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Abstract 

The increased use of carbon fiber reinforced polymer (CFRP) in industry coupled with European Union restrictions on landfill disposal has 
resulted in a need to develop relevant recycling technologies. Several methods, such as mechanical grinding, thermolysis and solvolysis, have 
been tried to recover the carbon fibers. Optimisation techniques for reducing energy consumed by above processes have also been developed. 
However, the energy efficiency of recycling CFRP at the workshop level has never been considered before. An approach to incorporate energy 
reduction into consideration while making the scheduling plans for a CFRP recycling workshop is presented in this paper. This research sets in 
a flexible job shop circumstance, model for the bi-objective problem that minimise total processing energy consumption and makespan is de-
veloped. A modified Genetic Algorithm for solving the raw material lot splitting problem is developed. A case study of the lot sizing problem 
in the flexible job shop for recycling CFRP is presented to show how scheduling plans affect energy consumption, and to prove the feasibility 
of the model and the developed algorithm. 
 
© 2015 The Authors. Published by Elsevier B.V. 
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ing. 
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1. Introduction 

In the last 30 years, CFRP have been increasingly used in a 
wide range of applications such as automotive, aerospace and 
renewable energy industry. However, difficulties in recycling 
have become their major drawback due to their inherent na-
ture of heterogeneity, especially for the thermoset-based pol-
ymer composite [1, 2]. Historically, most composite waste has 
been disposed in landfills. Nevertheless, the demand for de-
veloping more environment-friendly composite recycling 
approaches is growing. In Europe and the USA, the annual 
generation of CFRP scrap is around 3,000t [2]. By the year 
2030, some 6,000-8,000 commercial planes are expected to 
reach their end-of-life [2]. Since 2004, most European coun-
tries have banned the landfill disposal of CFRP waste. It can 
be expected that, future EU regulations will be imposed on the 
recycling of end-of-life aircraft [1, 2, 3]. 

   Current research on recycling technologies mainly focuses 
on mechanical, thermal and chemical recycling [1]. Some 
researchers also considered to improve the energy efficiency 
of the above processes. Most existing works of reducing recy-
cling energy consumption has focused so far on developing 
more energy efficient operating parameters. However, using 
scheduling method to reduce the recycling energy consump-
tion on the system-level has not been well explored.  

The aim of this work is to develop an approach to incorpo-
rate energy reduction into consideration while making the 
scheduling plans for a CFRP recycling workshop. This re-
search sets in a flexible job shop with lot sizing circumstance. 
Model for the bi-objective problem that minimise the total 
energy consumed by all machines to process all jobs in a 
schedule and total completion time is developed. The model-
ling and optimisation methods proposed in this paper can be 
applied to discrete event production system and may save 
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significant amounts of energy as well as keeping a good per-
formance on classical scheduling objectives. In following 
content, the research problem will be raised after the back-
ground research and research motivation; then the model will 
be presented, followed an introduction to Non-dominant Sort-
ing Genetic Algorithm (NSGA-II) [4] and a newly developed 
encoding schema for this problem. Finally, a case study is 
presented to demonstrate the effectiveness of the model and 
the proposed solution.  

 
Nomenclature 

          a finite set of  jobs,  
        a finite set of  machines,  
        a finite list of  ordered operations of ,  
        the -th operation of job  processed on machine  
       processing time of single unit of job ’s operation   

            on machine  
          a feasible schedule 

   completion time of job  in schedule  
       a finite list of  ordered sub-lots of ,  
       the size of job ’s sub-lot  
        a decision variable that denotes the predefined  

             allocation of operations on machines;  if  
             operation  of job ’s sub-lot  is processed on        
             machine ; 0, otherwise 

         energy consumption per hour of machine  
         the initial population with the size of  individuals 
        the first offspring set 
         the -th generation of population 
         the offspring of  
         the union of the parents  and their offspring  
         the set of non-dominated solutions of level  

2. Background and Motivation 

    A considerable amount of research has been conducted in 
the area of recycling CFRP. The mechanical, thermal and 
chemical recycling approaches have been widely investigated 
[1].  
    For mechanical treatment, cutting, crushing and milling are 
used to reduce the CFRP to fine particles [1, 3]. However, the 
energy intensity of mechanical processing is high, and it can 
only produce short milled fibres with poor mechanical proper-
ties used as filler reinforcement materials. There are mainly 
two thermal processes: Fluidised-bed combustion recycling 
process and pyrolysis recycling process [5]. Fluidised-bed 
combustion recycling process is to combust the resin matrix 
as energy and to recover the carbon fibres [6]. The organic 
resins are used as energy source in this process. The recovered 
fibres are clean and have a mean length of 6-10 mm. The 
recovered carbon fibre has 20% loss in stiffness degradation 
after the thermal treatment at 550°C. The mechanical proper-
ties of the recyclates have been described in detail by [6].  
    Pyrolysis is a thermal decomposition of polymers at high 
temperature from 300°C to 800°C in the absence of oxygen, 
allowing for the recovery of long, high modulus fibres [7]. In 
some circumstances, a higher temperature can be applied [8]. 
However, this will result in more serious degradation of the 
recyclates [8, 9]. When using pyrolysis as a recycling treat-

ment of polymer matrix composites, the matrix is transferred 
into smaller molecules at temperatures above 350°C in an 
oven [1].  
    Chemical recycling uses the dissolution reagents to depol-
ymerise the matrix of composites [1]. This process can re-
generate both the clean fibres and fillers as well as depoly-
merised matrix in the form of monomers or petrochemical 
feedstock [1].  
    Based on the aforementioned recycling approaches, some 
researchers have considered optimising the recycling proce-
dures to reduce the energy consumption of them. [3] modelled 
the electrical energy requirements of milling process to recy-
cle carbon fibre composite. Based on the developed model, 
the energy demand of carbon fibre composite recycling can be 
theoretically calculated for any milling process.  
    To obtain the recovered fibres with properties close to new 
fibres, [9] have investigated and optimised different process 
parameters during pyrolysis to remove the residue as much as 
possible without oxidation of the carbon fibre itself. The vari-
ation of pyrolysis temperature, oven atmosphere and isother-
mal dwell time had been studied.  
    The Taguchi method has been used by [2] to optimise the 
steam thermolysis which is used for recycling the epoxy based 
CFRP materials. Steam thermolysis is a combination of vacu-
um pyrolysis and mild gasification. Operational parameters 
including target temperature, isothermal dwell time and steam 
flow-rate have been investigated.  
    A series of modelling and optimisation work for pyrolysis 
process which is used for treating waste tyres have been de-
veloped by [10]. These research works can be used as refer-
ence for pyrolysis based composite recycling to develop mod-
els and optimisation techniques. [10] have found that the heat-
ing rate and the operation temperature can affect the overall 
energy consumption, the product quality and yield of the py-
rolysis process. Based on the fact that pyrolysis is an overall 
endothermic process but preformed exothermically at its early 
stage, [11] proposed an approach to trap the exothermic heat 
released in the beginning of the pyrolysis process and using it 
to fulfil the energy requirement of the endothermic reactions 
at the end of the process.  
    A four-stage operation strategy for the tire pyrolysis has 
been proposed by [8], which has the sequence of heating, 
adiabatic, heating and adiabatic. The approach is capable to 
save about 22.5% energy consumption with a 100% increase 
in completion time compared to the conventional strategy. 
[12] proposes an optimisation method to tune the operating 
parameters in the developed multi-stage pyrolysis. Finally, 
this approach can achieve a 29% reduction in energy usage 
with just 36% increase in completion time. 

Based on above, it can be found that the energy reduction 
for recycling CFRP has never been considered at the work-
shop level. Therefore, the new problem can be raised as: The 
Multi-objective Total Processing Electricity Consumption and 
Makespan Flexible Job Shop with Lot Sizing Scheduling 
problem based on CFRP recycling. The flexible job shop and 
lot sizing environment are selected since this model is more 
close to the real manufacturing circumstance. The modelling 
method for this problem is presented below. 
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3. Problem definition 

    The first part of the model describes the problem of flexible 
job shop scheduling with lot sizing. A finite set of independ-
ent  jobs  and a finite set of  machines 

 are given. Each job is defined as a finite set of  
ordered operations . Each operation  can be 
executed on any among a subset  compatible ma-
chines. The flexibility of the job shop can be defined as partial 
if there exists a proper subset  of  for at least one opera-
tion . Comparatively, the job shop can be defined as total 
flexible if  for each operation . In the flexible job 
shop, the processing time for each operation is machine-
dependent. Thus,  is used to denote the processing time of 

 when it is executed on machine . Pre-emption is not 
allowed, i.e., each operation must be completed without inter-
ruption once started. Furthermore, machines cannot perform 
more than one operation at a time. All jobs and machines are 
available at time 0. Given a feasible schedule , let  indi-
cate the completion time of job . When considering about lot 
sizing in flexible job shops, the job  is defined as a batch of 

 identical parts (unit) where . Based on this, the 
definition of processing time needs to be adjusted that  
means the time consumed to process a single unit of job ’s 
operation  on machine . Job  can be divided into a 
finite list of  ordered sub-lots that , 
where  is the -th sub lot for . There are  units in the 
sub lot . It can be referred to [13] and [14] for more infor-
mation about flexible job shop and lot sizing modelling.  
    The first part of the problem is lot splitting which deals 
with the decision that when and how to split a job into sub 
lots. In this paper, all jobs are split at time 0 since the model 
used is a static one. Hence, the splitting decision making will 
focus on two sides: how many sub lots each job should be 
split into and how many units in each sub lot. By solving the 
above two problems, the second part of the problem is to as-
sign each sub-lot to an appropriate machine (routing prob-
lem), and to sequence the sub-lots on the machines (sequenc-
ing problem) [15]. The purpose of solving the four sub prob-
lems is to minimise the makespan, i.e., the time needed to 
complete all jobs, and the total energy consumed by all ma-
chines to process all jobs for schedule  ( ). The ECP 
is a function of the scheduling plan which needs to be ex-
pressed by the sequence of different operations of sub-lots 
which have been scheduled to be processed on machines. The 
energy consumption per hour of machine  is denoted by 

. A decision variable  is used to denote the predefined 
allocation of operations on machines;  if operation  
of job ’s sub-lot  is processed on machine ; 0, other-
wise. In summary, the two objective functions for the minimi-
sation of both makespan ( ) and ECP ( ) can be ex-
pressed by Equation 1, 2 and 3: 

            (1) 

               (2) 
 

  (3) 

4. NSGA-II and its related operators 

    The non-dominated sorting procedure and crowding dis-
tance sorting procedure are two main operators of the NSGA-
II. The solutions in different Pareto fronts are ranked by non-
dominated sorting procedure. The crowding distance sorting 
procedure calculates dispersion of solutions in each front and 
preserves the diversification of the algorithm. In each genera-
tion of this algorithm, these two functions form the Pareto 
fronts [16]. [17] provides a summary for the working proce-
dure of NSGA-II, as in following. For more information refer 
to [4]. 

3.1. Non-dominant sorting procedure 

    As shown in Fig. 1, all the solutions within a certain popu-
lation  are evaluated according to the non-dominated sorting 
method. All the dominant individuals within the population 
locate at Level 1. If these individuals are not considered, the 
second set of dominant individuals constitutes Level 2. The 
sorting procedure iterates until each individual is classified to 
one of the levels. The most important factor of an individual’s 
fitness is the level where it locates. The individual with lower 
rank is preferable. 

 

Fig. 1 Non-dominated levels [4] 

3.2. Crowding distance sorting procedure 

 

Fig. 2 Computation of the crowding distance [4] 

    The crowding distance of an individual is defined by [4] as: 
‘‘an estimate of the perimeter of the cuboid formed by using 
the nearest neighbours as the vertices’’. By using the crowd-
ing distance sorting procedure, the diversity of the population 
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is preserved. For an individual, the crowding distance is the 
sum of the normalized distance between the right and left 
neighbours for each objective function. The extreme solutions 
have a crowding distance equal to infinity (see Fig. 2).  

3.3. NSGA-II algorithm 

    An initial population  with the size of  individuals is 
randomly generated at the beginning of the algorithm. All the 
individuals of  are sorted using the above two procedures. 
Then, the selection, crossover and mutation operators are used 
to create the first offspring set  ( ). Binary tourna-
ment selection operator is employed: the one with lower rank 
is selected between two individuals. When two individuals 
have the same rank, the winner is the one with the larger value 
in the crowding distance. At a given generation ,  is de-
fined as the union of the parents  and their offspring . 
Thus, . Individuals of  are sorted following the 
above two procedures. Frontier  is defined as the set of non-
dominated solutions of level . The individuals constitute 

 are the solutions of frontiers  to  with  such that 
 and  plus the  first 

solutions of  according to their descending value in 
crowding distance. The remaining individuals are rejected. 
The new offspring population  is generated from individ-
uals from . Fig. 3 illustrates the generation of population 
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Fig. 3 Construction of population  

3.4. Encoding schema and schedule builder 

    Two stages of NSGA-II are applied as the solution. The 
first stage is to split original large job into a number of flexi-
ble sub-lots.  

A splitting approach using cursor [14] is employed. At the 
beginning of the algorithm, a number of cursors are generated 
for each job. The units between two cursors belong to one 
sub-lot. The size of sub-lot between the two cursors is defined 
as 0 when two cursors are in the same position. Fig. 4 depicts 
a typical splitting scheme for a job. The number of cursor is 
three which means the pre-set number of sub-lot is four. The 
job has finally been split into three sub-lots since the second 
and the third cursor locate at the same position. The sizes of 
the sub-lots are 4, 4 and 2. 

 
 

 
   
 

Fig. 4 Chart of lot splitting [14] 

    The chromosome designed for the lot sizing problem is 
presented in Fig. 5. The chromosome is used to represent the 
splitting plan for each job. For instance, the first four gene 
position depicts how the first job  been split. The number 3 
at the first position means 3 cursors has been set for . The 
following number 4, 7 and 11 means the 3 cursors locate at 
the 4th, 7th and 11th unit of . Following the splitting plan for 

, the chromosome starts to depict the plan for  until the 
splitting method for all jobs has been set.  

Fig. 5 Chromosome for lot splitting problem 

    By finishing the lot splitting, the sequencing problem needs 
to be solved, which means all the sub-lots need to be dis-
patched into the manufacturing system following a predefined 
sequence. The operation-based encoding schema (OBES) is 
adopted for this research which is mathematically known as 
“permutation with repetition” [18], where each job’s index 
number is repeated  times (  is the number of operations of 

). Normally, by scanning the permutation from left to right, 
the -th occurrence of a job’s index number refers to the -th 
operation in the technological sequence of this job. However, 
the method needs to be adjusted in this research to adapt the 
lot sizing problem.  
    According to an example provided by [19], 

 is a feasible chromosome for a  
job shop. In this model, each job needs 2 operations to be 
completed. The first job  has been split to 2 sub lots, while  

 has 2 sub lots and  has 3. Thus, 3 on the first gene posi-
tion stands for the first operation of the first sub lot of the 
third job . 3 on the sixth gene position stands for the second 
operation of the first sub lot of the third job . 3 on the ninth 
gene position stands for the third operation of the first sub lot 
of the third job . 3 on the eleventh gene position stands for 
the first operation of the second sub lot of the third job . The 
same translating method is applied to all the 1 and 2 in the 
chromosome. The schedule are developed by the active 
schedule builder [18]. Then any operation of the sub lot is 
dispatched to the earliest available machine for it. 

3.5. Crossover and mutation operators 

    Referring to [19], [20] and [21], the crossover and mutation 
operators in this research are defined as below: 
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Crossover operator for lot sizing part: 
 
    The one point crossover operator is adopted. Given parent 

 and parent , the one point crossover operator generates 
child  and child  by randomly choose the same crossover 
point from both of the parents, and then exchange all the 
genes before the crossover point in  and . As shown in 
Fig. 6. 

 

Fig. 6 Crossover operation for lot splitting chromosome 

Crossover operator for flexible job shop scheduling part: 
 

The operation-based order crossover (OOX) which is de-
veloped based on the job-based order crossover (JOX) is 
adopted as the crossover operator. For example, in a  job 
shop,  and  are feasible parent 
chromosomes. The loci of operations in the boxes are pre-
served. More details of the OOX can be refer to [19]. 

 
 
 

 
 and  are feasible child chromosomes as shown below: 

 
 
 

Mutation operator for lot sizing and flexible job shop schedul-
ing parts: 
     

The swap mutation operator is employed in this research 
which means two difference arbitrary genes of the parent 
chromosome are chosen and swap the values. Following the 
above example,  is the final child chromosome of  after 
applying mutation on  while  is the final child chromo-
some of  after applying mutation on . As shown in Fig. 7. 

 

 

 

Fig. 7 Mutation operation for lot splitting chromosome 

 
 
 

 
 
 

4. Conceptual framework and case study 

The conceptual framework which descripts how the above 
algorithm can be applied to solve the multi-objective optimi-
sation problem is presented in Fig. 8. 
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Fig. 8 Conceptual framework of the solution 

A simple example is given below to demonstrate the pro-
posed model and solution are effective. It can be supposed 
that in a flexible workshop, there are two types of recycling 
methods: microwave pyrolysis and fluidised bed process. 
1000Kg CRRP waste material are available at time 0 to be 
processed. The 1000Kg can be split to certain amount of sub-
lots, and can be processed by any of the aforementioned recy-
cling process. The energy usage and recycling rate of the two 
methods are shown in Table 1, the values are calculated based 
on [22], [23] and [24]. 

Table 1. Energy usage and recycling rate of different recycling methods 

Recycling method Energy usage 
(MJ/Kg) 

Recycling rate 
(Kg /hr) 

Microwave Pyrolysis (MP) 10 5.4 

Fluidised bed process (FBP) 25 342.5 

 

Table 2. Comparison between different lot splitting and dispatching plans 

Lot splitting and allocation ECP (MJ) Makespan (h) 

MP FBP 

500Kg 500Kg 17500 92.6 

200Kg 800Kg 22000 37.0 

800Kg 200Kg 13000 148.1 

100Kg 900Kg 23500 18.5 

900Kg 100Kg 11500 166.7 

300Kg 700Kg 20500 55.6 

 
As shown in Table 2, different lot splitting methods and 

dispatching decisions can lead to different performance of the 
scheduling plans on objectives like total processing energy 
consumption and makespan. It can be noticed that scheduling 
plan which reduces energy consumption does not necessarily 
reduce makespan. This simple case could demonstrate the 
feasibility of the aforementioned model and proposed solu-
tion. The complexity of the problem will increase along with 
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the increasing numbers of jobs and machines, various energy 
characteristic of recycling methods. 

5. Conclusion and Future Work 

Reducing energy consumption for CFRP recycling at the 
workshop level as well as keeping good performance in clas-
sical scheduling objectives is a difficult problem that can take 
a large amount of time to search optimal solution. The model 
for the above problem had been developed based on the flexi-
ble job shop with lot sizing circumstance in this paper. An 
optimisation approach developed based on NSGA-II is pro-
posed. A case study had been presented to show the effective-
ness of the model and proposed solution. In future work, more 
complicated job shop instance will be studied based on the 
aforementioned model and developed optimisation approach. 
In addition, various situations about job arrival patterns will 
also be taken into consideration in the future work. 
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