
shown in Fig.l15. For example Fig.15(a) shows the case €1/R=0'6’ nl/R=O,
which is a family of body cross-sections symmetric with respect to both the z

and the y—axes.- Starting with 5;'3/ =0, which gives an ellipse, the increase

of 53/R produces a flattening and wic?ening of the shape, until at Ea /R=O.6 the
depth is nearly constant over 60 per cent of the width. Relative to this
basic case, the effect of making nl/R negative is to cause the body depth to
become greater, the width to become smaller, whilst simultaneously producing a
convex upward camber. This is illustrated in Fig.15(b). These effects are
progressive with further decrease in "nl/R as shown in Fig.15(c). As
mentioned in Section 1, bodies with corners are unlikely to have their
aerodynamic characteristics accurately predicted by the present technique.
Thus a body having a cross-section defined by £1/R=0.6, 53/R=O.6, n1/R=-0.4,
Fig.15(c), is not a serious candidate. However, it does serve to illustrate
the wide variety of cross-section which can be generated by this relatively
simple mapping. Variants on this theme can be obtained, thus decreases of
£1/R will cause the bodies to be narrower and increases, wider; whilst making

m/R positive will produce bodies with concave upward camber. Let us now

leave these specific low-order mappings and consider the more general
case.
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8. Von Mises Mapping; Case . = o,k.

Having demonstrated the useful range of body cross-sections which can be

generated by the use of three and four critical points, we turn to the more

s

general case, where k is any positive integer. In application we anticipate

that k=10. Such generality should permit a very wide range of body shapes

and, perhaps, provide a basis for a ’direct ’ method in which the body shape

is known and the critical points, or coefficients C ) C ,» are
nl, n

determined.

Re-capitulating, we have

do k
E =1 - EzlnCn/

n+1
H

<

k
o) = ¢ + §=1Cn/

n ,

<

M

A
il
O

to be

(8.1

(8.2)

(8.3)

This last condition corresponds to requiring the centroid of the polygon,

having vertices Cl, Cz’“'"g(’ to be at the origin.

‘The image Co_ of the circle C =Reie under the mapping (8.2) is given by

¢

Je 1
R

oM =

P y z
. {Cne B n} -l C ¢

or, upon substitution from (7.7)

|9

CosB + i Sin6é
k -(n+1)
+ z {[c +iC NCOsne - iSinnB]R n }
n=1 nl n2

Cos8 + i Sin®é

oo

k
+ X [C Cosng + C Sinne} .
n=1 nl n2

+ i[— C Sinne + C Cosne] R—(nﬂ)
nl n2
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Thus

y £ ~(n+1)
5 = CosB + £ {[C Cosné + C Sinne]R n 1} (8.5)
R n=1 nl n2 .
and
z . ~(n+1)
-2 =Sine + % {[—C Sinne + C Cosne]R n } . (8.6)
R n=1 nl n2

We wish to impose the same conditions of symmetry, with respect to the

z-axis, as used in Section 7. Thus

y K
cm) _ nm . nu] ,—(n+1)
——ﬁ[-z-] = E:I{[CnlCos—z + CnZS1n—§]R }

c c c C c
- 12 _ 21 _ 32 + 41 + 52 - 61 _
R? RS> rR? RS R® R’
k/2
= (-n™ = Ic R-2m _ ¢ g-lemtll (8.7)
m=1 (2m-l)2 2m1

In a similar manner

Ye(3m . [ 3nT 3nTt].-{n+1)
— =] =2z C Cos—— + C Sin R
R 2 n=1 nl 2 n2 2

L.

i
™

(¢ Cos™™ - ¢ sin™|r"(»*1)
n=1 8 nl 2 n2 2

k/2
= (-™ = {cC R72™, ¢ pzmtl (8.8)
m=1| (2m-1)2 2m1
It follows that
fl_c Ll _yf 3 o
R |2} 0 R 2
when
C and C
(zm-1)2 2mi
are all zero for 1 = m = k/2. (8.9)

Writing (8.5) in terms of ¥ = = - 6 we obtain

wiA

60



PREp——

b

k

y
_};(9) Cos [g “l/'] + §-=1{[ nlCosn[g —w]+CnZSinn[12[— —w]]R'("ﬂ}

k
. nT ._nl .
Siny + Ezl{[cnl[(?os—-i Cosny + Sm——z- Smru,b]

n

+ C Z[Sin—"—;E Cosny - Cos n—: Sinnw]R-(nﬂ)} .
On using (8.9) this becomes

y y
c _‘c m
RO =5 G-¥

Cll sz C31 C42
=(1 + _2 ) Slnw + —3 Sim/l - —4 Slnl/l - —5 Sll'l4¢l
R R R R

+ C51 SindSy + C()2 Sinéy .

R® R’
Similarly
yc e .Cu ' sz C31
R ('2‘ +y) = (1 + - ) Sin(-y) + e Sin2(-y) - 2 Sin3(-y) ......
R R R
Cu 22 31
= -1+ T ) Sll'l!ll - —T Sin2!,b + —4' Sin3¢l ......
R R R
y
4
=Tz (; - ).
Also
z k
c m P . L i -(n+1)
R (~2- -yY) = Sm(; -y +n§1{[ CmSm n(; - Y) + an Cos n(—z— - IR }
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K
= Cosyy + Z {[—Cm(Sin x;_n Cos mﬁ - Cos 2—“ Sin ny)

n=1
+ C_(Cos P Cos ny + Sin 2% sin ny)IR™ ")
nz 2 2
C“ sz C31 C42 C51
= (1__2 )Cosy - - Cos2y + — Cos3y + —= Cosdy - — Cos5y
R R R R R
whilst
‘o Cll sz C31
g G =0- —=-)Cos(~-yy) - —= Cos2(-y) + —— Cos3(-y)
2 R2 =3 o

C42
- Cosd(-y) - ......
R

N

_ cT[_
'R_(E ¥).

It follows that the symmetry conditions are met if (8.9) is imposed.

The more general result for the cross-sectional area may also be

obtained.
From (8.5)
dy k -
1l “c__ Sin6- T {n[C SinB -~ C CosnB]R (n+1)} ,
R do nl n2
n=1
and from (8.6)
dz k
1 “c . ~-(n+1)
a8 = Cos® - Z {n[CmCosne + %2 SinnB]R Y.
n=]
Hence
v e Yo
Rz yc de c de
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e et meed

i > ot

|

k

= {[Cosé + = {[C_Cosné + C_ Sinne] R™ ™)y
nl n2
n=1
: ~(n+1)
x[Cos8 - £ {n[C .Cosne + C__. Sinn6]R )
nl n2
n=1
y ~(n+1)
+ {[Sine + £ {[-C_.Sinne + C__Cosn8]R 3]
nl n2
n=]
. ~(n+1)
x[Sin6 + £ {n[C_.Sinn® - C _Cosn8]R .
=1 nl n2

On expanding these products and substituting into (5.38)

we obtain, after neglecting the integrals which are zero;

2n
. j Sin n® Sin me deo,...... etc,
i.e.
0
- 2 K Cm 2 2 cnz 2.2
g =1 sz {CosB—Z[n[(——(—n—H—)) Cosne + (W)Slnnel]
2 o n=1 R R
2 k Cnl 2 2 an 2. 2
+ Sin“® - £ Inl(————) Sin"nB + {(————)"Cos'n6ll} ds
(n+1) (n+1)
n=1 R R
2n
, 2, E Cnl z an 2 J
= -~ R{1-Z In( )+ )11y | de
2 =1 R(n+1) R(n+1)
0
or
) k Cnl 2 an 2
S = wR™{1 - Z [nl( )+ ( ) 1.
n=1 R(n+1) R(n+l)
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In this expression the coefficients defined by (8.9) will be =zero,

leading terms will be given by

C 2 C 2 C 2 C 2
S = nRz(l—(—g) - 2(%) - 3(—-—2—’) - 4(—:"1)
R R R R
C 2 C =2
- 5(%) - 6(%) S
R R

and

the

(8.13)

Because terms in C21’ sz’ C31’ etc. do not contribute to the residue

then equation (6.27) will apply to this general case. Substituting into

(2.48) then gives

dCF 2myi d 2 C11 Cu
I=x) = S &—{R [2i]1+( p J1Sin® -—2[1—(7 }J1 Cos ®
R R R
. . S
+(Cos® - i Sm@)[-——]]}
2
R
2Ty 4 2 1 S
_ <. {R {[2+2(—)~- ]]i Sin ®
= SR dx RZ T[Rz
C11 S
-{2-2( ) - [—- ] JCos 9]}
R 7R >
C
= - 28 R (242 (2h - {S—z}]
R R

Cll S
+ B [ 2-2( 5 ) - {——2]]]},
R R
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Thus

dCz _ zna d (N RZ}
d(-x) S_ dx *

R
and
~——~dCY P 4 NRH
d(-x) S dx Y ’
where

C
N =2+2 (%) S .
z R nR
Cll Cll 2 C222 C31 2 C422
=14+ 2(——2—) + (—“"2') + 2(-—3—) + 3(——7) + 4(——5') +
R R R R R
and
Ny=N_-4 _g
‘ R
Cll Cll 2 CZZ 2 C31 2 C42 2
=1-2 (—2) + (—é—) + 2('—3—) + 3(7) + 4(—5) + o
R R R R R
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9. Some Ideas on a Possible Direct Method.

¢

Having discussed the indirect method of body generation at some length let us
turn to the ’direct’ problem of determining the mapping which generates a
given shape. The shape o is fully specified and it is assumed that it is
such that the generalized Von Mises mapping, described in Section 8, is

capable of defining it. The situation is illustrated in Fig.16, where we map

from acircle { = Rele to a closed contour o= r‘cew which is symmetric with
[+
respect to the z-axis. It follows thay y and =z are defined by equations
[+3 c
(8.10) and (8.11), respectively, which we re-write as
y r : Cl . C C3 )
R—° = R—° Sin p = (1+——) Siny + Sin2y - —— Sin3y......
R R R
and >
z r 11 Cz 2
R—c = —; Cosp = (1~ 5 ) Cosy - — Cos2y + Cos3y......
R R R

We wish to establish a technique, which will necessarily be iterative in

. - 2 .
character, to determine the coefficients C11/R , etc. For this purpose

re-write (9.1) in the form:-

y

c . . . .
Ay = O Siny = c11 Siny + 022 Sin2y 031 Sin3y -...
and r

Zc
Az = - Cosy = - c. Cosy -~ C,, Cos2y + C.y Cos3y +..

J

where
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\
C C C
11 . 22 31 42
C11= 2 %2 T 3’C31= 4’C42= 5 UUUCt
R R R R
(9.3). .
>
C C
nl n2
cl= 1’C2= . .etc,
n n+ n n+
R R J
n#m;

and Ay, Az may be viewed as a measure of distortion between ¢ and o , which
C [+

would be identical if Cn’ 022,....etc were all zero.

In the above expression for Ay the coefficients ¢ S, are those of
n m

"half-range” Fourier sine series, Ay being an "odd" function. As a result the

coefficients may be expressed in the form

o (T
== I Ay (¢) Siny dy

C
11 mjo

S
S, =
(>
ho-]
g
’[_/‘).
o]
[N
<
Q.
<

......................................

nl TT
0
_+ 2 Ay(y) Si d
€2~ 1 y(y) Sin my dy

...................................... ete. (9.4)

The signs of the coefficients alternate in pairs in accordance with the signs

in equation (9.2) or (8.10). See for example Ref.20, pp. 393-6.

Unfortunately, although we know ¢ in terms of yvz,oryvr, we do not
c

know y or z as a function of ¥, and as a result we are not able to obtain
[+ C
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Ay(n/:) and hence the coefficients ¢,y © yeea.€LC, In fact Ay(y) depends,

22
through (9.2), on a knowledge of these coefficients. This is, of course, a
classical situation for the establishment of an iterative procedure to solve

the equations of (9.2), simultaneously.

Let us start the iteration by choosing N equal angular divisions in y between
the points A(Yy = o, ¢ = o) and By = =, p = mw), Fig. 16, and assume that,
initially, the corresponding angular divisions in p are the same as those in
Y. We already know, of course, that the form of (9.2) ensures that the
mapping carries A in the { plane into A in the ¢ plane and similarly with B.
The scheme is shown in Fig. 17. It follows that at a point on Cc defined by
l//nand R, there is a corr‘_esponding point on o, defined by (rc)n and p_or

(y ,z ), where
(o3 cn
z
(=) =cotpu = Tan 7 (9.5)
Y n n n

and in the zeroeth iteration we have chosen g = ¢ . Thus the initial values
no n

(y) and (z )no are readily available from (9.5) and the fact that
¢ no [+

2 2 2

r) =) +(=z) . (9.6)
cn cn cn

We may use this information in (9.2) to write

y
[+ . — . . -
(Ay)no = (—R— )no— Slmpn = (cn)yoSmt,(/n + (czz)yoSmZ!lln ...... etc ., {9.7)

where the subscript ( ) refers to values of the coefficients obtained by
yo .

Fourier-fitting (Ay)no and where 1<n <N.

The coefficients in (9.7) may be obtained from the finite-difference form of

{9.4), which may be written as

2 N n 2 N
Cll)yo =_1-I_ n§1 (Ay)noSInwn -ﬁ =NnEI(Ay)nosulwn
5 N
(CZZ)YO °N n§1 (Ay)nOSIDZ![In
2 N )
=- = i (9.8
(CSI)yo N n§1 (Ay)mSmBn[;n,
and so on.
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If now we substitute these values of the coefficients into the Az equation of

(9.2) we obtain

(Az)m= - (cn)yoCoswn - (czz)yc’Cos&/Jn + (cSl)yoCos&/Jn + ..., (_9.92
1 <n< N;
from which

z
C —
(E—--)nl = (Az)lnl + COS!/In ; (9.10)

In a closely similar manner to the foregoing, we may use the known value of

(zc)no in the Az equation of {9.2) to obtain

(c. ) = -

z
11 zo— N n=

(Az) Cosy
1 no n

5 N

(022)zo N n§1 (Az)no CosZn,bn (9.11)

and so on. Substituting these values into the Ay equation of (9.2) then gives

(Ay)nl = (cu)zo va,bn + (CZZ)ZOSmZvJJn - (Cal)zo Sll’l3l/ln -... {9.12)
1 <n < N;

from which

y

(g, = @y + Siny . (9.13)
y z

In general the point E-E, R—c will not lie on T Fig. 18, and it will be

ni
necessary to iterate further. Thus we may repeat the previous process to

give
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(Ay)nz = (c“)21 Smgbn + (c22)21S1n21,bn - (0:31)2151n31pn .
and [ (9.14)
(Az)n2 = - (cll)leOSxpn - (CZZ)yICOSZIﬂn + (C3l)y1COS3l/ln +oeny

J

where the coefficients have been obtained from the Fourier fitting process

defined by

> N
cu)zl = - N n§1 (AZ)MCOSlﬂn ...... etc
(9.15)
and \
> N
c“)yl =N z (Ay)msz,bn ...... etc
J
Yo Zc
Again the point R may not lie on o, Fig 18, and the iteration must
c
nz
continue. Thus the jtn iteration gives
(Ay)nj=(c“)z(j_l) Sxm/Jn + (CZZ)Z(J—I)Sanwn - (Csx)z(j—x)sm:)’wn -
and » (9.16)
== - 3y +...
(AZ)nj (Cll)y(j—l)coswn (c22)y(j-l)coszwn * (CBI)y(j—l)Cos l'Iln
V4
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‘
P

where
5 N
260" T N ah (A2) | -ntos¥,
.etc;
and
5 N
c“)y(j_l) =N n§=31 (Ay)n(j-” Slm,(;n (9.17)
.etc.
When
(Ay)nj - (Ay)n( jo1y - (e:y)n
and (9.18)
(az) - (Az) = (g_)
nj n{(j-1) Z'n
are sufficiently small the process may be deemed to have converged.
y z
However, depending on the value of N, the point R—c, —R—c may not lie very
nj
accurately on o and coefficients (c..)yj and (c:..)j may differ
z

appreciably. Nevertheless this is the best approximation for the value of

N chosen.

In order to obtain a satisfactory value of ‘N we may substitute the values of
the coefficients (c..)yj or (C”)zj into (8.12) or (8.13), _the expression
for the cross-sectional area S and compare this with the known value. If
this is not accurate the value of N may be increased until satisfactory
accuracy is obtained. Under converged conditions, presumably, the

coefficients (c..} and (c..)  will also be the same.
i zj

At this stage the method has not been explored numer‘ically, further work will

be reported on at a later date.

Having obtained the coefficients to a satisfactory degree of accuracy the

normal load gradients may be calculated from (8.15). Thus
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dCz _ 2ne d

d(-x) SR dx

{N R%
4

_2ma d 2 S
< ax {2 (1+C11)R‘ - —7;—) : :
R
21 dR 24¢, 1 ds
- 5, {401+ ¢ Rz + R—Gg— - — 3} (9.19)
and
i S { 4(1-c RE ZRZdC“ L 495,
d(-x) SR 117 dx dx n dx ~ ° (9.20)

It will be noted that in the indirect method we choose R,i.e. L , and the
C
co-ordinates y , z_ of points on ¢ come out as they will. In the direct
(o4 C
method o is already specified and we are required to choose an appropriate R.

One way of doing this is to choose £ such that o lies inside { , i.e. R > r
c [+ C [~

Max
This will, from our previous analysis, ensure that implicit critical points
of the desired mapping can be located within ¢ . It will be a sufficient, but
c

not necessary, condition. However, we do not know r since we do not know
c
Max

the location of the origin y=o, z=o0. Since we have assumed that the Van Mises

mapping is capable of defining ¢, then presumably we may choose both the
c

origin of the y,z axes and, hence, r . As a result the mapping defined by
o
Max

(9.1) will not be unique and the choice of origin in the o-plane and R may

influence the convergence of the numerical scheme.

Another feature of this process is that the choice of origin in the eo-plane

and the ratio of r (x)/R(x) needs to be an invariant procedure with axial
[+
Max.
position x. This is not difficult with bodies having symmetry with respect to

both the z and y axes, but in cases where there is axial camber a clear

definition is required.

In all the previous analysis it has been assumed, implicitly, that points on

the body axis where

d {N Rz} =0 (N =N or N ] (9.21)
F z y
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[ e

are isolated points. When we are considering a body which has an axial

segment Ax for which the cross-section is geometrically similar over Ax, then
dN
z

dx
then (9.21) applies over the whole of Ax, which means that

= o over Ax. If, in addition, Rz(x), hence S(x), are constant over AX .

dC
F

I0=x) = O over Ax.

Since R (x) will also be constant over Ax then we can see that
e

dC
—~2 (non-circular) o
_ d{-x) _
Fz(x) = 3G =35 (??), (9.22)
—Z . (circular)
d(-x)

over Ax and similarly for Fy. For an isolated point, corresponding to Ax - O,
this poses no problem, since we can approach the point as close as we wish.
When Ax > O, a finite segment, then it raises the question of how to

determine F (x) and Fy(x).
4

Clearly there are interesting matters which remain to be explored.
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10. Conclusions .

It has been shown that the method of Sacks, Ref. 12, in its linear for'rr.l,
provides a useful, and relatively easy, method for predicting the normal force
distribution on thin bodies of non-circular cross-section. From this we are
able to calculate the ratio, FN, between the normal force gradient on the body
of non-circular cross section and that of circular cross-section, the
cr‘osks—sectional area distribution, in the axial sense, being the same for both

bodies.

From a known, accurate, distribution on a body of revolution we may then
calculate the distribution on related families of bodies of non-circular
cross—-section simply by multiplying by FN(X). The accurate distribution on
the body of revolution may come from any convenient source including
experiment. One way is to generate the lifting body by means of axial
distributions of doublets using either the approximate technique of Ref.9 or

the numerical method of Ref.25.

In the case of bodies of elliptic cross-section this technique has been shown
to give good agreement with exact theoretical results. See Refs. 10 and 1l
AExperimental verification of the method, on pointed bodies of ellipticv
cross-section tested at both supersonic and subsonic speeds, is provided, in
terms of overall normal force and moment characteristics, by the results of
Refs. 4 and 5. Further extensive validation, both theoretically and

experimentally, is desirable.

In this paper both the indirect and direct aerodynamic problems have been
addressed, and in the case of the latter a sketch of a possible numerical
scheme, to obtain the appropriate mapping function, has been developed. This

requires further work.
Finally, and obviously, the technique, when fully developed, should provide a

useful and economical means for the design of lifting bodies at modest angle

of attack.
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Fig.3.0rthogonal Projections and Elcme‘ntory Areas of Integration.



‘104623uU| 31N2419 jO UOI}DIUDIIQ PUD UOI}P2S Apog §o Alya2wo29 4614

(uo1}22s j0 J2j2wiiad) )

Bujsoa4sul s
: 4
~(X-3)

.



—

-4

TT

ix

veeiwe = qce! A X, goet®”

i =) ] i
+q.e =qge +qg 2): (qs—lqn)el

Ve -iw.= complex conjugate of (v +iw.)

-l

= (qso iqn)c

Fig.5. Velocities on the Body Surface.

x



sixy -2 Buojy UO01}22G - S501) JO UOIIDIIDA ‘g B4

J
\

S

X Q@+ }D UOI}I25-5504D - 19

X }D UOI}225-SS04d - )




o
o

Fig.7. Determination of the Slopes of the Body Surface

- Components of the Increment in Outward Normal Awv.



K1190127 2si2Asupi] x2)dwon 2y} jo uolliuiy2q ‘g b4




‘Buiddop jo Aij2wo029 ‘6614

2unid - S 2upid -0

21041) / (2sdijj2) o ~

3 ¢ A _q

3
o A

1. ®
0

n Lo -

U Y

/ -

OMQL“NJ.Q> =]

e o e ——— e r , ) , ey M | comm— s |



2sD) |042u29 - Buiddow jo Asjpwo29 0} 614

2uoid - § 2upid - 0

°§ +gy28 =7§

33 42puniky JpIn2ID (zz'v) uononba Aq pauiyap ©9

N




€ - plane

iz

Co-o(Ret®)

p=b

o - plane

Fig.11. Geometry of the Mapping -5,=0, k=2.



-
k‘

(a) General Case
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(b) Symmetry with respect to 1 and z-axes

(c) Symmetry with respect to § and y-axes

Fig .12. Location of Critical Points So=0.k= 3.
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