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Abstract. The solution of the non-hydrostatic compressible Euleaéiqns using Weighted Es-
sentially Non-Oscillatory (WENO) schemes in two and thdeeensional unstructured meshes,
is presented. Their key characteristics are their simpfli@ccuracy; robustness; non-oscillatory
properties; versatility in handling any type of grid topghg computational and parallel effi-
ciency. Their defining characteristic is a non-linear cordtion of a series of high-order re-
construction polynomials arising from a series of recounstion stencils. In the present study
an explicit TVD Runge-Kutta ?-order method is employed due to its lower computational re-
sources requirement compared to implicit type time advarece methods. The WENO schemes
(up to5™"-order) are applied to the two dimensional and three dimemai test cases: a 2D ris-
ing thermal bubble. The scalability and efficiency of theesobs is also investigated.
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1 Introduction

Understanding the atmospheric processes both qualitativel quantitatively on regional
and global scales is of great value for scientists and palesision makers. Tools utilised by
the scientific community to gain insight into the complex asphere-climate system, include
the numerical weather prediction (NWP) and climate mod&lse main objective is to accu-
rately simulate weather and climate variations, trendepss etc. All the models utilised for
this purpose have a distinctive component in common dimemical core which solves the
fluid dynamics equations. In other words, it is the model congmt that drives atmospheric
motions, hence with a profound impact on the accuracy of tadigtions. The leap occurring
in computing processing power the last decade, providestavamion to resolve atmospheric
processes on finer scales and higher resolution than hagpppefare. There is currently a trend
of either enhancing the majority of the dynamical cores tdildsshed models or develop new
dynamical cores that utilise highly sophisticated aldoris or set of equations that are tailored
for finer resolution simulations in larger computing faods. A number of initiatives have been
taken to address this bottleneck and develop the next gesrerd dynamical cores. Such ini-
tiatives include the UK Met Office and European Centre for MedRange Weather Forecasts
Even Newer Dynamics for General Atmospheric Modelling & Bnvironment (ENDGame)
[51]; the National Center for Atmospheric Research Hight€&rMethods Modelling Environ-
ment [34]; the National Oceanic and Atmospheric Administra AM3 model [35] and the
Nonhydrostatic Icosahedral Model (NIM) [36]; the Frontiesearch Center for Global Change
Nonhydrostatic Icosahedral Atmospheric Model, (NICAMXJ4the Non-hydrostatic Unified
Model of the Atmosphere (NUMA) [17]; and the Max Planck Insté for Meteorology and
Deutscher Wetterdienst ICOsahedral Non-hydrostaticrgéoiculation models, (ICON) [31].

This paper focuses on the the numerics of the dynamical gpechof atmospheric mod-
els employed for weather and climate predictions for wethlesshed test cases. Since high
performance computing systems enable the analysis on fiat¥ssand higher resolution, the
topography should be efficiently and accurately represemateroperty typical for unstructured
grids. In the past, finite volume numerical methods have begoduced in the structured
grid context resulting in robust schemes that enjoyed a wadegnition in various disciplines,
including the weather and climate prediction community, {27, 28, 45].

The first generation numerical methods for unstructuredisgekhibited lower accuracy and
were computationally more demanding than structured gHdsvever, the numerical methods
for unstructured grids have matured and numerous eleganbaghes| [10, 11, 18, 21,129, 37,
39,147,049, 50, 56-58] and algorithms have been developeldeiriitite volume framework
for a wide range of applications for Computational Fluid Rymcs(CFD). Other state-of-the-
art approaches are also available, such as the Disconsrbalerkin (DG)[6] 7, 11, 52, 57,
64], and Spectral Finite-Volume (SFV) methods [5,53+55 638 that have been successfully
applied for CFD applications. For the finite volume framekitre first class of high-resolution
methods developed for unstructured grids included the EN® $schemes [1, 46], followed by
the WENO type schemes [13,/23,/42] 43]. In the WENO case, thje-drider accuracy was
achieved by non-linearly combining a series of high-or@eonstruction polynomials arising
from a series of reconstruction stencils. Recently, a atdS&/ENO type methods [47, 49]



Panagiotis Tsoutsanis, Dimitris Drikakis

has been successfully extended to hybrid unstructuredesesith various geometrical shapes
such as tetrahedrals, hexahedrals, prisms, and pyrantidschemes can achieve the very high
order of spatial accuracy across interfaces between dalifferent types, and at the same time
essentially non-oscillatory profiles are produced for aligmuous solutions. This gives greater
flexibility to handle complex geometrical shapes in an effitiand accurate manner.

For the atmospheric dynamics there is also an overwhelmiumgber of recent state-of-
the-art approaches that utilise high-order schemes fbeegtructured grid or unstructured
dynamical cores (4,7, 14,115,124,/ 30, 32,144, 59-61]. Reggritie high-order schemes (higher
than 3rd order of spatial accuracy) for unstructured dycahdores all of the approaches are
based on the Discontinuous Galerkin framework and the lragg-d5alerkin Spectral Element
Method[7,[15| 26, 32, 60]. The fact that WENO schemes hava baecessfully applied to a
range of smooth and discontinuous flows |10, 11, 50], incigdihe Reynolds Averaged Navier
Stokes (RANS) equations [2, |3, 8], motivates the applicadibthese schemes in the context of
non-hydrostatic Euler equations.

The aim of this paper is to assess the performance and diytadiWENO-class higher-
order finite volume schemes in conjunction with unstrudureshes for well established test
cases for non-hydrostatic Euler equations. The schemesecaged in any type of conforming
grids.

The paper is organised as follows. In Section 2 the govereipgations of a dry non-
hydrostatic atmosphere are presented. SeClion 3 outlirespatial discretisation techniques
WENO reconstruction, numerical fluxes, source terms angdeah discretisation. The results
obtained with various schemes for different test casefijdimg discussion on the parallel per-
formance, are presented in Section 4 . Sedtion 5 summahisehclusions drawn from the
present study.

2 Governing Equations

The compressible inviscid Euler equations employed by thB Community where mass,
momentum and total energy are the conserved quantitiesaaly used for atmospheric stud-
ies, with a few notable exceptions [16]. The primary reaswmbt being that common in atmo-
spheric studies is the additional computational step reduio compute potential temperature
from total energy. However, the benefits of using these setjoations are their formally con-
servative nature as reported in/[16]. The compressiblehyanestatic Euler equations without
moisture effects are considered in the following form:

0 0 0 0

—U+ —F — —H(U) = 1

atU+ E (U) + 6yG(U)+ 5 (U)=S, (1)
whereU is the vector of the conserved variabl®s, G, H are the flux vectors i, y and z

directions of Cartesian coordinates & a gravity source function given by
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p pu
o pu? +p
U=| pv |, F= pUv
pw pUW
E u(E +p)
pw pv
pWU puU
H= PWU , G=| p?+4p
pw? + p pUw
w(E + p) v(E+p)
0
0
S = 0
—pyg
0

wherep is density;u, v, w are the velocity components in they andz directions of Carte-
sian coordinates, respectivelyis pressureE = pc,T + (1/2)p(u?® + v? + w?) + pgy is the
total energy per unit mass; is the ratio of specific heatg; the gravitational constangy is
the geopotential height; is the temperaturef? = ¢, — ¢, is the gas constant, whetgis the
specific heat at constant pressure and the specific heat at constant volume. The ideal gas
law is used withy = 1.4 throughout this work, with the pressuseyiven by

RO\
P =", (p ) , 2)
Ds
wherep, is the atmospheric pressure at sea level,isdhe potential temperature
T
0= ) (3)
s

with 7 being the Exner pressure provided by the following expogssi

R

- (B) " @)
Ds

The following equations relate the Exner pressute the densityp, and the potential temper-
atured to the total energy per unit mags

p= ot (5)
and
E = pe O + (1/2)p(u® 4+ v* 4+ w?) + pgy. (6)
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The Exner pressure and potential temperature can be sgtiéinmean and perturbed parts
as follows
0 (z,y,2,t) =0(y, t) + 0 (,y,2,1), 7)

and

m(z,y,2,t) =7 (y,t) + 7 (x,y,2,t), (8)
where the hydrostatic balance of their mean values is giyen b

_d7w
cpﬁd—y = —g. (9)

Integrating in space over a mesh elemépt, the following semi-discrete finite-volume
method is obtained

d 1
_Uz e andA:Sl7 10
iVt ! 10

and using the rotational invariance property of the Euleragigns [43]

F,(U)=F((U)n, +G (U)n, +H(U)n, =T 'F(TU) , (11)

wheren = (n,,n,,n.) is the outward unit normal vectotJ;(¢) are the cell averages of the
solution at timet; F,, is the projection of the flux tensor on the normal directidhjs the
rotation matrix; andl' ! its inverse|[48] ; and the source te®pis given by

1
S; = / S(x,y, 2, t)dzdydz, (12)
Vi

Vil
Assuming that the element’s surface consists ti#ces, with the spatial indéXeing omitted
for simplicity,

L
a‘/z = ZAj>
J

(n; denoting the outward unit vector for faek), then the integral over the element boundary
dV; can be split into the sum of integrals over each face, regiti the following expression:

d
~U, =R, 13
p (13)

where
1
R, =— F, ,dA+S; = KZ S;.

The numerical fluxiK;; correspondlng to facg of the cellV; is the surface integral of the

projection of the tensor of fluxes ontg. In a numerical method the exact integral expression
for the numerical fluxiK;; for the face;j of a cell V; is approximated by a suitable Gaussian

5
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numerical quadrature where the wall bounded elements gtuadrpoints are depicted with
different color corresponding to different weights

K= / Fo;dA =Y F,;(U(xs, 1)) ws| 4], (14)
Aj B

where the subscript corresponds to different Gaussian integration paipteind weightsug
over the faced; .

3 Numerical Framework

In this section the numerical framework for the solutionha tompressible non-hydrostatic
Euler equations is presented with respect to spatial anddeahdiscretisation.

3.1 Spatial discretisation

The spatial discretisation is based on the approach of 7 which is suitable for unstruc-
tured meshes with various types of element shapes in 2D anar8Dit has been previously
used successfully for laminar, transitional and turbufews |[50]. Therefore, only the key
characteristics of this approach are going to be describéus paper. The first step in the ap-
proximation of the governing equations concerns the Spdiiaretisation of the domainc r?
into £ number of conforming elements;, with the indexi ranging from 1 toE’ number of
elements. The elements can be any combination of hexabegsahmids, prisms, and tetra-
hedrals as shown in Figuré 1 in 3D, and triangles or quadrdg in 2D. It must be noted
that the present WENO schemes are not limited by conformiegh®s since they can be used
with non-conforming meshes which brings additional beasfiich as adaptive mesh refinement
[12].

The combination of all elements in the spatial domain is gy

0= 6 V. (15)

In the context of the finite volume framework that is employethe present study, the data
is represented by cell averages of conserved variahblgy, z) in each element/;

Vil Jvi
where|V,|is the volume of the element. To achieve high-order, acewspatial discretisation,
high-order accurate point-wise values of the solution nedae recovered from the cell aver-
ages. The reconstruction problem can thus be reformulatéallaws: For a target cell, we
build a high-order polynomial;(x, y, z) that has the same cell averageuamn the target cell

1 1
_’i: ) ) dV:—/ 7 9 9 dV 17
u v /vi“(:” Y, 2) v Vip(x Y, 2) (17)
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The point-wise values of the conserved variabl@ each cell are approximated by a poly-
nomial of a desired order of accuracyThe polynomial uses the cell averages:@f, y, z) on
the target celV; as well as averages,, from neighbouring cellsy,,,. The key

3.1.1 Reconstruction algorithm

The main steps for the reconstruction process are the foigpw

1.

For all the non tetrahedral cells the cell is decomposexteirahedral elements. It must
be stressed that the decomposition to tetrahedral cetlenis only for the transformation
purposes to the reference space in order to remove any gedlect of the least square
system to be solved.

Choose one of the resulting decomposed elements.

Transform the chosen decomposed element from the phygieae described by the
Cartesian coordinates y, z into a reference space describedsby, .

Based on the Jacobian matrix of the transformation of blesen decomposed element,
map the coordinates of the entire element into the referspaee described by coordi-

natest, », C.

Based on the same Jacobian, all the elements in the séeaditansformed to the ref-
erence space and their volumes, and barycentres positiere@mputed in the new
reference space.

Letv,;, j = 1,2,...J; be the vertices of the considered (general) element, wlgntbe either
tetrahedral, hexahedral, prismatic or pyramidal. Let &so= (x1, 41, 21), Wa = (%2, Y2, 22),

ws = (3,93, 23), Wa = (z4,Y4,24) be the four vertices of one of the tetrahedrals of this
element. Obviously, these vertices are betweenvtheones. The transformation from the
Cartesian coordinates y, z into a reference space n, ( is given by the following equations

T T §
yl=|wn |+ |n]|, (18)
z 21 ¢

with the Jacobian matrix given by

To —T1 T3 —T1 T4— T

J=1 Y-y Ys—Y1 Ya—Y1 |- (19)
20— 21 23— 21 24— 21

Using an inverse mapping the eleméfican be transformed to the elemaéfitin the refer-
ence co-ordinate system

Vi=J vy —wi), j=1,2...J. (20)

1
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The spatial average af(x, y, z) does not change during transformation

_ 1 1
Uy = V] /Viu(x,y,z) dV = v /V{ u(&,m, ¢) d€dnd(. (21)

For performing the reconstruction on the target elemé&nive form the central reconstruc-
tion stencilS as described previously, consistingldf+ 1 elements, including the target element
Vi

M
S=U Vi, (22)
m=0
where the indexn refers to the local numbering of the elements in the stendih the ele-
ment with index0 being the considered cell Ther*® order reconstruction polynomial at the
transformed cell/j is sought as an expansion over local polynomial basis fonsti. (&, 7, )

p(&,n, ) Zak¢k§n< —uO+Zak¢k§nC) (23)

whereq, are degrees of freedom and the upper mdex in the summatiexpeEnsionk is
related to the order of the polynomiaby the expressioi = & (r + 1)(r + 2)(r + 3) — 1 for

3D andK = 5(r+1)(r+2)—1for 2D . The conservation condition {16) imposes an impdrtan
constraint on the basis functions: they must have zero mealae wver the cell/;. On purely
tetrahedral meshes hierarchical orthogonal reconstruttasis functions [10, 57], defined on
the reference element, satisfy this requirement autoalbticSince our general cells are not
necessarily transformed onto a unit tetrahedron or cub@e®d to construct basis functiops

in such a way that the condition is satisfied identicallyespective of the degrees of freedom.
The basis functions are defined as follows:

O1(6,1.0) = (&, m.0) - /m%m& k=12 (24)

4]

Any type of orthogonal polynomial basis functlon can beisgitl;, however, in the present
study generic polynomial basis functions are used

{¢k}:€> n, Ca 627 7727 <2> 577, SC, CT], 677(

To find the unknown degrees of freedainfor each cellV/, from the stencil the cell average
of the reconstruction polynomial¢, n, () must be equal to the cell average of the solutign

[ pen. O dedndc = Wyl + 3" [ aordednd = Vol m=1.... (25)

El k IV/

Denoting the integrals of the basis functidrover the cellm in the stencil, the vector of
right-hand side bw,,,, andb are given by
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A= [ uddndC, by = V(i — 1)
Vl
We can rewrite the equations for degrees of freedgnm a matrix form as

K
ZAmkak:bm, mzl,Q,M (26)
k=1

The three-dimensional integrals on the left-hand sidé 6f é2e calculated using Gaussian
guadratures of appropriate order. In general, to compateldigrees of freedom), we need at
leastK cells in the stencil, different from the target célj . However, the use of the minimum
possible number of cells in the stengil = K results in a scheme which may become unstable
on general meshes [9,/21, 22| 49]. Itis, therefore, recondee:to use more cells in the stencil
than the minimum required number. Although it is usuallyfisignt to use 50% more cells, for
mixed-element meshes it is safer to increase the stenthldunVe typically selecd/ = 2- K .

Since the resulting system becomes over-determined, diseé $gjuare procedure is invoked
to solve it. The least-square reconstruction is obtainezEleing the minimum of the following
functional

K

M
F=)> wm-<
m=1 k

where the weightsw,, are squared reciprocals of the distance between gglEnd E,,,. The
advantage of the weighted least square reconstructioraighk influence of the data further
from the considered) is reduced, although a central least square reconstrustroaterialised
with the weightsv,, being equal to unity. Minimisation of gives a linear system for finding
a .

2
Amkak - bm) )
1

K M M
Z C’kak = Z Amp wmbm, Ck = <Z wmAmkAmp> , P= 1, K (27)
k=1 m=1 m=1

A QR decomposition method is employed to solve this systeegaations. The coefficients
of the resulting linear symmetric matrix A are pre-computed stored for each element dur-
ing the pre-processing stage of the calculation, thus astng the computational efficiency of
the method. If the mesh was to be refined these would autcafigtiequire the need to re-
compute and store this matrix. Having solved numericaleylthear system, we can form the
reconstruction polynomial(23).

3.1.2 WENO reconstruction

The main characteristic of the WENO reconstructions is the af reconstruction polyno-
mials from several different stencils and their combinmaiio a non-linear manner. In WENO
schemes the actual reconstructed value is a convex condmraftreconstructed values from
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stencils, with nonlinear (solution-adaptive) WENO wemgHi23,142, 62]. These nonlinear
weights are constructed from the linear (constant) weighteaking into account the smooth-
ness of the solution in each of the reconstruction stenthis.resulting methods are uniformly
high-order accurate, while maintaining non-oscillatoghéviour in regions with sharp gradi-
ents. The WENO reconstruction used in the present studysischan the implementation of
[49], where the reader is referred to for further detalils.

3.1.3 Numerical fluxes and Source term

Since for each computational cell the point-wise valueshefd¢onserved vectdd are re-
placed by high-order reconstruction polynomials the nucaéflux for the faceA; of cell V;
is discontinuous at each Gaussian pgintThe valuesU; and Ujg correspond to the recon-
structed value of cell; and its adjacent neighbol,. In upwind finite-volume methods the
discontinuity is replaced at each Gaussian integrationtgmy using a monotone function of
left and right boundary extrapolated values so that (14)osare-written as

Kij ~ Y Fo; (Ug, Uf) wsl4,]. (28)
B

The function]?‘m (Ug, Ug is the Riemann solver [48]. Employing the rotational ingade
property of the Euler equations [48], for each fatethe normal projection of the flux tensor
F, ; is replaced by

F,; = T'F(T,;U), (29)

whereT); is the rotation matrix for facg. Re-writing [28) forK,; gives
Kz’j = ZFn,j (Ug, UE) w5|Aj\ = Z T_lF (ﬂL, ﬂR) WQ‘AJ'L (30)
g B

whereU; is the rotated conserved variable and
U, =T;U;, Uy=T,U}.

The flux function for the Gaussian poifiresults in the one-dimensional Riemann initial value
problem

0 0 . . - U, s<0,
—U+—F=0, F=FU), U(s0= _ (31)
ot 0s Ug, s>0

In the present study the HLLC Riemann solver of Tara [48] isptoyed. The numerical
source tern®; is approximated by using a Gaussian quadrature rule of the sader of accu-
racy as the order of the polynomial of the reconstruction

1
Si~ — > S(zs,ys, 23, t)wg, (32)
Vil 5

wherezs, yg, 25 IS the volumetric Gaussian quadrature points ands the Gaussian weights
of r-order of accuracy.

10
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3.2 Temporal discretisation

Having constructed the numerical fluxBs ; as expressed in the semi-discrete conservative
formulation, the next step involves the advancement of thatien in time. The explicit SSP
Runge-Kutta"¢-order method [19] has been employed for the time integnatio

U;' = U" + At - R, (U")

U =3U" + iU, + &L R, (UY)

(33)
U =10 4 20 + 2R, (UP)
with R; given by [I3).
The time stepA\t is computed as follows
At = K min hi (34)
B i SV

whereh; is the radius of the inscribed sphere of each t€alhdV; its corresponding volume,
K < 1/3is the CFL number for unsplit finite-volume schemes [48] , &his the maximum
propagation speed in each cedliven by

where

pr:|u+a'|> aSPy:|U+CL|> pr:‘w+&|a
with n = (n,,n,,n,) being the outward unit normal vector aads the speed of sound.

4 Results

This section presents the results obtained with the WEN®mels for a series of 2D and 3D
test cases of a non-hydrostatic atmosphere.

4.1 2D Robert Smooth Bubble

After its introduction [40], the Robert smooth bubble prilis considered as a standard
benchmark in NWP. The evolution of a warm bubble in a congpatential temperature en-
vironment is investigated, and since the bubble is warman tihhe ambient air, it rises and
due to shearing motion it forms a mushroom shaped structush@wvn irj Figure|3. The two-
dimensional, non-hydrostatic compressible Euler eqnat{d) are numerically solved in the
computational domaiti000m x 1500m with ¢ € [0, 800] s with no flux boundary conditions.
The initial condition[[40] corresponds to a warm bubble eead at 500, 260) m, in hydrostatic
balance, and a perturbation of the potential temperatutegmger the movement of the warm
bubble as follows:

11
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, 0 forr <,
0 :{ 0.25 (1—1—008(’;—:)) forr>r. "’

wherer is the distance from the centre of the bubble

r= \/(x—xc)2 + (2 — 2.)%,

wherer is the trigonometric constant, = 250m is the radius of the bubble; and the potential
temperature is constant a300k . The unstructured meshes used consist of arbitrary trlangu
elements as shown|in Figurg 2 and have resolutiogsafand6m. The WENG and WENG
schemes using characteristics based reconstructionsedewith a CFL number df.9.

From the obtained computational results as shown in Figared3-igure % it can be noticed
that long-wave oscillations of the interface occur forménggaller vortices, the spatial symmetry
of the solution is completely lost and that higher-order WEBthemes resolve more of these
small scale vortices.

Regarding the long-wave oscillations of the interface it ba attributed to the the shear flow
interaction between the interface and the surroundingnumtesd air, which in turn give rise to
the Kelvin-Helmholtz instabilities that lead to turbulesttuctures. There have been numerous
extensive numerical experiments [[20] 33|, 40, 60] to inges# this problem and to date the
exact solution remains unknown.

The spatial symmetry of the solution is lost due to the faat the mesh is not symmetric, the
initial profile is approximated by a Gaussian quadrature ofithe same order as the polynomial
order used for the reconstruction, and finally due to the idialensional reconstruction of the
present algorithms. The fact that each time the mesh is tgforea higher-order scheme (due
to the Gaussian quadrature) is used the initial perturbatahange slightly. In return these
perturbations according to [20] grow exponentially in tirhence the perturbations have larger
spatial scales that the initial perturbations.

As the grid resolution is refined or as the spatial order oM#ENO schemes is increased the
numerical dissipation is reduced, hence more structueeseaolved. The question is whether
or not these structures are just artificial or are part of tresct solution is an issue that requires
further investigation, particularly in the absence of ekpents. The WENO schemes for this
discontinuous problem remain stable as witnessed by [3&weder, for other approaches
that do not possess discontinuity capturing capabilitiesra of artificial viscosity would be
required both for stabilising and for obtaining a convergetlition [33]. At the same time it
can be realised that some of these perturbations may be fpidwe gorrect solution [33, 60],
hence controlling the amount of artificial viscosity can loée challenging.

4.2 3D Robert Smooth Bubble

The three dimensional, non-hydrostatic compressible reedeations[(ll) are numerically
solved in the computational domairi00m x 1000m x 1500m andt € [0,450] s in con-
junction with NFBC. The initial condition| [40] corresponds a warm bubble centered at

12
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(a) Hexahedral (b) Pyramid (c) Prism (d) Tetrahedral
Figure 1: 3D Element shapes
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Figure 3: Potential temperature perturbatiéiis) at various instants for the 2D Robert smooth
bubble test on an unstructured mestéof resolution using a WENO5 scheme.
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Figure 4: Potential temperature perturbatidii) att = 800sec 2D Robert smooth bubble test
at different grid resolutions with WENO3 and WENOS5 schemes.
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Figure 5: Cutaway of Unstructured mesh used for the 3D Rameoioth bubble test.
(500, 500, 260) m, in hydrostatic balance, and a perturbation of the potetgraperature to
trigger the movement of the warm bubble as follows:

, 0 forr <,
0= { 1.25 (1 + cos (’;—:)) forr>r.

wherer is the distance from the centre of the bubble

r= \/(a: — 2 (y =)+ (2~ 2)°,

7 IS the trigonometric constant,, = 250 is the radius of the bubble; and the potential
temperature) is constant aB00K . Three unstructured meshes comprising @f175 , 64, 000
, and210, 212 elements have been employed using tetrahedral elefnenieMg

The main objective of this 3D test problem is to investighthe performance of the WENO
schemes at extremely low spatial resolutddn~ 100m, which is more realistic in terms of un-
der resolved grid-arrangements used in NWP. The WEEQ WENG schemes using char-
acteristics based reconstructions are used with a CFL nuofioe).

From the obtained computational resdlts Figyre 6, it candi&ed that the solution does
not exhibit the same instabilities of the 2D test case, alfinathe spatial symmetry of the so-
lution is lost and that the higher-order WENO schemes pmsitarper profile solutions. The
non-existence of Kelvin-Helmholtz instabilities was egf@el due to the coarse grid resolution.

16



Panagiotis Tsoutsanis, Dimitris Drikakis

0" -0.14 0.168 0.476 0.784 1.092 1.4 0" -0.14 0.168 0.476 0.784 1.092 1.4 0" -0.14 0.168 0.476 0.784 1.092 1.4

0

0200400, 500" 800 1000 0”200 400, 5008001000 0”200 400, 500" 800100
(2)90m WENO3 (b) 60m WENO3 (c) 30m WENO3
N (5 ' 5 (m N 5 m

0" -0.14 0.168 0.476 0.784 1.092 1.4 0" -0.14 0.168 0.476 0.784 1.092 1.4 0" -0.14 0.168 0.476 0.784 1.092 1.4

0 200 400X600 800 1000 0 200 400x600 800 1000 0 200 400x600 800 100!

(d) 90m WENO5 (e) 60m WENOS (f) 30m WENO5

Figure 6: Potential temperature perturbat®(/) att = 300sec andy = 500m for the 3D
Robert smooth bubble test.

Despite the coarse resolution, the solution breaks up msyayetry. The asymmetry of solution
is more pronounced at coarser grid resolutions. This bebas attributed to the multidimen-
sional character of the numerical reconstruction and islakwewn property of high-order up-
wind schemes exhibited particularly in flows associatedh witrtical structures and separation.
The Potential temperature perturbati(/’) and vertical velocityW’(m/s) profiles [Figure J)
seem to trend towards convergence; although the solutinatisxpected to converge without
any explicit viscosity due to the inviscid nature of the dewb.

4.3 Parallel Performance

The requirements for atmospheric modelling on a regionglaval scale have significantly
increased in the last decade. Parallelisation of existomgputational methods and software is
an active area of research. Previous studies [50] showedhibaatio of computational time
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Figure 7: Potential temperature perturbai(i’) and vertical velocityW (m/s) att = 300sec
y = 500m andz = 964.5m for the Robert smooth bubble test.

18



Panagiotis Tsoutsanis, Dimitris Drikakis

100

WENO3
WENO5

WENO3
WENO5

100 Too e i \
\\ 80
F 10? I

BRacS

10000

Normalised Time
/.
Parallel Efficiency %

10°

10"

2 3
10 000
]l\?um ber of Processors Num%er of Processors

(a) Scalability (b) Efficiency
Figure 8: Scalability and efficiency of WENO3 and WENO5 metho

over communication time is proportional to the order of aacy of the WENO scheme. For
WENO schemes with accuracy greater than third, the compuotdttime is one order of mag-
nitude greater than the communication time required fohé&eation. One of the advantages
of explicit methods used here is that they can be easily lefisald using domain decomposi-
tion. The software package used for partitioning uniforrd Bybrid unstructured meshes is the
METIS software package [25]. The present numerical methoeismployed in an unstructured
flow solver (UCNS3D) capable of handling hybrid meshes ie¢hdimensions.

The Robert smooth bubble using the finest resolution, ucistred mesh witt210, 212 el-
ements, was utilised as a test problem to assess the sitglabithe developed numerical
schemes. Although this grid resolution for this sample ¢ase is relatively coarse when com-
pared to the grid resolutions employed for climate and nicakweather prediction, our pri-
mary aim for is to demonstrate how much dependent the phapaitéormance is on numerical
schemes implemented in the same software framework. Therpamce tests were conducted
at the ARCHER UK National Supercomputing Service at EPC( fi@sults were obtained
using the latest Intel FORTRAN compiler and Intel MPI librar

The time required for each time-step for the WENO3 and WENGHemes with respect
to the number of processors is illustrated in Figyre 8. Theetis normalised with the time
required for the WENO3 scheme.

The results confirm that high order methods scale better lthaer order methods due to
the fact that the ratio of computational time over commuticatime is greater in the lower
order methods. Using 6144 processors, the parallel eftgiéor the different schemes is:
WENO3 (67%) and WENOS5 (87%). It is pointed out that for the WBENscheme 92% of the
computational time is spent in the reconstruction proc&ks. exchange of the updated values
of the stencil elements takes less than 3% of the total conuation time since the largest
communication requirement is the exchange of the recartstiwalues for each quadrature
point of halo-cells. The WENO high-order schemes have atgremmputational cost, but
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are expected to be more accurate when problems with largedgales are involved such as
numerical climate modelling. For numerical climate mokbejwhere projections of the climate
for centuries are studied, WENO schemes are expected tdlnag&ength of sufficiently small
dissipation errors that will not contaminate the projectetlition as a lower-order numerical
scheme.

When using6, 144 processors, each processor holds approximately 35 elsnaguat on
12, 288 processors, each processor has less than 18 elements.tf€hedams extremely low,
however, it may become common practice in the future wheffigxaystems will become
available. These results also illustrate that improvirgggtalability and efficiency of numerical
weather prediction models in order to take advantage of ineparallel systems, does not only
require the optimisation of the computational softwardt¢gare engineering), but also requires
re-designing numerical methods in order to make most of #inaliel performance.

5 Conclusions

We presented the implementation of high-order finite-vawsuohemes for atmospheric dy-
namics on unstructured meshes. Combining the featuresstfustured meshes to accurately
represent complex topologies that can be extended to duapesolution (dynamically or stat-
ically) in certain flow regions and using high-order numarimethods that utilise only local
information, results in highly-efficient and highly-acate numerical frameworks for numeri-
cal weather and climate modelling.

The present study discussed the implementation of WENO ricahechemes in this context
and assessed their performance in terms of accuracy, r@asstefficiency and scalability. The
results demonstrate the aforementioned properties ofcimenses in the two-dimensional and
three-dimensional rising bubble test cases, and the agsdathallenges of multidimensional
discretisations. The WENO reconstruction can be utilised auilding-block in a dynamical
core that is not limited by the type of meshes, or the type efgbverning equations. Future
work will concern application of the schemes in regional glabal atmospheric simulations.
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