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Abstract.    This paper demonstrates the capabilities of Adaptive Mesh Refinement Techniques 

(AMR) on 2D hybrid unstructured meshes, for high order finite volume WENO methods. The 

AMR technique developed is a conformal adapting unstructured hybrid quadrilaterals and 

triangles (quads & tris) technique for resolving sharp flow features in accurate manner for 

steady-state and time dependent flow problems. In this method, the mesh can be refined or 

coarsened which depends on an error estimator, making decision at the parent level whilst 

maintaining a conformal mesh, the unstructured hybrid mesh refinement is done hierarchi-

cally. When a numerical method can work on a fixed conformal mesh this can be applied to 

do dynamic mesh adaptation. Two Refinement strategies have been devised both following a 

H-P refinement technique, which can be applied for providing better resolution to strong gra-

dient dominated problems. The AMR algorithm has been tested on cylindrical explosion test 

and forward facing step problems.
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1 INTRODUCTION 

Adaptive mesh refinement (AMR) techniques are well known and vastly used technique for 

the accurate capturing of the solution features in a steady or an unsteady simulation. The adap-

tive refinement enables to capture complex solution features by performing refinement in crit-

ical areas without having to refine the whole mesh. AMR has become a standard practice in 

triangular and tetrahedral meshes for various applications, the unique topological properties of 

these elements allow for local refinement and maintaining good element quality and retaining 

the conformity of the mesh [6]. For a quadrilateral mesh the general approach of refinement 

generates non-conformal elements. This non-conformity may allow local refinement but intro-

duces hanging nodes, which requires special augmentation of the PDE solution to deal with 

these special nodes. Hanging nodes are generally dealt by constraining the solution at these 

nodes to be dependent on the solution at the nodes of the edge it lies on using constraint equa-

tions [4]. 

The adaptive procedures automatically try to refine, coarsen or relocate the mesh or tries to 

adjust the solution basis to achieve a specific accuracy in an optimal way. The computations 

generally begin with a trial solution generated on a coarse mesh which has a lower order basis 

where the error of this solution is assessed. If this fails to satisfy the required accuracy, adjust-

ments are made to obtain the required solution with minimum effort, where we try to reduce 

the discretisation error to its required. Adaptive methods have been studied for nearly twenty 

years now and there are still only a few known optimal strategies and few of the common pro-

cedures studied till date include, the local refining or coarsening of a mesh (h-refinement), re-

locating or moving the nodes in a mesh (r-refinement) and locally varying the polynomial 

degree (p-refinement). 

This paper demonstrates the capabilities of AMR on 2D hybrid unstructured meshes, for 

high order finite volume WENO methods. The AMR technique developed is a conformal adapt-

ing unstructured hybrid (quads & tris) technique for resolving sharp flow features in accurate 

manner for steady-state and time dependent flow problems. In this method, the mesh can be 

refined or coarsened which depends on an error estimator, making decision at the parent level 

whilst maintaining a conformal mesh, the unstructured hybrid mesh refinement is done hierar-

chically. When a numerical method can work on a fixed conformal mesh this can be applied to 

do dynamic mesh adaptation [4]. The adaptation strategy devised follows a H-P refinement 

technique, which can be applied for providing better resolution to strong gradient dominated 

problems. 

2 NEED FOR REFINEMENT 

Most of the physical problems that are considered for numerical simulation have features 

with multiple scales in both space and time, which has been a problem for numerical analysis 

in attempts to resolve more of the scales with evenly spaced grids which require more compu-

tational resources, storage and time to execute, because of this the meshes were pre adapted to 

known features in the solution. This method works well for steady solutions with well-known 

locations of the local features within the solution, but for solution features which are not well 

known, multiple solution or remeshing were needed to get the considerable resolution level 

which required a complex remeshing code. These problems become absurd when unsteady so-

lutions are considered, a small movement in the solution feature may render extensive remesh-

ing of no use. To overcome this, zonal refinement techniques have also been used which also 

fails when unrestrained feature movement exists. For the adaptive mesh techniques to be useful 

for unsteady or steady flows where there is no proper knowledge of the solution, it has to adapt 

dynamically and automatically as the solution evolves. Using a standard mesh generation code 
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in this situation will require stopping the solution periodically, remeshing, interpolating and 

then restarting, to resolve multiple scale unsteady problems a dynamic solution adaptive grid 

technique has to be developed.  

With references to the study made by Joe.F.Thompson[11] on grid generation and adaptive 

techniques, an adaptive mesh refinement technique has to fulfil a few criteria which can be 

termed as the goals of adaptive mesh refinement. According to this study amr has to, 

 Reduce spatial discretisation error. 

 Remove grid dependency of the solution to maximum extent. 

 Preserve mesh quality as far as possible. 

 The results with adaptation have to be quantifiable. 

 If solution is time dependent, the adaptation should be dynamic and has to preserve      tem-

poral accuracy. 

 Once initial criteria is selected, the adaptive process should continue without any user in-

tervention. 

 The adaptive technique should be effective. 

 There should be minimal error added to the solution. 

 

3 PREVIOUS WORK 

There has been extensive research on the conformal refinement of triangular meshes for adap-

tive simulations as treatment of these element types are easy [2]. On the contrary for quadrilat-

eral meshes it is common to use non-conformal quad tree type refinement with special treatment 

for the hanging nodes [1]. There have been only a few researchers describing the coarsening 

and refinement of quadrilateral mesh and relatively fewer which can also handle hybrid mesh 

elements and also deal with the dynamic settings. 

The best Paper on conformal quadrilateral refinement written by Schneider’s [8] dis-

cusses the method of refinement based on bisection and trisection of the edges. He implies that 

the trisection of edge strategy simplifies the algorithm, where the information of refinement is 

communicated from elements to nodes and the templates for refinement are defined based on 

the number of marked nodes. The refinement templates are selected to keep the scheme stable, 

where the quality of the elements do not depreciate with increasing refinement levels. In his 

paper, uniformly refined quadrilaterals which are trisected have 9 child cells and the templates 

for the adjacent cells which terminate the refinement have bisected edge. Schneider’s schemes 

are more complicated to implement than the scheme to be presented here, but still is a valid and 

tested scheme for conformal quadrilateral refinement and has also been used by others like 

Zhang and Bajaj [12]. Schneider’s extended his work to hexahedral but says that certain refine-

ment patterns for the faces of hexahedra may not admit a valid decomposition of the parent 

hexahedron. Ito et al. [5] has also used the Schneider’s approach for octree hexahedral refine-

ment templates. 
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Figure 1. Schniders’ subdivision templates showing the trisection and bisection of edges. [8] 

 

Tchon et al. [10 (Tchon, 2004)] has also worked on quadrilateral refinement strategy 

where they find layers of elements, shrink the layers of elements and reconnect the shrunk layer 

with the surrounding mesh. This strategy assumes a particular structure to the mesh and a few 

specific patterns may ignore the issues of multiple levels of refinement, mesh quality and dy-

namic adaptation which makes this method limited in utility. 

 

 
Figure 2. Tchon et al.’s conformal shrink and reconnect method [10] 

 

 

Benzley et al. [9] proposed quadrilateral mesh coarsening strategies which are general 

and have an advantage over nested refinement strategies where they can be coarsened beyond 

the original resolution of the mesh. 
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In the work presented by Sandhu et al. [7] they use node marking and trisection of edges 

to define templates for refinement, which is quite similar to the work done by Garimella Rao 

[4] where he proposes a technique for multilevel adaptive refinement of quadrilateral meshes 

where the elements are kept conformal all the time. Garimella uses one less defined template 

than Sandhu et al.. With all these methods into consideration, they show only static refinement 

and aspects of dynamic adaptation and solution mapping have not been explored. 

The research that is closest to the presented work is the paper by Michael Dumbser et al. [3] 

which talks about high order ader-weno finite volume scheme with AMR. The higher order 

spatial accuracy is got by using a weno reconstruction and the high order one step time discreti-

sation is obtained through discontinuous galerkin predictor method. The AMR strategy is im-

plemented cell-by-cell with standard tree type algorithm and has also been parallelised. The 

strategies have been tested on nonlinear systems including the Euler equations and with varying 

orders of accuracy to show the results of using AMR. 

 

 
Figure 3. Graimella Rao’s subdivision templates demonstrating edge based refinement [4] 

 

4 AMR ALGORITHM 

The mesh adaptation technique that has been developed is used in conjunction with the high 

order unstructured finite volume solver (ucns) which is capable of obtaining 7th order spatial 

accuracy with weno schemes. The AMR technique implemented is a fully conformal method 

that can work on hybrid meshes, which follows a hierarchical tree based data structure. The 

refinement or coarsening is node based and the decision is always taken at the parent level i.e. 

the data of the initial parent cell is preserved and is always carried over to the number of adap-

tations done during the process which limits the coarsening to be done only up to the initial 

mesh level. The main point of this technique is to preserve the order of accuracy with varying 
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gradients and also at points where the solution is smooth using solution transfer/remapping 

techniques. The other advantage of this method developed here is that the refinement or the 

coarsening process can be done as local as possible and also can be done per cell basis which 

gives the user more control over the process and is very essential and would aid in better paral-

lelisation of the algorithm. 

 

 

 
 

 
 

Figure 4. The two strategies of refinement on quadrilateral and triangular cells, showing different levels of 

refinement. 

 

Two strategies of refinements have been developed for quadrilaterals and triangles which 

can refine the cells up to 4 levels where the maximum number of children per cell can go up to 

21 cells. The above figure shows the subdivision of cells for both the refinement strategies. The 

subdivision is done based on the nodes and the centre of the cells, where for each level the mid-

point is calculated on the diagonals between the end node and the cell centre. This is done 

repetitively until four levels for the first strategy. The second strategy of subdivision was de-

veloped for enabling better stencil marking for the weno schemes to communicate better with 

the neighbour cells. The subdivision of the cells were kept uniform by following a step by step 

subdivision where the new cells generated can take up an identical or an averaged area or vol-

ume for better solution remapping and transfer. 

For the AMR to be activated it is necessary for the solver to start, to get the initial gradients 

and the solution. The refinement or coarsening is done based on the non dimensionalised gra-

dient levels. With the initial mesh fed to the solver we get the gradients and the solution, the 

criteria and the levels of refinement are pre-defined in a parameter file based on which gradient 

to choose. The AMR can be activated in two ways, for every n iterations of the simulation or 

for every n-th time step of the simulation based on the type of problem being solved. From the 
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initial mesh with the parameters given for refinement the cells are marked, it has to be noted 

that there can be no coarsening happening at the initial level as the algorithm does not support 

coarsening of the mesh beyond the initial mesh. As soon as the cells are marked the neighbours 

of the marked cells as well as the neighbours of the neighbours are marked and only the exclu-

sive neighbour list is populated and is stored for smooth transition of refinement levels which 

makes sure that the adjacent cell is always only one level different than the target cell. The non 

dimensionalised gradients are now used to specify the level of refinement to the marked target 

cells along with their neighbours for a smoother transition. The refinement is done for the 

marked cells and the data of the parent cells are stored with the children flag and the child cell 

numbers, this data is used in the next step of adaptation where the decision is taken at a parent 

level for refinement or coarsening. For the parent cells there is an option of choosing the max-

imum gradients of the child cell or the average gradients of the cells for obtaining more resolu-

tion with adaptation. The solution is remapped on to the cells and it is made sure that the order 

of accuracy is conserved. 

 

4.1   Solution Remapping & Transfer 

Adaptation methods to reduce the solution errors of solving a PDE is highly dependent on 

the remapping or transfer of quantities from the base mesh to the adapted mesh and while coars-

ening of the mesh. It is important to remap the solution quantities like the integral quantities 

such as mass or energy and pointwise quantities such as diffusivity [13]. The remapping of both 

these quantities have to be done very accurately and more importantly for the integral quantities 

it has to be conservative. Consider the density of a child, it must be transferred such that the 

total mass of the parent is conserved. If a group of elements are to be coarsened the integral 

quantities can be summed up over the children and can be assigned to the parent. With the 

pointwise quantities the children cells can be averaged weighted by their volume. For condi-

tions of refinement, the mass can be distributed equally over the children or a linear reconstruc-

tion of the density can be made over the parent and integrate over the child [13,14]. In the 

proposed algorithm here, the solution transfer  between the refinement levels is treated 

differently where a volume average is take and remapped to the cells and for refinement the 

quantities of the parent are mapped as it is to the children cells. Using a summation of masses 

of the children and passing it to the parent may be a poor choice and might lead to lower order 

of accuracy. 

 

4.2   Methodology 

The AMR algorithm is employed with MUSCL and WENO type of spatial discretisation schemes 

on hybrid unstructured meshes based on the implementation of [18,19], where they have been ap-

plied to a range of inviscid, laminar, transitional and turbulent flows simulations [14-17,20] demon-

strating the advantages of high-order schemes in conjunction with hybrid unstructured meshes. The 

HLLC Riemann solver is used along with an explicit 3rd-order three stage strong stability preserving 

Runge-Kutta time stepping for advancing the solution in time. 
 

5 RESULTS & DISSCUSSION 

The developed AMR is tested on two test cases namely the cylinder explosion problem and 

the forward facing step. Both the cases demonstrates the capability of dynamic mesh adapta-

tion through time and changing gradients over single element and hybrid mesh domains. The 

tests are done with three numerical schemes namely muscl second order, weno 3rd order and 

weno 5th order to study the AMR behavior over increasing order of numerical accuracy. 
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5.1    Cylinder Explosion Test Case 

 The two dimensional Euler equation for gas dynamics to solve the considered problem 

is given as, 
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Where the pressure p is related to the conserved quantities through the equation of state, 

2 21
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With  =1.4, which is solved on a square domain in the xy-palne. The initial condition has 

a circular discontinuity of radius 0.4 centered at (1, 1). The initial data for the problem is defined 

on a non-dimensional domain of [-1:1] x[-1:1] and has two regions of constant but different 

values of gas parameters, the initial conditions are, 
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 For the cylinder explosion problem in 2D, a set of three meshes namely a quad mesh with 

1600 quadrilaterals, a triangular mesh with 5458 triangle elements and a hybrid mesh with 1711 

and 5250 quads and tris respectively are used as the base mesh. These meshes are run on three 

numerical schemes muscl2, weno3 and weno5 to capture the solution with increasing numerical 

accuracy. The AMR for all the cases have been set to be moderately aggressive, the simulation 

is run for a time of two seconds with adaptation set to happen every 0.09 seconds which ac-

counts for 3 adaptations during the course of the simulation. We expect the results to be sharper 

and where there are sharp gradients and also to conserve the parts where the solution is smooth 

with varying AMR settings. Refinement levels of l2, l3 and l4 were used for all conditions and 

the varying levels of non-dimensionalised density was used as the gradient markers for marking 

the cells for adaptation. 

The solution exhibits a circular shock wave propagating away from the center, a circular 

contact surface travelling in the same direction and a circular rarefaction moving towards the 

origin. As time evolves it can be observed that a complex wave pattern emerges. The circular 

shock wave moves outwards and becomes weaker, the contact surface also follows the shock 

and becomes weaker and at some point in time the contact comes to rest and starts to move 

inwards. The rarefaction moving towards the center reflects and over expands the flow to create 

an inward moving shock wave which implodes to the origin, reflects and moves out colliding 

with the contact surface. 
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Where        
 

Figure 5. Cylinder explosion with strategy_1 hybrid, quad and tri grid on weno3 scheme, meshes at final 

time step 

 



Harshavardhana Srinivasan, Panagiotis Tsoutsanis 

10 

 

 

Figure 6.Cylinder explosion with strategy_2 hybrid, quad and tri grid on weno3 scheme, meshes at final 

time step 
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Figure 7.Density plots on different grids with higher order schemes 
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Figures 5 & 6 show the visualization of density and the final mesh at the end of the 

simulation, for both the adaptation strategies which demonstrates the capability of the algorithm 

to perform dynamic adaptation with any element type separately and also on hybrid grids. It 

can be observed that the use of strategy 2 refinement methods the solutions are comparatively 

smoother than the refinement of grids with strategy1. 

In figure 7 we have the density plots compared with increasing order of numerical 

schemes which helps us to study the performance of AMR with higher order schemes. These 

results are compared to t an analytical solution to check for the accuracy of the schemes with 

AMR. It can be observed that all the numerical schemes capture the peak with all the grids 

except for quads which tend to over predict with a weno5 numerical scheme on both the strat-

egies. The quad grid with both the strategies and with higher order numerical schemes fail to 

capture the total diffusivity happening in the simulation, but they tend to stay smooth through-

out. On the other hand with the hybrid and triangular grids the diffusivity capturing is better 

and closer to the reference solution but comes with a noise generated due to the weno weights 

of the triangular elements present in the grid. It is important to notice that the solution is less 

susceptible to noise with hybrid and tri grids with the use of the strategy 2 for refinement.     

 

5.2    Forward Facing Step Test Case 

 The forward facing step is a classic test case to study the flow separation and recircula-

tion caused by a sudden contraction in a channel. For this case depending on the ratio of the 

boundary layer thickness at the step to the step of the height there might be one to three recir-

culation regions, one upstream, the other in the downstream and the other just immediately 

above the step, the flow might also separate from the upper sharp corner of the step generating 

a recirculation region behind the step. 

 For the case under consideration a domain where length (L) of the domain is equal to 3 

units and the height (H) of the domain is equal to 1 unit, the step is located at (l) 0.2 units from 

the inlet and with a height (hl) of 0.2 units is considered, 
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 The above equation (4) describes the boundary conditions, where the boundaries of the 

geometry are considered to be a wall, friction is created at this wall due to the viscosity and 

momentum of the fluid (air). The inlet is taken as the velocity inlet where the velocity is given 

in the u direction equal to mach 3, the outlet of the channel is considered as the pressure outlet. 

The pressure is taken as 1atm and the density as 1.4 kg/m3 for the problem which is solved 

using the Euler equations as mentioned in equations (1) and (2).  
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Figure 8. Forward facing step, initial mesh, mest at t=2.0secs, final mesh 
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Figure 9. Contours of density, with no-refinement and with refinement 

 

The domain is made up of triangular mesh which are moderately coarse for this setup. The 

simulation is run with a weno3 numerical scheme and a moderately aggressive AMR setup with 

second, third and fourth levels of refinement for a total simulation time of 4 seconds and AMR 

being activated every 0.9 seconds based on the gradients of density form the simulation, hence 

we would have five levels of adaptation happening in the course of the simulation. Figure 8 

shows the triangular mesh of the case at the initial instance, mesh with adaptation at t=2.0secs 

and the mesh at t=4.0 secs.  

When the flow enters through the left boundary at the velocity of Mach 3 and exits through 

the right pressure outlet boundary. During the first few time steps a strong shock is generated 

due to the step and an expansion wave appears originating from the top corner of the step. The 

shock then moves progressively towards the top wall and gets reflected at the wall, after a few 

tome steps the flow exhibits several shock wave reflections at the top and bottom walls before 

the shock exits the domain. Figure 9 shows the contours of density with a case run with no 

refinement and the case run with the AMR. It can be observed that the AMR helps in capturing 

the propagating shock with a better definition and also helps in preserving solution accuracy at 

places where the gradients are not that steep. This case clearly demonstrates the capability of 

tracking steep gradients by the AMR by accurately capturing the shock being propagated 

through the domain. 
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6 CONCLUSION 

This paper proposed a mesh adaptation procedure for  hybrid unstructured grids that gives 

a conformal mesh with node based refinement which follows a tree based hierarchical data 

structure where the decision on adaptation is always taken at the parent level. The quality of the 

refined mesh is kept comparatively high even with a few irregular elements present in the grid. 

From the test cases considered it can be said that the AMR efficiently performs the refinement 

where required and coarsens where it is not. The advantage of this method developed here is 

that the refinement or the coarsening process can be done as local as possible and also can be 

done per cell basis which gives the user more control over the process and is very essential and 

would aid in better parallelisation of the algorithm. 

Solution transfer or remapping of solution of from child to parent and vice versa has always 

been a concern for conserving the integral and pointwise quantities of the solution, an efficient 

method has been devised with this algorithm where solution averaging based on volume 

weights have been done for remapping solution between the different levels of refinement and 

solution from the parent is remapped as a whole to the child cells, hence conserving the quan-

tities. It was observed that the quadrilateral refinement was quite smooth than the triangle and 

hybrid refinement but failed to capture the diffusivity in the solution. Strategy 2 is a better 

option for refinement as there was less noise observed with triangular and hybrid grids. 

This algorithm in conjunction with the high order solver can be used for solving a variety 

of problems pertaining to capturing of steep gradients and also can perform well with RANS 

cases. The present work will be extended to 3D domain for hexahedral, tetrahedral and prism 

elements and also the AMR algorithm would be parallelized. 
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