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Abstract. The solution of the non-hydrostatic compressible Euler equations using Weighted Es-
sentially Non-Oscillatory (WENO) schemes in two and three-dimensional unstructured meshes,
is presented. Their key characteristics are their simplicity; accuracy; robustness; non-oscillatory
properties; versatility in handling any type of grid topology; computational and parallel effi-
ciency. Their defining characteristic is a non-linear combination of a series of high-order re-
construction polynomials arising from a series of reconstruction stencils. In the present study
an explicit TVD Runge-Kutta3rd-order method is employed due to its lower computational re-
sources requirement compared to implicit type time advancement methods. The WENO schemes
(up to5th-order) are applied to the two dimensional and three dimensional test cases: a 2D ris-
ing thermal bubble. The scalability and efficiency of the schemes is also investigated.
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1 Introduction

Understanding the atmospheric processes both qualitatively and quantitatively on regional
and global scales is of great value for scientists and policydecision makers. Tools utilised by
the scientific community to gain insight into the complex atmosphere-climate system, include
the numerical weather prediction (NWP) and climate models.The main objective is to accu-
rately simulate weather and climate variations, trends, patterns etc. All the models utilised for
this purpose have a distinctive component in common, thedynamical core, which solves the
fluid dynamics equations. In other words, it is the model component that drives atmospheric
motions, hence with a profound impact on the accuracy of the predictions. The leap occurring
in computing processing power the last decade, provides a motivation to resolve atmospheric
processes on finer scales and higher resolution than happened before. There is currently a trend
of either enhancing the majority of the dynamical cores of established models or develop new
dynamical cores that utilise highly sophisticated algorithms or set of equations that are tailored
for finer resolution simulations in larger computing facilities. A number of initiatives have been
taken to address this bottleneck and develop the next generation of dynamical cores. Such ini-
tiatives include the UK Met Office and European Centre for Medium-Range Weather Forecasts
Even Newer Dynamics for General Atmospheric Modelling of the Environment (ENDGame)
[51]; the National Center for Atmospheric Research High-Order Methods Modelling Environ-
ment [34]; the National Oceanic and Atmospheric Administration AM3 model [35] and the
Nonhydrostatic Icosahedral Model (NIM) [36]; the FrontierResearch Center for Global Change
Nonhydrostatic Icosahedral Atmospheric Model, (NICAM) [41]; the Non-hydrostatic Unified
Model of the Atmosphere (NUMA) [17]; and the Max Planck Institute for Meteorology and
Deutscher Wetterdienst ICOsahedral Non-hydrostatic general circulation models, (ICON) [31].

This paper focuses on the the numerics of the dynamical core aspect of atmospheric mod-
els employed for weather and climate predictions for well established test cases. Since high
performance computing systems enable the analysis on finer scales and higher resolution, the
topography should be efficiently and accurately represented, a property typical for unstructured
grids. In the past, finite volume numerical methods have beenintroduced in the structured
grid context resulting in robust schemes that enjoyed a widerecognition in various disciplines,
including the weather and climate prediction community, e.g. [27, 28, 45].

The first generation numerical methods for unstructured grids exhibited lower accuracy and
were computationally more demanding than structured grids. However, the numerical methods
for unstructured grids have matured and numerous elegant approaches [10, 11, 18, 21, 29, 37,
39, 47, 49, 50, 56–58] and algorithms have been developed in the finite volume framework
for a wide range of applications for Computational Fluid Dynamics(CFD). Other state-of-the-
art approaches are also available, such as the Discontinuous Galerkin (DG) [6, 7, 11, 52, 57,
64], and Spectral Finite-Volume (SFV) methods [5, 53–55, 58, 63] that have been successfully
applied for CFD applications. For the finite volume framework the first class of high-resolution
methods developed for unstructured grids included the ENO type schemes [1, 46], followed by
the WENO type schemes [13, 23, 42, 43]. In the WENO case, the high-order accuracy was
achieved by non-linearly combining a series of high-order reconstruction polynomials arising
from a series of reconstruction stencils. Recently, a classof WENO type methods [47, 49]
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has been successfully extended to hybrid unstructured meshes with various geometrical shapes
such as tetrahedrals, hexahedrals, prisms, and pyramids. The schemes can achieve the very high
order of spatial accuracy across interfaces between cells of different types, and at the same time
essentially non-oscillatory profiles are produced for discontinuous solutions. This gives greater
flexibility to handle complex geometrical shapes in an efficient and accurate manner.

For the atmospheric dynamics there is also an overwhelming number of recent state-of-
the-art approaches that utilise high-order schemes for either structured grid or unstructured
dynamical cores [4, 7, 14, 15, 24, 30, 32, 44, 59–61]. Regarding the high-order schemes (higher
than 3rd order of spatial accuracy) for unstructured dynamical cores all of the approaches are
based on the Discontinuous Galerkin framework and the Lagrange-Galerkin Spectral Element
Method[7, 15, 26, 32, 60]. The fact that WENO schemes have been successfully applied to a
range of smooth and discontinuous flows [10, 11, 50], including the Reynolds Averaged Navier
Stokes (RANS) equations [2, 3, 8], motivates the application of these schemes in the context of
non-hydrostatic Euler equations.

The aim of this paper is to assess the performance and suitability of WENO-class higher-
order finite volume schemes in conjunction with unstructured meshes for well established test
cases for non-hydrostatic Euler equations. The schemes canbe used in any type of conforming
grids.

The paper is organised as follows. In Section 2 the governingequations of a dry non-
hydrostatic atmosphere are presented. Section 3 outlines the spatial discretisation techniques
WENO reconstruction, numerical fluxes, source terms and temporal discretisation. The results
obtained with various schemes for different test cases, including discussion on the parallel per-
formance, are presented in Section 4 . Section 5 summarises the conclusions drawn from the
present study.

2 Governing Equations

The compressible inviscid Euler equations employed by the CFD community where mass,
momentum and total energy are the conserved quantities, arerarely used for atmospheric stud-
ies, with a few notable exceptions [16]. The primary reason for not being that common in atmo-
spheric studies is the additional computational step required to compute potential temperature
from total energy. However, the benefits of using these set ofequations are their formally con-
servative nature as reported in [16]. The compressible non-hydrostatic Euler equations without
moisture effects are considered in the following form:

∂

∂t
U+

∂

∂x
F(U) +

∂

∂y
G(U) +

∂

∂z
H(U) = S , (1)

whereU is the vector of the conserved variables,F, G, H are the flux vectors inx, y andz
directions of Cartesian coordinates andS is a gravity source function given by

3



Panagiotis Tsoutsanis, Dimitris Drikakis

U =

















ρ
ρu
ρv
ρw
E

















, F =

















ρu
ρu2 + p
ρuv
ρuw

u (E + p)

















H =

















ρw
ρwu
ρwv

ρw2 + p
w (E + p)

















, G =

















ρv
ρvu

ρv2 + p
ρvw

v (E + p)

















.

S =

















0
0
0

−ρg
0

















.

whereρ is density;u, v, w are the velocity components in thex, y andz directions of Carte-
sian coordinates, respectively;p is pressure;E = ρcvT + (1/2)ρ(u2 + v2 + w2) + ρgy is the
total energy per unit mass;γ is the ratio of specific heats;g the gravitational constant;gy is
the geopotential height;T is the temperature;R = cp − cv is the gas constant, wherecp is the
specific heat at constant pressure andcv is the specific heat at constant volume. The ideal gas
law is used withγ = 1.4 throughout this work, with the pressurep given by

p = ps

(

ρRθ

ps

)γ

, (2)

whereps is the atmospheric pressure at sea level, andθ is the potential temperature

θ =
T

π
, (3)

with π being the Exner pressure provided by the following expression

π =

(

p

ps

) R
cp

. (4)

The following equations relate the Exner pressureπ to the densityρ, and the potential temper-
atureθ to the total energy per unit massE:

ρ =
ps
Rθ

π
cv
R , (5)

and

E = ρcvθπ + (1/2)ρ(u2 + v2 + w2) + ρgy. (6)
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The Exner pressure and potential temperature can be split intheir mean and perturbed parts
as follows

θ (x, y, z, t) = θ̄ (y, t) + θ′ (x, y, z, t) , (7)

and

π (x, y, z, t) = π̄ (y, t) + π′ (x, y, z, t) , (8)

where the hydrostatic balance of their mean values is given by

cpθ̄
dπ̄

dy
= −g. (9)

Integrating in space over a mesh elementVi , the following semi-discrete finite-volume
method is obtained

d

dt
Ui +

1

|Vi|

∮

∂Vi

FndA = Si , (10)

and using the rotational invariance property of the Euler equations [48]

Fn (U) = F (U)nx +G (U)ny +H (U)nz = T
−1

F (TU) , (11)

wheren = (nx, ny, nz) is the outward unit normal vector;Ui(t) are the cell averages of the
solution at timet; Fn is the projection of the flux tensor on the normal direction;T is the
rotation matrix; andT−1 its inverse [48] ; and the source termSi is given by

Si =
1

|Vi|

∫

Vi

S(x, y, z, t)dxdydz, (12)

Assuming that the element’s surface consists ofL faces, with the spatial indexi being omitted
for simplicity,

∂Vi =
L
∑

j

Aj ,

(nj denoting the outward unit vector for faceAj), then the integral over the element boundary
∂Vi can be split into the sum of integrals over each face, resulting in the following expression:

d

dt
Ui = Ri, (13)

where

Ri = −
1

|Vi|

L
∑

j=1

∫

Aj

Fn,jdA+ Si = −
1

|Vi|

L
∑

j=1

Kij + Si.

The numerical fluxKij corresponding to facej of the cellVi is the surface integral of the
projection of the tensor of fluxes ontonj. In a numerical method the exact integral expression
for the numerical fluxKij for the facej of a cell Vi is approximated by a suitable Gaussian
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numerical quadrature where the wall bounded elements quadrature points are depicted with
different color corresponding to different weights

Kij =
∫

Aj

Fn,jdA =
∑

β

Fn,j (U(xβ , t))ωβ|Aj|, (14)

where the subscriptβ corresponds to different Gaussian integration pointsxβ and weightsωβ

over the faceAj .

3 Numerical Framework

In this section the numerical framework for the solution of the compressible non-hydrostatic
Euler equations is presented with respect to spatial and temporal discretisation.

3.1 Spatial discretisation

The spatial discretisation is based on the approach of [47, 49], which is suitable for unstruc-
tured meshes with various types of element shapes in 2D and 3D, and it has been previously
used successfully for laminar, transitional and turbulentflows [50]. Therefore, only the key
characteristics of this approach are going to be described in this paper. The first step in the ap-
proximation of the governing equations concerns the spatial discretisation of the domainΩ⊂R

3

into E number of conforming elementsVi, with the indexi ranging from 1 toE number of
elements. The elements can be any combination of hexahedrals, pyramids, prisms, and tetra-
hedrals as shown in Figure 1 in 3D, and triangles or quadrilaterals in 2D. It must be noted
that the present WENO schemes are not limited by conforming meshes since they can be used
with non-conforming meshes which brings additional benefits such as adaptive mesh refinement
[12].

The combination of all elements in the spatial domain is given by

Ω =
E
⋃

i=1

Vi. (15)

In the context of the finite volume framework that is employedin the present study, the data
is represented by cell averages of conserved variableu(x, y, z) in each elementVi

ui =
1

|Vi|

∫

Vi

u(x, y, z) dV, (16)

where|Vi|is the volume of the element. To achieve high-order, accurate spatial discretisation,
high-order accurate point-wise values of the solution needto be recovered from the cell aver-
ages. The reconstruction problem can thus be reformulated as follows: For a target cellV0 we
build a high-order polynomialpi(x, y, z) that has the same cell average asu on the target cell

ui =
1

|Vi|

∫

Vi

u(x, y, z) dV =
1

|Vi|

∫

Vi

pi(x, y, z) dV. (17)
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The point-wise values of the conserved variableu in each cell are approximated by a poly-
nomial of a desired order of accuracyr. The polynomial uses the cell averages ofu(x, y, z) on
the target cellVi as well as averages̄um from neighbouring cells,Vm. The key

3.1.1 Reconstruction algorithm

The main steps for the reconstruction process are the following:

1. For all the non tetrahedral cells the cell is decomposed into tetrahedral elements. It must
be stressed that the decomposition to tetrahedral cells, isdone only for the transformation
purposes to the reference space in order to remove any scaling effect of the least square
system to be solved.

2. Choose one of the resulting decomposed elements.

3. Transform the chosen decomposed element from the physical space described by the
Cartesian coordinatesx, y, z into a reference space described byξ, η, ζ .

4. Based on the Jacobian matrix of the transformation of the chosen decomposed element,
map the coordinates of the entire element into the referencespace described by coordi-
natesξ, η, ζ .

5. Based on the same Jacobian, all the elements in the stencilare transformed to the ref-
erence space and their volumes, and barycentres positions are recomputed in the new
reference space.

Let vij, j = 1, 2, . . . Ji be the vertices of the considered (general) element, which can be either
tetrahedral, hexahedral, prismatic or pyramidal. Let alsow1 = (x1, y1, z1), w2 = (x2, y2, z2),
w3 = (x3, y3, z3), w4 = (x4, y4, z4) be the four vertices of one of the tetrahedrals of this
element. Obviously, these vertices are between thevij ones. The transformation from the
Cartesian coordinatesx, y, z into a reference spaceξ, η, ζ is given by the following equations







x
y
z





 =







x1
y1
z1





+ J ·







ξ
η
ζ





 , (18)

with the Jacobian matrix given by

J =







x2 − x1 x3 − x1 x4 − x1
y2 − y1 y3 − y1 y4 − y1
z2 − z1 z3 − z1 z4 − z1





 . (19)

Using an inverse mapping the elementVi can be transformed to the elementV ′

i in the refer-
ence co-ordinate system

v
′

ij = J−1 · (vij −w1) , j = 1, 2, . . . Ji. (20)
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The spatial average ofu(x, y, z) does not change during transformation

ūi =
1

|Vi|

∫

Vi

u(x, y, z) dV ≡
1

|V ′

i |

∫

V ′

i

u(ξ, η, ζ) dξdηdζ. (21)

For performing the reconstruction on the target elementVi, we form the central reconstruc-
tion stencilS as described previously, consisting ofM+1 elements, including the target element
Vi

S =
M
⋃

m=0

Vm, (22)

where the indexm refers to the local numbering of the elements in the stencil,with the ele-
ment with index0 being the considered celli. Therth order reconstruction polynomial at the
transformed cellV ′

0 is sought as an expansion over local polynomial basis functionsφk(ξ, η, ζ)
:

p(ξ, η, ζ) =
K
∑

k=0

akφk(ξ, η, ζ) = ū0 +
K
∑

k=1

akφk(ξ, η, ζ), (23)

whereak are degrees of freedom and the upper index in the summation ofexpansionK is
related to the order of the polynomialr by the expressionK = 1

6
(r + 1)(r + 2)(r + 3)− 1 for

3D andK = 1

2
(r+1)(r+2)−1 for 2D . The conservation condition (16) imposes an important

constraint on the basis functions: they must have zero mean value over the cellV ′

0 . On purely
tetrahedral meshes hierarchical orthogonal reconstruction basis functions [10, 57], defined on
the reference element, satisfy this requirement automatically. Since our general cells are not
necessarily transformed onto a unit tetrahedron or cube, weneed to construct basis functionsφk

in such a way that the condition is satisfied identically, irrespective of the degrees of freedom.
The basis functions are defined as follows:

φk(ξ, η, ζ) ≡ ψk(ξ, η, ζ)−
1

|V ′

0 |

∫

V ′

0

ψk dξdηdζ, k = 1, 2, . . . (24)

Any type of orthogonal polynomial basis function can be utilised; however, in the present
study generic polynomial basis functions are used

{ψk} = ξ, η, ζ, ξ2, η2, ζ2, ξ · η, ξ · ζ, ζ · η, ξ · η · ζ . . .

To find the unknown degrees of freedomak for each cellV ′

m from the stencil the cell average
of the reconstruction polynomialp(ξ, η, ζ) must be equal to the cell average of the solutionūm:

∫

E′

m

p(ξ, η, ζ) dξdηdζ = |V ′

m|ū0 +
K
∑

k=1

∫

V ′

m

akφk dξdηdζ = |V ′

m|um, m = 1, . . . (25)

Denoting the integrals of the basis functionk over the cellm in the stencil, the vector of
right-hand side byAmk andb are given by
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Amk =
∫

V ′

m

φk dξdηdζ, bm = |V ′

m|(ūm − ū0)

We can rewrite the equations for degrees of freedomak in a matrix form as

K
∑

k=1

Amkak = bm, m = 1, 2, . . .M. (26)

The three-dimensional integrals on the left-hand side of (26) are calculated using Gaussian
quadratures of appropriate order. In general, to compute the degrees of freedomak we need at
leastK cells in the stencil, different from the target cellE0 . However, the use of the minimum
possible number of cells in the stencilM ≡ K results in a scheme which may become unstable
on general meshes [9, 21, 22, 49]. It is, therefore, recommended to use more cells in the stencil
than the minimum required number. Although it is usually sufficient to use 50% more cells, for
mixed-element meshes it is safer to increase the stencil further. We typically selectM = 2 ·K .

Since the resulting system becomes over-determined, the least-square procedure is invoked
to solve it. The least-square reconstruction is obtained byseeking the minimum of the following
functional

F =
M
∑

m=1

wm ·

(

K
∑

k=1

Amkak − bm

)2

,

where the weightswm are squared reciprocals of the distance between cellsE ′

0 andEm. The
advantage of the weighted least square reconstruction is that the influence of the data further
from the consideredE ′

0 is reduced, although a central least square reconstructionis materialised
with the weightsωm being equal to unity. Minimisation ofF gives a linear system for finding
ak :

K
∑

k=1

Ckak =
M
∑

m=1

Amp wmbm, Ck =

(

M
∑

m=1

wmAmkAmp

)

, p = 1, . . .K (27)

A QR decomposition method is employed to solve this system ofequations. The coefficients
of the resulting linear symmetric matrix A are pre-computedand stored for each element dur-
ing the pre-processing stage of the calculation, thus increasing the computational efficiency of
the method. If the mesh was to be refined these would automatically require the need to re-
compute and store this matrix. Having solved numerically the linear system, we can form the
reconstruction polynomial (23).

3.1.2 WENO reconstruction

The main characteristic of the WENO reconstructions is the use of reconstruction polyno-
mials from several different stencils and their combination in a non-linear manner. In WENO
schemes the actual reconstructed value is a convex combination of reconstructed values from
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stencils, with nonlinear (solution-adaptive) WENO weights [23, 42, 62]. These nonlinear
weights are constructed from the linear (constant) weightsby taking into account the smooth-
ness of the solution in each of the reconstruction stencils.The resulting methods are uniformly
high-order accurate, while maintaining non-oscillatory behaviour in regions with sharp gradi-
ents. The WENO reconstruction used in the present study is based on the implementation of
[49], where the reader is referred to for further details.

3.1.3 Numerical fluxes and Source term

Since for each computational cell the point-wise values of the conserved vectorU are re-
placed by high-order reconstruction polynomials the numerical flux for the faceAj of cell Vi
is discontinuous at each Gaussian pointβ. The valuesU−

β andU+
β correspond to the recon-

structed value of cellVi and its adjacent neighbourVi′. In upwind finite-volume methods the
discontinuity is replaced at each Gaussian integration point by using a monotone function of
left and right boundary extrapolated values so that (14) canbe re-written as

Kij ≈
∑

β

Fn,j

(

U
−

β ,U
+
β

)

ωβ|Aj |. (28)

The functionF̃n,j

(

U
−

β ,U
+
β

)

is the Riemann solver [48]. Employing the rotational invariance
property of the Euler equations [48], for each faceAj the normal projection of the flux tensor
Fn,j is replaced by

Fn,j = T
−1
F (TjU) , (29)

whereTj is the rotation matrix for facej. Re-writing (28) forKij gives

Kij =
∑

β

Fn,j

(

U
−

β ,U
+
β

)

ωβ|Aj| =
∑

β

T
−1

F

(

ÛL, ÛR

)

ωβ|Aj|, (30)

whereÛj is the rotated conserved variable and

ÛL = TjU
−

β , ÛR = TjU
+
β .

The flux function for the Gaussian pointβ results in the one-dimensional Riemann initial value
problem

∂

∂t
Û+

∂

∂s
F̂ = 0, F̂ = F(Û), Û(s, 0) =

ÛL, s < 0,

ÛR, s > 0
(31)

In the present study the HLLC Riemann solver of Toro [48] is employed. The numerical
source termSi is approximated by using a Gaussian quadrature rule of the same order of accu-
racy as the order of the polynomial of the reconstruction

Si ≈
1

|Vi|

∑

β

S(xβ , yβ, zβ, t)wβ, (32)

wherexβ, yβ, zβ is the volumetric Gaussian quadrature points andwβ is the Gaussian weights
of r-order of accuracy.
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3.2 Temporal discretisation

Having constructed the numerical fluxesFn,j as expressed in the semi-discrete conservative
formulation, the next step involves the advancement of the solution in time. The explicit SSP
Runge-Kutta3rd-order method [19] has been employed for the time integration

Ui

1 = Ui

n +∆t ·Ri (Ui

n)

Ui
2 = 3

4
Ui

n + 1

4
Ui

1 + ∆t
4
·Ri (U

1)

Ui
n+1 = 1

3
Ui

n + 2

3
Ui

2 + 2∆t
3

·Ri

(

Ui
2
)











































(33)

with Ri given by (13).
The time step∆t is computed as follows

∆t = K min
i

hi
Si · Vi

, (34)

wherehi is the radius of the inscribed sphere of each celli andVi its corresponding volume,
K ≤ 1/3 is the CFL number for unsplit finite-volume schemes [48] , andSi is the maximum
propagation speed in each celli given by

Si = spx · nx + spy · ny + spz · nz, (35)

where

spx = |u+ a| , , spy = |v + a| , spx = |w + a| ,

with n = (nx, ny, nz) being the outward unit normal vector anda is the speed of sound.

4 Results

This section presents the results obtained with the WENO schemes for a series of 2D and 3D
test cases of a non-hydrostatic atmosphere.

4.1 2D Robert Smooth Bubble

After its introduction [40], the Robert smooth bubble problem is considered as a standard
benchmark in NWP. The evolution of a warm bubble in a constantpotential temperature en-
vironment is investigated, and since the bubble is warmer than the ambient air, it rises and
due to shearing motion it forms a mushroom shaped structure as shown in Figure 3. The two-
dimensional, non-hydrostatic compressible Euler equations (1) are numerically solved in the
computational domain1000m × 1500m with t ∈ [0, 800] s with no flux boundary conditions.
The initial condition [40] corresponds to a warm bubble centered at(500, 260)m, in hydrostatic
balance, and a perturbation of the potential temperature totrigger the movement of the warm
bubble as follows:
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θ′ =

{

0 for r < rc
0.25

(

1 + cos
(

πr
rc

))

for r ≥ rc
,

wherer is the distance from the centre of the bubble

r =
√

(x− xc)
2 + (z − zc)

2,

whereπ is the trigonometric constant;rc = 250m is the radius of the bubble; and the potential
temperaturēϑ is constant at300K. The unstructured meshes used consist of arbitrary triangular
elements as shown in Figure 2 and have resolutions of25m and6m. The WENO3 and WENO5
schemes using characteristics based reconstructions are used, with a CFL number of0.9.

From the obtained computational results as shown in Figure 3and Figure 4 it can be noticed
that long-wave oscillations of the interface occur formingsmaller vortices, the spatial symmetry
of the solution is completely lost and that higher-order WENO schemes resolve more of these
small scale vortices.

Regarding the long-wave oscillations of the interface it can be attributed to the the shear flow
interaction between the interface and the surrounding unperturbed air, which in turn give rise to
the Kelvin-Helmholtz instabilities that lead to turbulentstructures. There have been numerous
extensive numerical experiments [20, 33, 40, 60] to investigate this problem and to date the
exact solution remains unknown.

The spatial symmetry of the solution is lost due to the fact that the mesh is not symmetric, the
initial profile is approximated by a Gaussian quadrature rule of the same order as the polynomial
order used for the reconstruction, and finally due to the multidimensional reconstruction of the
present algorithms. The fact that each time the mesh is refined, or a higher-order scheme (due
to the Gaussian quadrature) is used the initial perturbations change slightly. In return these
perturbations according to [20] grow exponentially in time, hence the perturbations have larger
spatial scales that the initial perturbations.

As the grid resolution is refined or as the spatial order of theWENO schemes is increased the
numerical dissipation is reduced, hence more structures are resolved. The question is whether
or not these structures are just artificial or are part of the correct solution is an issue that requires
further investigation, particularly in the absence of experiments. The WENO schemes for this
discontinuous problem remain stable as witnessed by [38]. However, for other approaches
that do not possess discontinuity capturing capabilities aform of artificial viscosity would be
required both for stabilising and for obtaining a convergedsolution [33]. At the same time it
can be realised that some of these perturbations may be part of the correct solution [33, 60],
hence controlling the amount of artificial viscosity can be quite challenging.

4.2 3D Robert Smooth Bubble

The three dimensional, non-hydrostatic compressible Euler equations (1) are numerically
solved in the computational domain1000m × 1000m × 1500m and t ∈ [0, 450] s in con-
junction with NFBC. The initial condition [40] correspondsto a warm bubble centered at
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(a) Hexahedral (b) Pyramid (c) Prism (d) Tetrahedral

Figure 1: 3D Element shapes
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Figure 2: Unstructured mesh used for the rising thermal bubble case.
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(a) t = 172s (b) t = 271s

(c) t = 400s (d) t = 480s

(e) t = 600s (f) t = 800s

Figure 3: Potential temperature perturbationθ′(K) at various instants for the 2D Robert smooth
bubble test on an unstructured mesh of6m resolution using a WENO5 scheme.
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(a) 25m WENO3 (b) 25m WENO5
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(d) 6m WENO5

Figure 4: Potential temperature perturbationθ′(K) at t = 800sec 2D Robert smooth bubble test
at different grid resolutions with WENO3 and WENO5 schemes.
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Figure 5: Cutaway of Unstructured mesh used for the 3D Robertsmooth bubble test.

(500, 500, 260)m, in hydrostatic balance, and a perturbation of the potential temperature to
trigger the movement of the warm bubble as follows:

θ′ =

{

0 for r < rc
1.25

(

1 + cos
(

πr
rc

))

for r ≥ rc

wherer is the distance from the centre of the bubble

r =
√

(x− xc)
2 + (y − yc)

2 + (z − zc)
2,

π is the trigonometric constant;rc = 250 is the radius of the bubble; and the potential
temperaturēϑ is constant at300K. Three unstructured meshes comprising of19, 175 , 64, 000
, and210, 212 elements have been employed using tetrahedral elements Figure 5.

The main objective of this 3D test problem is to investigate if the performance of the WENO
schemes at extremely low spatial resolution30 ∼ 100m, which is more realistic in terms of un-
der resolved grid-arrangements used in NWP. The WENO3 and WENO5 schemes using char-
acteristics based reconstructions are used with a CFL number of 0.9.

From the obtained computational results Figure 6, it can be noticed that the solution does
not exhibit the same instabilities of the 2D test case, although the spatial symmetry of the so-
lution is lost and that the higher-order WENO schemes provide sharper profile solutions. The
non-existence of Kelvin-Helmholtz instabilities was expected due to the coarse grid resolution.
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(a)90m WENO3 (b) 60m WENO3 (c) 30m WENO3

(d) 90m WENO5 (e)60m WENO5 (f) 30m WENO5

Figure 6: Potential temperature perturbationθ′(K) at t = 300sec andy = 500m for the 3D
Robert smooth bubble test.

Despite the coarse resolution, the solution breaks up its symmnetry. The asymmetry of solution
is more pronounced at coarser grid resolutions. This behaviour is attributed to the multidimen-
sional character of the numerical reconstruction and is a well known property of high-order up-
wind schemes exhibited particularly in flows associated with vortical structures and separation.
The Potential temperature perturbationθ′(K) and vertical velocityW′(m/s) profiles (Figure 7)
seem to trend towards convergence; although the solution isnot expected to converge without
any explicit viscosity due to the inviscid nature of the problem.

4.3 Parallel Performance

The requirements for atmospheric modelling on a regional orglobal scale have significantly
increased in the last decade. Parallelisation of existing computational methods and software is
an active area of research. Previous studies [50] showed that the ratio of computational time
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(a)θ′(K) (b)W(m/s)

Figure 7: Potential temperature perturbationθ′(K) and vertical velocityW(m/s) att = 300sec
y = 500m andz = 964.5m for the Robert smooth bubble test.
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Figure 8: Scalability and efficiency of WENO3 and WENO5 methods

over communication time is proportional to the order of accuracy of the WENO scheme. For
WENO schemes with accuracy greater than third, the computational time is one order of mag-
nitude greater than the communication time required for each iteration. One of the advantages
of explicit methods used here is that they can be easily parallelised using domain decomposi-
tion. The software package used for partitioning uniform and hybrid unstructured meshes is the
METIS software package [25]. The present numerical methodsare employed in an unstructured
flow solver (UCNS3D) capable of handling hybrid meshes in three-dimensions.

The Robert smooth bubble using the finest resolution, unstructured mesh with210, 212 el-
ements, was utilised as a test problem to assess the scalability of the developed numerical
schemes. Although this grid resolution for this sample testcase is relatively coarse when com-
pared to the grid resolutions employed for climate and numerical weather prediction, our pri-
mary aim for is to demonstrate how much dependent the parallel performance is on numerical
schemes implemented in the same software framework. The performance tests were conducted
at the ARCHER UK National Supercomputing Service at EPCC. The results were obtained
using the latest Intel FORTRAN compiler and Intel MPI library.

The time required for each time-step for the WENO3 and WENO5 schemes with respect
to the number of processors is illustrated in Figure 8. The time is normalised with the time
required for the WENO3 scheme.

The results confirm that high order methods scale better thanlower order methods due to
the fact that the ratio of computational time over communication time is greater in the lower
order methods. Using 6144 processors, the parallel efficiency for the different schemes is:
WENO3 (67%) and WENO5 (87%). It is pointed out that for the WENO5 scheme 92% of the
computational time is spent in the reconstruction process.The exchange of the updated values
of the stencil elements takes less than 3% of the total communication time since the largest
communication requirement is the exchange of the reconstructed values for each quadrature
point of halo-cells. The WENO high-order schemes have a greater computational cost, but
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are expected to be more accurate when problems with large time scales are involved such as
numerical climate modelling. For numerical climate modelling where projections of the climate
for centuries are studied, WENO schemes are expected to havethe strength of sufficiently small
dissipation errors that will not contaminate the projectedsolution as a lower-order numerical
scheme.

When using6, 144 processors, each processor holds approximately 35 elements and on
12, 288 processors, each processor has less than 18 elements. The latter seems extremely low,
however, it may become common practice in the future when exaflop systems will become
available. These results also illustrate that improving the scalability and efficiency of numerical
weather prediction models in order to take advantage of massive parallel systems, does not only
require the optimisation of the computational software (software engineering), but also requires
re-designing numerical methods in order to make most of the parallel performance.

5 Conclusions

We presented the implementation of high-order finite-volume schemes for atmospheric dy-
namics on unstructured meshes. Combining the features of unstructured meshes to accurately
represent complex topologies that can be extended to adapt the resolution (dynamically or stat-
ically) in certain flow regions and using high-order numerical methods that utilise only local
information, results in highly-efficient and highly-accurate numerical frameworks for numeri-
cal weather and climate modelling.

The present study discussed the implementation of WENO numerical schemes in this context
and assessed their performance in terms of accuracy, robustness, efficiency and scalability. The
results demonstrate the aforementioned properties of the schemes in the two-dimensional and
three-dimensional rising bubble test cases, and the associated challenges of multidimensional
discretisations. The WENO reconstruction can be utilised as a building-block in a dynamical
core that is not limited by the type of meshes, or the type of the governing equations. Future
work will concern application of the schemes in regional andglobal atmospheric simulations.
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