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I. Introduction

NLINE identification for a gas turbine engine is vital for health
monitoring and control decisions because the engine electronic

control system uses the identified model to analyze the performance
for optimization of fuel consumption, a response to the pilot
command, as well as engine life protection. Since a gas turbine engine
is a complex system and operating at variant working conditions, it
behaves nonlinearly through different power transition levels and at
different operating points. An adaptive approach is required to capture
the dynamics of its performance.

Dynamic identification for gas turbine engines is mostly carried
by frequency analysis through the experiments with sinusoidal fuel
input. From the research by Evans et al. [1], different frequency
responses are shown at different operating points [1]. A set of
estimated functions is used for representation over the full operating
range. For the process of simplification, an adaptive approach needs
to be implemented so that the estimated model can be evolved along
with the change of engine dynamics.

Isermann et al. [2] compared six methods commonly used in the
industry, and most of the online methods were based on the theory of
least squares and likelihood [2]. These methods are particularly
favored to the online identification because of their simplicity and
computing efficiency. They did not require iterations and training like
neural networks, but the accuracy of these methods was sometimes
compromised.

The recursive least squares (RLS) algorithm is well known for
tracking dynamic systems. Torres et al. [3] attempted to identify the
dynamic of the gas turbine engine offline, mainly at steady states with
stochastic signals. Arkov et al. [4] focused on real-time identification
for transient operations and concluded that an engine system could be
averaged to a time-invariant first- or second-order transfer function by
the extended RLS [4]. The tracking speed and accuracy for the RLS
could be improved with a different design of forgetting factors. The
effect of using a forgetting factor was to shift the estimating average
toward the most recent data, such as that in the work by Paleologu et al.
[5]. In this paper, classic and modified RLS
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algorithms [directional forgetting RLS (RLS-DF), RLS with a
constant stabilizing factor (RLS-SI), and RLS with a varying
stabilizing factor (RLS-SV)] were investigated for online dynamic
identification of gas turbine engines. The RLS methods were
evaluated for their self-adaptive capabilities, as well as their
reliability on steady states and transient dynamics.

The verification of these algorithms is conducted through the
identification process on a simulated gas turbine engine. The engine
model is developed to a component level by using the inter-
component volume (ICV) method with variable gas properties in
order to obtain an accurate performance estimation as close as
possible to the real engine. The validation of these methods is applied
by taking the comparison of the estimated results to the outputs of the
engine model. All tested RLS algorithms are constructed in parallel
with the engine model, and an attempt is made to identify the non-
parametric models from a reading of the engine’s inputs and outputs.
A schematic sketch is shown in Fig. 1.

II. Gas Turbine Engine Model

The inter-component volume method models the engine from
intake to nozzle [6]. The model is constructed of mechanical and
turbomachinery subsystems. The gas enthalpy, entropy, and general
properties in the subsystems are estimated from either component
characteristics or tables, or through an iterative process [7]. The
variable gas properties are determined from the prediction of
moisture caloric properties [8]. The volume constructed between
components provides damping effects to simulate gas propagation
through the chamber of its upstream component [9]. The change of
fuel flow controls the thermodynamics in the combustor, which
breaks the energy balance between compressors and turbines. The
transient performance of the engine is created by the imbalance of
compressor and turbine power. The energy disturbance is located in
the middle of the engine and transferred sequentially from high- to
lower-pressure components. Finally, the imbalanced power results in
the change of shaft speed. The volume dynamics of turbomachinery
components are estimated through partial derivative equations,
previously demonstrated by Kulikov and Thompson [10].

III. Recursive Least-Squares Identification Techniques

A gas turbine engine is a nonlinear system. The nonlinearity is
contributed to by the iteration and mapping process from component
maps, as well as the variable gas properties in the ICV model. The
engine performance can be linearized if the sampling time is selected
sufficiently small so that the dynamic behavior within each time
interval k can be assumed as linear time invariant (LTI). Therefore, the
entire transient performance is superposed by an individual LTI
system from each sampling time. Each LTI can be expressed in a
discrete format as

X(k + 1) = AX(k) + BU(k) (1)

where A and B are coefficient matrices.
The selection of state variables must be sufficient to describe the

dynamics of the interested engine parameters [11]. The parameters that
are observable and controllable can be included in the state matrix X of
Eq. (1). For control purposes, the relative shaft speed or
compressor/engine pressure ratio is commonly used as a state variable.
The dynamics of other parameters, such as specific fuel consumption
and turbine entry temperature, are sometimes chosen to be identified
for ensuring fuel economy and life protection. The fuel flow Wff is
commonly chosen as the control input u for gas turbine engines. As a
result, the number of state variables n in Eq. (2) depends
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on the number of interested engine parameters and their associated
parameters that affect the dynamic of these interested parameters. For
example, developing a dynamic model of a low-pressure shaft from a
twin-spool engine requires including the relative speed of the low-
pressure shaft as well as the speed of the high-pressure shaft, because
their dynamic performances are related. Therefore, Eq. (1) can be
written as
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The values of the elements in matrices A and B in Eq. (2) are
unknown and required to be identified by the RLS algorithms.

A. Recursive Least Squares

The recursive least-squares algorithm is an extension from the least
squares (LS). The RLS convolutes the dynamics of the parameters to
the covariance matrix instead of storing all the data to the matrix in the
LS [12]. This removes the infinitive expansion of the matrix size in the
LS as time passes on, and it allows online identificationwhen possible.
The self-adaptive capability allowing the estimation can be

updated at each sampling time from new available data. The error is
taken between the new engine data y�k� and the estimated state value
ŷ�k�with the system noise n�k� in Eq. (3). The noise can be excluded
due to the implementation of the ICV model. We have

ε�k� � y�k� − n�k� − ŷ�k� � y�k� − n�k� − φ�k�Tθ�k − 1� (3)

The parametric matrix φ is combined with measurement of the
input and states:

φ�k� � �X�k�; u�k��T (4)

Thevalue of the objective parameter θ from the previous time step is

θ�k − 1� � �AT�k − 1�; BT�k − 1��T (5)

The covariance matrix P is

P�k� �
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The covariance matrix can be estimated by using the matrix
inversion lemma. This method saves computing memory and
eliminates operation of the matrix inversion; see Eq. (6) [12]. The
update of the covariance matrix becomes

P�k� 1� � P�k�
�
I −

φ�k�φT�k�P�k�
1� φT�k�P�k�φ�k�

�
(7)

and the updated estimations of A and B are

θ�k� 1� � θ�k� � P�k� 1�φ�k�ε�k� (8)

ThemainadvantageofRLSoverLS is simplicity andefficiency.The

updated estimations of A and B only require data from one step

backward. The existing stochastic noise with zero mean from the

engine outputs consistently excites the engine parameters when

the engine is operating near steady states. Suchwhite noise ensures the

parameter’s observability or ensures full rank of the covariance matrix

[12]. The tracking performance can be improved by introducing

forgetting factors so that the estimation can be shifted to the latest data,

allowing the RLS to be adaptive of both the transient and steady states.

B. RLS with Forgetting Factors

TheRLS algorithmwith implementation of the constant forgetting

factor requires a modified covariance matrix:

P�k� 1� � λ−1P�k�
�
I −

φ�k�φT�k�P�k�
λ� φT�k�P�k�φ�k�

�
(9)

The value of λ is selected between 0.9 and 1.0 for a fixed forgetting
process. The forgetting factor controls the dumping rate to the old

data. If unity is selected, the algorithm is the same as the RLS, which

accumulates all past data. Recent research has focused on improving

the converging speed to the real system. A robust variable forgetting

factor to theRLSwas introduced byPaleologu et al. [5]. The selection

of forgetting factors [Eq. (10)] is controlled by the error ε, which is the
difference between the measurement and its estimation, i.e.,

λ � min

�
σq�k�σv�k�

ζ � jσe�k� − σv�k�j
; λmax

�
(10)

where σe and σv are the functions describing the square of the error,
and they control the power of correction at each sampling time step.

However, when the error ε tends toward zero, the values of σe and σv
approach zero. The minimum value of λ can be as close as zero in

Eq. (10),which ismost likely to happen near steady states.As a result,

the absolute values of the elements in the covariance matrix in Eq. (9)

can be increased exponentially to infinity. However, the values are

expected to approach a constant value when operating in a steady

state. The value of the forgetting factor λ in Eq. (9) of less than one

increases the covariance trace over time if the engine outputs are a

lack excitation [12], and the inverse λ causes the divergence of the
covariance matrix.
A directional forgetting algorithm (RLS-DF) is designed to avoid

covariance windup by removing the multiplication of the inverse

forgetting factor from Eq. (9) to Eq. (11) [12]:

P�k� 1� � P�k�
�
I −

φ�k�φT�k�P�k�
λ−1�k� � φT�k�P�k�φ�k�

�
(11)

The value of the variable forgetting factor is determined by the

direction in parameter space, which is to the direction of vector ϕ
[12]. The direction forgetting factor is selected as

λ�k� 1� � r −
1 − r

φT�k�P�k�φ�k� (12)

where r acts as a fixed forgetting factor, which controls the tracking
speed to the engine performance. The value of is suggested to be

between zero and one.

C. Stabilized RLS Algorithms

For time-variant systems such as gas turbine engines, the

covariance matrix must not be asymptotically singular. The method

suggested byMilek andKraus stabilized the estimation process in the

RLS by introducing the stabilizing invariant factors (RLS-SI) or

variable factors (RLS-SV) [13,14]. The modification on the

covariance with the linear forgetting algorithm becomes

P�k� 1� � μP̂�k� 1� � gI (13)

Fig. 1 Constructed RLS algorithms in parallel with the closed-loop
engine system (PID, proportional-integral-derivative; RLS, recursive

least squares; and SS, state space model).
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P̂�k� 1� in Eq. (13) is normalized as P�k� 1� in Eq. (11). I is an
identity matrix. The additional term added to the end of Eq. (13) is
the adjustable matrix, which damps the growth on the value of the
covariance matrix. The constrained covariance matrix stabilizes the
change on the value of elements in the coefficient matrix in Eq. (2).
The modification of the covariance matrix can lead the value to

diverge if the estimator is not persistently excited. Therefore, the
eigenvalues λ of the covariance matrix must be bounded, and they
cannot be less than zero:

0 < λmin < λ < λmax (14)

The value of the eigenvalue can be calculated as

λ�k� 1� � μλ�k� − λ�k�jφ�k�j2
1� jφ�k�j2 � g (15)

The engine parameter matrix has been normalized to φ̂�k�, i.e.,

φ̂�k� � φ�k�∕jφ�k�j (16)

The normalized value of parametermatrix φ̂�k� and the normalized
covariance P̂�k� 1� are obtained by iterations from an initial
estimation of the covariance matrix, and the bounded eigenvalues of
P̂�k� 1� are checked through Eq. (17). We have

λmax �
g
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μ�gjφ�k�j2−1�
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p
2jφ�k�j2�2−μ�

(17)

where 0 < μ < 1, ρ > 0, and g � μ · ρ.
In the RLS-SV, the performance of the RLS-SI is improved by

including the adjustable term in Eq. (13). Instead of using a constant
forgetting value g in the RLS-SI, a variable value is determined by
signal levels φ�k� from Eq. (18). The procedure of other estimation
steps remains the same as the RLS-SI. The variable value is

g�k� � g

φT�k�φ�k� (18)

IV. Simulation Results

A twin-spool turbofan engine was simulated to validate the
performance of the aforementioned identification algorithms, and the
engine configuration is shown in Fig. 2. The airflow enters from
the intake (IN) and through the low-pressure compressor (LPC) to the
high-pressure compressor (HPC); is mixed and burned with the fuel
flow in the combustor (COMB); then is discharged through the high-
pressure turbine (HPT) to the low-pressure turbine (LPT); and,
finally, the gas is exhausted from the nozzle. The control of the fuel
flow will trigger the transient disturbance from the higher pressure to
lower components.
The twin spool turbofan engine has been modelled to operate at

design point using on the data shown in Table 1. The transient cycle
uses the percentage of corrected speed (PCN) for low-pressure shaft

as the control reference. The transient cycles are performed between
60 and 100% of the corrected speed of the low-pressure shaft, which
corresponds to a LPC PR of 1.21 ∼ 1.70, a HPC PR of 3.41 ∼ 5.31,
and a steady-state fuel flow of 0.07 ∼ 0.24 kg∕s. Avolumemodule is
added to the downstream of each turbomachinery component
according to the ICV modeling technique.
A closed-loop design was implemented for the engine system.

A proportional-integral controller with 0.4 of a proportional gain and
0.2 of an integral gain were added in front of the engine model, as
shown in Fig. 1. The value of fuel input was determined by the
controller from the difference between the control reference and the
engine relative shaft speed.
A state-space (SS) model is connected to the RLS block as shown

in Fig. 1, and it is used to reproduce the results of the state variables
from the identified model. The state-space model is a linear model.
The nonlinearity is obtained by consistently superposing thevalues in
matrices A and B from each time step. The performances of
algorithms RLS, RLS-DF, RLS-SI, and RLS-SV are compared
through the errors between the outputs from their SS models and the
engine outputs.
According to Ruano et al., high-pressure components can be

approximated to the first order and low-pressure dynamics can be
considered second order [15]. The dynamic of the compressor
pressure ratio can be estimated by a second-order state-space model:

�
PRLPC�k� 1�
PRHPC�k� 1�

�
� A

�
PRLPC�k�
PRHPC�k�

�
� BWff�k� (19)

where A is a 2 × 2 matrix due to two state variables. Fuel flow is the
only control variable, so B is a 2 × 1 matrix.
The values of the collecting factors in the RLS-SVand RLS-SI are

chosen to be ρ � 0.99 and μ � 0.99; the forgetting factor for the
RLS-DF is r � 0.8. Furthermore, an identity matrix (3 × 3) is
assumed for the covariancematrix in Eq. (17) and an initial value ofA
and B is required to be approximated at the beginning of the
simulation.A comparison among the performances ofRLS,RLS-DF,
RLS-SI, and RLS-SVon the estimation of the compressor pressure
ratio to the engine model is shown in Fig. 3. The figure shows that all
modified RLS methods are capable of providing accurate
approximations to the running line given by the ICV engine model
through the entire 225 s with a 0.004 s sampling time. The sampling
time is chosen for ensuring the convergence of the iterative processes
in the ICV model.
The percentage error on the estimations to the engine outputs in

Fig. 4 shows all modified RLS methods drop the tracking accuracy
while the engine is operating at transient states. The reduction in
accuracy is caused by the delay of model updates and a large gradient
change of the operating line during transient operation. The largest
estimation errors appear at the beginning of transient operations due
to the lack of receding knowledge at the initial estimation.

Fig. 2 Modeled two-spool turbofan engine by ICV method; volumes
(Vol) are shaded areas.

Table 1 Design point of the two-spool turbofan engine

Parameter Value Unit

Ambient condition ISA SLS — —

Intake mass flow 44.8 kg∕s
Low-pressure compressor pressure ratio (LPC PR) 1.70 — —

Low-pressure compressor isentropic efficiency 88 %
High-pressure compressor pressure ratio (HPC PR) 5.60 — —

High-pressure compressor isentropic efficiency 88 %
Fuel flow 0.2466 kg∕s
High-pressure turbine isentropic efficiency 89 %
Low-pressure turbine isentropic efficiency 89 %
Moment of inertia for low-pressure shaft 10 kg∕m2

Moment of inertia for high-pressure shaft 8.4 kg∕m2

PCN of low-pressure shaft to 170 RPS 100 %
PCN of high-pressure shaft to 177 RPS 100 %
Volume 1 1.50 m3

Volume 2 0.50 m3

Volume 3 0.38 m3

Volume 4 0.50 m3

Note: ISA, international standard atmosphere; SLS, sea level standard.
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The fixed values of collecting factors (μ and g) in the RLS-SI control
the convergent speed of the estimated model to the engine system.
Reducing the μ value can reduce the recursive power to the normalized
covariancematrix in Eq. (13); it also reduces the power of the correcting

term in Eq. (13). Therefore, the mean error [Eq. (20)] is calculated to
measure the accuracy of the RLS-SI with a different combination of the
values of collecting factors; see Fig. 5. From the results, reducing the
value on either factor will result in an increase of the mean error:

Fig. 3 Comparison of tracking performance on the dynamic of a) LPC PR and b) HPC PR.

Fig. 4 Percentage error of the estimations from RLS algorithms to the engine: a) LPC PR and b) HPC PR.

Fig. 5 Mean error to the estimation of a) LPC PR and b) HPC PR by the RLS-SI with different weights of adjustable factors.
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k
(20)

Unlike the RLS-SI, the adjustable term of the RLS-SV in Eq. (13) is
controlled by the engine data φ. The change in the covariance matrix is
adaptive to thegradient change of the operating line.Reducing thevalue
of the collecting factors also reduces the adaptability and tracking
capability of the RLS-SV to both compressors’ pressure ratios, as
shown in Fig. 6.
Due to the time-variant engine system, the estimated system’s

dynamic and stability are checked through the roots of discrete state-
space functions on the z plane. For a stable system, the value of zero
and the poles should be located within the unit circle on the z plane.
The SS system [Eq. (19)] can bewritten into a second-order function
with two poles and one zero. Figure 7 shows the variation of the two
poles along the simulation. A linear systemhas a constant value of the
pole and zeros. The varying routes of the SS model are caused by the
engine’s nonlinear dynamics and the restricted knowledge of its
future response. The reliability of the identified models is important
to be checked by monitoring the values of zeros and poles along the
simulation. As a result, the repetitive transient operation is used to
investigate the development of poles and zeros over a long time
simulation. For a reliable estimation, they should be repeated for each
identical transient cycle; see Fig. 7. However, the RLS-DF shows
divergence on the second pole in Fig. 7b. One of the poles can exit the

unit circlewhen the engine is operating at a transient state; see Fig. 7a.

It is because the dynamic can only be predicted according to the

receding data due to the restricted knowledge of the engine future

performance, and the RLS algorithms have detected the engine is

operating at an unsteady region. When the operating line approaches

a steady state, the value returns to the unit circle.
Figure 8 shows the values of zero for state-space model of the LPC

PR and HPC PR according to Eq. (19). The locations of the zeros for

both compressors are located inside the unit circle.
The stabilized RLS algorithms show effective constraints on the

growth of the poles and zeros along the transient cycles; see Fig. 8.

The smaller forgetting factor allows the RLS-DF to have a fast

convergent speed. However, it compromises its stability; oscillations

for the values of the poles or zeros are more likely to occur (Fig. 8) if

the initial covariance is not accurately estimated or the transient line
has a large gradient.
Decreasing the collecting factor value of the RLS-SV reduces the

tracking speed as well as the stability of the estimated model. The

consequence to the stability is shown by the divergence on the value

of the zeros in Fig. 9. The larger value of ρ (closer to one) improves

the converging speed to a stabilized zero and poles. Reducing the

value of μ affects both the covariance matrix and the adjustable term

in Eq. (13) so that the pole and zeros diverge faster as the value of μ
becomes smaller; see Fig. 9. The decrease of ρ provides the impact as

not much as the decrease of μ because ρ only controls the stabilizing

Fig. 6 Error of estimation of a) LPC PR and b) HPC PR by the RLS-SV from different weighting factors.

Fig. 7 Two poles from the discrete state-space model identified by RLS algorithms.
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power and the influence given by the adjustable term is usually much

smaller than the forgetting factor in Eq. (13) to the evolvement of the

covariance matrix. Therefore, in the RLS-SV, μ controls the power to
minimize the error between the estimation and engine outputs, and ρ
tunes the eigenvalues to the direction of the engine state vectors

within an acceptable range.
An additional investigation has been conducted on the transient

operation through the entire operating range. The result of the transitions

between different steady-state levels of a relative low-pressure

shaft speed (0.60, 1.00, 0.95, 0.68, 0.92, 0.76, and 0.88) is shown

in Fig. 10.
All RLSmethods are showing an accurate estimation to the engine

dynamic in Fig. 10. The stabilizedRLSwith the variable factor (RLS-

SV) shows the smallest error of identified value to the engine LPCPR

andHPCPR; see Figs. 11a and 11b. The same structure of the discrete

model [Eq. (19)] can also be applied for identifying the dynamic of

the relative shaft speed. The identification errors of the relative shaft

speed are shown in Figs. 11c and 11d for both shafts. The variable

forgetting factor from the RLS-SVallows the identified model being

adaptive to the change of engine dynamics through different transient

operation levels. The initial value of forgetting factors for the RLS

algorithms remains the same as the previous investigation. As shown

in Fig. 11, the tracking error diverges slightly if the forgetting factor is

fixed in the RLS-DF or changes linearly in the RLS-SI. The value of

the forgetting factor should be tuned according to the change of

transient operations in order to a maintain an acceptable level of

tracking accuracy.

Fig. 8 Zero for state-space equation of a) LPC PR and b) HPC PR from identification of different RLS algorithms.

Fig. 9 Zero for state-space equation of a) LPC PR and b) HPC PR identified by the RLS-SV with different values of weight factors.

Fig. 10 Comparison of low-pressure (LP) shaft speed between the
engine output and estimations.
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In summary, the factor μ in both the RLS-SI andRLS-SV performs
as the forgetting factor in the RLS-DF. The adjustable term constrains
the change of the covariance matrix, which can be either defined by
linear factors in the RLS-SI or adjusted by the change of engine
dynamic in the RLS-SV. This stabilizes the variation to the poles and
zeros from the estimated model, which allows the dynamic of the
estimatedmodel to bemore predictable. Furthermore, the value of the
forgetting factor should be chosen so that the estimation can be
compensated by the adjustable term.

V. Conclusions

The modified recursive least-squares algorithms are applied on-line
to identify the dynamic performance on a twin-spool turbofan engine.
The engine is modeled to a component level. The results show that all
the demonstrated RLS methods modified with forgetting factors or
with adjustable terms provide good online tracking capability. The
tracking accuracy is maintained over a large range of transient
operations and for the transitions between different operating points.
The implementation of recursive least-squares techniques benefits

the reduction of the matrix dimension from the least-squares method
with an acceptable level of tracking accuracy. The directional
forgetting RLS only improves the tracking accuracy from the classic
RLS by shifting recursive weighting to recent data. The RLS with a
constant stabilizing factor and with a varying stabilizing factor
stabilizes the change of eigenvalues in the covariancematrix. Varying
the μ value, which acts as a forgetting factor, controls the power of

error minimization between the estimated model and the engine;
varying the value of ρ changes the stabilizing power on the zeros and
poles of the state-space model. With an adaptive weight of the
stabilizing factor, the RLS-SV provides convergent tracking results
over different transient operations. For the dynamic identification of
gas turbine engines, the recursive length of the RLS should be
adjustable in order to adapt nonlinearly dynamic change during
transient operations; and the varying eigenvalues of covariance must
be limited for a convergent identified model for the entire
operating range.
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