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Abstract 

This paper investigates the value-adding practices of Manufacturing Engineering for 

integrated New Product Introduction (NPI). A model representing how current practices align 

to support lean integration in Manufacturing Engineering has been defined. The results are 

used to identify a novel set of guiding principles for integrated Manufacturing Engineering. 

These are: (1) Use a data-driven process; (2) Build from core capabilities; (3) Develop the 

Standard; (4) Deliver through responsive processes; and (5) Align cross-functional and 

customer requirements. 

The investigation used a mixed-method approach. This was comprised of case studies to 

identify current practice and a survey to understand implementation in a sample of 

component development projects within a major aerospace manufacturer. The research 

contribution is an illustration of aerospace Manufacturing Engineering practices for New 

Product Introduction. The conclusions will be used to indicate new priorities for NPI and the 

cross-functional interactions to support flawless and innovative NPI. The final principles have 

been validated through a series of consultations with experts in the sponsoring company to 

ensure correct and relevant content has been defined. 

Keywords: New Product Introduction, Manufacturing Engineering, Aerospace, Lean 

1 Introduction 

This work explores aerospace Manufacturing Engineering (ME) practices for integrated New 

Product Introduction (NPI). NPI is the cross-functional product development process used by 

global aerospace manufacturers to deliver all customer and business expectations for 

quality, cost effectiveness and lead time. Integration is the close coordination of different 

functional processes for the purpose of ensuring all objectives and value adding activity are 
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well aligned in the project. For Manufacturing Engineers, rigorous verification of production 

capability for all design features and the creation of detailed production plans are important 

value-add activities. These traditionally require stable designs whereas managing an 

evolving design maturity is the important ability for integrated product development.  

The trend in aerospace is toward faster product introduction and rapid development cycles. 

A further requirement is flawless achievement of high quality products at the forefront of 

technical innovation. Integration and parallel processes for design and manufacturing are 

valuable for satisfying both these imperatives and are strongly advocated in research 

literature.  

In the last decade a range of practice has been developed for the process, organisation and 

tools to support integration. It is valuable to understand how Manufacturing Engineers 

currently manage integration and to build on this experience to support an escalating 

quantity, scale, and frequency of future product introduction. Furthermore, the research 

literature lacks a comprehensive understanding of integrated ME activities to deliver 

production planning in parallel with design processes.   

This paper presents the results of a mixed-method investigation to address this gap that was 

conducted with the support of the industrial sponsor, a global aerospace manufacturer 

operating in the United Kingdom. The objectives were to: investigate ME practices for 

integrated NPI; survey the use of the practices aerospace component NPI projects in the 

company; identify how the practices work together for lean product development; and define 

a set of guiding principles for aerospace ME in integrated NPI.  

The article is structured as follows. A discussion of the literature related to integrated product 

development and ME is presented in Section 2. The mixed-method research approach that 

has been used is described in Section 3. In Section 4 a review of ME practices for NPI in the 

industrial context is presented. In Section 5 principles to support integrated ME are defined 

and used to understand opportunities to improve performance of NPI. Section 6 offers 

conclusions.  

2 Related Work  

Cross-functional integration, or Concurrent Engineering, has been established as a 

requirement for competitive product development in over two decade’s research literature. 

Managing parallel processes with rich and bilateral exchanges of cross-functional 

information are now the fundamental competencies that support effective decision-making 
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[1-3]. These are competences that supersede ‘over-the-wall’ and ‘silo’ forms of product 

development associated with unsustainable misalignment of objectives shared across 

functions. How information is created and shared has been the research focus in this domain 

in the last two decades. Research in the initial period of literature (covering the last decade 

of the 20th Century) focussed on good practice for enabling cross-functional integration. The 

role and responsibilities of Manufacturing Engineering are described in this literature. A 

second period of literature (in the first decade of the new century) has focussed on the lean 

product development system as further means of overcoming complexity and barriers. It is 

the ‘lean’ product development domain where understanding efficient and effective operation 

of Manufacturing Engineering is less clear.  

From the outset of literature related to Concurrent Engineering, the integration of processes 

for design and manufacturing is explored as an important dynamic for successful product 

development [4]. Categories of practice including process, organisation and tools are 

described strongly in the literature for enabling cross-functional integration. Engineering 

processes for design and manufacturing that are initiated in parallel from the start of the 

development lifecycle are a key characteristic in integrated projects [1]. Parallel creation of 

information in these processes, shared in ‘Design for Manufacture’ dialogue, overcomes 

restrictions in decision-making [5]. Incorporating manufacturing and assembly capability 

information is invaluable for influencing a concept that can be produced at desired quality 

and cost levels. Without close integration, rework to align design objectives with those of 

manufacturing carries a high penalty in cost and time [6]. Also, Manufacturing Engineers can 

plan production in parallel to enable more immediate production ramp-up and shorten overall 

project time [7]. However, for parallel processes, using partial and incomplete design 

definition should be prioritised over full definition and Manufacturing Engineers must avoid a 

‘hostile’ attitude to using such information [1]. Organisation and, in particular, cross-

functional teams are crucial for achieving information sharing that is rich and frequent [7-8]. 

Heavyweight leadership, autonomy and physical co-location are among the valuable 

characteristics for successful teams [9-12]. Other studies examine the importance of tools 

(particularly computer technologies) that are used for sharing engineering information. In 

contrast to paper-based tools, computer-aided design (CAD) brings speed and accuracy 

benefits to the creation, rework and sharing of complex design and manufacturing 

definitions, and automation and simulation opportunities [13-14]. Information tools are also 

useful for process integration: by building from a CAD model definition shared from 

designers, Manufacturing Engineers can ensure accurate adherence to design intent when 

developing computer-aided manufacturing (CAM) solutions [4, 13]. Information systems are 
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identified as important for global product development teams for which co-location is 

replaced by ‘virtual’ teams. Here communication is maintained by file sharing, email and 

telecommunications [15].  

In recent literature the lean product development concept has been identified. This work is 

focused on principles for lean product development and also process mapping techniques to 

support process re-structuring [16-19]. Lean principles for product development have been 

devised based on lean in physical operations [20-22]. 

Value in product development processes can be enhanced by improving the flow of ‘partial’ 

product information [23]. Large batches of ‘completed’ information leads to large 

downstream work batches. This has implications for evaluation of design information. If 

evaluation is conducted only for completed designs this will become a large batch of work 

and thus diminish the effectiveness of manufacturing influence with cross-functional 

partners. A virtuous iteration can be derived from early, bilateral feedback that ultimately 

shortens development time. 

Despite the literature for lean product development (meaning Design Engineering) there has 

been little work done to address a second aspect of efficient new product introduction, 

specifically, lean process development (Manufacturing Engineering) [24, 25]. There is a 

widely held view that set-based concurrent engineering (SBCE) is an enabling technique for 

lean product development [26-28]. SBCE allows manufacturing options to be used to 

progressively influence the design and narrow toward a final solution whilst, crucially, 

delaying this fixed commitment as long as possible. However, this approach limits attention 

to the role of Manufacturing Engineers for the conceptual stage only. 

Lean product development literature is a promising area of research. Nevertheless, it 

continues to lack a clear understanding of manufacturing process planning and concurrency 

beyond the conceptual stage of the lifecycle and into downstream stages for physically 

realising the production method. Two key gaps in the research can be identified. The first is 

a clear understanding of ME practices and how they work together as a value-adding system 

for lean product development. A second gap are principles for successful ME integration with 

the cross-functional organisation that achieves not only parallel evaluation, but also delivery 

of the production method.  
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3 Research Methodology 

An inductive methodology was followed for the explorative study. Figure 1 depicts the mixed-

method approach consisting of case studies and a survey that was used to satisfy research 

objectives [29]. 

Insert here:  

Figure 1 The mixed-method investigation used to satisfy research objectives 

The initial literature review served to refine the scope for data collection and analysis [31, 

31]. The definition of ‘current practice’ included process activities (inputs and outputs), tools 

used and organisational concepts (what personnel or roles were involved). Units of analysis 

were defined through discussions with stakeholders and familiarisation with company 

literature. The unit of analysis comprised: activities for manufacturing process planning and 

quality planning; executed by a ME business; for a specific component from a gas turbine 

development project. 

The investigations were conducted using this unit of analysis with direct engagement of 

manufacturing locations of the aerospace industrial sponsor. Selection was coordinated with 

stakeholders and business managers and each component NPI project was contemporary to 

the research period. Data collection was carried out using semi-structured and structured 

interviews (for cases and survey) and workshops (case studies only). Interview results were 

triangulated with materials including project plans and company process literature. Question 

sets were piloted with subject experts. All data collection drew on Manufacturing Engineer 

practitioners in businesses who apply the processes.  

For the case studies a one hour semi-structured interview question set was used. This was 

based around the categories on a SIPOC chart (Supplier-Input-Process-Output-Customer). 

Interview data was analysed through the creation of role-activity process maps. Next a 

comprehensive review and categorising ME practices according to a ‘Process’, 

‘Organisation’ and ‘Tools’ model was carried out. Case studies were carried out April to 

November 2011. The survey was conducted March to August 2012. A one hour structured 

question set was developed for the survey using case study results. For each survey at least 

one or two NPI leaders were directly interviewed and asked to characterise (score) the 

strength at which described practices are applied for the unit of analysis. The scores defined 

were: 0- this practice occurs almost never (<10% frequency); 1- this practice occurs mostly 
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not (~25%); 2- intermediate occurrence (50%); 3- this practice occurs for the most part 

(~75%); 4- this practice occurs routinely (>90% frequency).  

The mixed-method approach was used to build internal validity. The case studies first 

enabled a detailed investigation and the subsequent survey allowed an efficient means of 

verifying this understanding across the broader organisation for NPI. The final sample 

comprised 14 NPI examples (two detailed process mapping case studies followed by 12 

surveys). A range of specialised production methods are applied for realising aero engine 

components that differ in the range of materials used and design complexity. However, a 

description of practice for specific component or technology examples is not provided in this 

paper. Instead, the intention is to describe the general understanding of current practice. 

The completed investigation resulted in identification of current practices and how these add 

value in aerospace ME NPI. Finally these were used to identify factors that explain ‘why’ 

identified practices benefit the performance of NPI. These would be used as the guiding 

principles. Using brainstorming charts the practices were first grouped into an initial set of 

factors according to their shared affinities. Finally, semi-structured consultations with 

stakeholders in the research, and subject experts in the business were conducted to validate 

final principles.  

4 Manufacturing Engineering Practices 

The case studies and survey results provide a rich account of ME practice for integrated NPI 

projects. To address the first research gap the results are used to create the summary model 

shown in Figure 2. 

Insert here:  

Figure 2 The alignment of Manufacturing Engineering practices to add value in NPI 

Two main forms of value creation are demonstrated in the model. Firstly, Manufacturing 

Engineers add value to a design by planning (creating all information that defines the 

manufacturing and inspection method). This information includes the method of manufacture 

(operations list), stage definitions (geometry created from each operation), fixture tools and 

machining programmes. Secondly, Manufacturing Engineers also add value through 

evaluation (creating information to verify the capability of creating or inspecting design 

features). 
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The model depicts the alignment and interaction of practices in process, organisation and 

tool categories that are important to value creation at different stages of the lifecycle. The 

following sections describe the alignment indicated by the model and reports contextual 

factors related to implementation that were indicated by the survey. 

4.1 Process 

The integrated process can be explained with the following distinct practices: progressive 

activities; using knowledge; and change in the process. 

The key requirements of Manufacturing Engineers is progressive definition that supports 

lead times and to also control the risk of change in detailed planning and high value tasks. 

An early concept definition is used to understand the method of manufacture and clarify 

downstream planning need (using the team-based organisation). Later, preliminary definition 

is used to initiate long lead time activities (such as procurement of material), and to model 

‘roughing’ operations. Finally, a fixed definition (which includes tolerances and detailed 

geometry) is necessary for modelling ‘finishing’ operations, fixture tools, and machine 

programmes. The fixed definition indicates the design is stable, that manufacturing geometry 

will be unlikely to change and is necessary to launch high value production activity. 

Manufacturing knowledge is used to reduce uncertainty in the development lifecycle in a 

number of areas. First, a standard method of manufacture for a component is used to drive 

early concept evaluation and to identify progressive release requirements. Furthermore, the 

design process is proactively front-loaded with a choice of ‘production capable’ features. 

Read-across of modular design (models) for fixture tooling development is also reported for 

accelerating completion. Lastly, feature-level capability data for existing production 

processes help progressive evaluation of production capability against concept and 

preliminary definitions. The objective is a progressively agreed ‘production standard’ 

definition with production capability verified for all features and all risks addressed. The 

survey responses indicate that the need for production trials (and associated restrictions in 

the project plan) is reduced for components where good feature capability data exists.  

The risk of change in process planning is a characteristic of using unfinished definition. The 

survey investigated which activities are most affected by change. The results demonstrate 

that changes rarely occur for long lead time activities. Managing the effect of change in this 

way is valuable; changes here would risk project delivery. By contrast, the activities to model 

manufacturing operation geometry and machining programmes in the development stage 
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are the activities most routinely affected by changes in design intent for the majority of 

sample components. However, iterations in these tasks align well with the tools used to carry 

them out, as will be described later.  

4.2 Organisation 

Component-level NPI projects are managed using cross-functional Integrated Product 

Teams (IPT). Communication is supported by collocation, direct visits between the functions 

and virtual communication. The IPT Leader is the primary point of contact between 

manufacturing and designers. The Manufacturing Engineer representative in the team 

ensures that manufacturing requirements are coordinated with other functions. The objective 

during the concept stage is to influence the design and gain commitment to the integrated 

project plan, and mitigate risks that would result in late definition release. In the development 

stage the objective is to coordinate with the IPT Leader to pull design definition in line with 

agreed plan. For the entire sample these requirements are agreed with the IPT Leader. It is 

notable that for components where the MLP was also agreed with designers (half of the 

sample) a release schedule that was accurate to the initial plan did successfully occur. 

4.3 Tools 

The tools used by Manufacturing Engineers are advantageous in different stages of the 

development lifecycle for supporting process activities and organisation.  

In the development stage a standard computer-aided system is the primary tool for the 

planning activities. Computer models are used to link the parallel creation of design definition 

and all manufacturing definition. As noted above, these are often subject to revision in the 

development process. However, revisions are being directly cascaded through to all 

derivative models. This avoids the motion and transportation wastes otherwise associated 

with creating planning information across isolated systems.  

Email, telephone communication and shared network folders helped good communication to 

be maintained for dispersed teams. A predominantly quantitative or data-driven dialogue is 

conducive for both for in-person and virtual interaction. 

Procedures and tools for the routine collection of feature-level production capability data are 

identified as in place for all survey components. Information systems are deployed to capture 

and transfer this data from the shop floor and transmit it to ME offices for analysis.  
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Additionally, virtual simulation tools are used to test the production method.  In half the 

component survey virtual simulation tools are being applied to understand production 

capability. These serve to generate feedback that influences both manufacturing and design 

in a rapid manner requiring lower resource in comparison to full scale production trials. 

Machining is the main subject of virtual simulation found in the survey. There is an 

intermediate use of rapid prototyping for components in the sample. Applications include 

testing for clashes or collisions with fixtures tools, cutting tools, and machining paths. The 

physical impression of a component is also a useful input for Manufacturing Engineers.   

5 Principles for Manufacturing Engineering 

The results are used here to identify factors for successful Manufacturing Engineering 

integration with the cross-functional organisation. This is to address the second research 

gap. The method was to group practices into affinities. The result is the definition of 

Principles for Aerospace Manufacturing Engineering in Integrated New Product Introduction. 

5.1 Highlighting Key Factors 

The following describes five principles for delivering good NPI performance in quality, cost 

effectiveness and lead time that have been drawn from the current practice investigation: 

5.1.1 Using data-driven processes 

The underlying concepts that relate to ‘use data-driven processes’ are: supporting cross-

functional understanding and decision making; and capture and embed lessons.  

Supporting cross-functional understanding and decision making 

A data-driven process emphasises that decision making should be managed using good 

engineering data. Manufacturing Engineers use data that defines product design features 

(geometry and materials) and manufacturing capability. Data used brings rigour to the 

decision making for all aspects of NPI including the product, process and project plan and 

throughout the project lifecycle. Prioritising analysis using technical data provides for better 

understanding that tacit knowledge cannot support. 

The superior ability for driving decision making that data gives ME and the integrated team 

was specified by the subject matter experts during the consultations. Data-driven processes 

for NPI support effective interactions with all cross-functional team members, for example, 

providing feedback of quantified manufacturing capability gaps. The influence that ME must 
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have in the product team can also become more accurate through use of data. The data-

driven form of dialogue is also applicable to virtual communication methods associated with 

the distributed organisation. 

Capture data and embed lessons 

As a project matures, new and more advanced manufacturing knowledge and process 

capability data will have been created. Recording this data is important so that it can be 

effectively used from the outset of the next project. The priority is to ensure lessons are 

learnt and applied to aid the next NPI project. In this way subsequent generations of product 

NPI can be better placed to drive decision making using data.  

Procedures and tools for the routine collection of feature-level manufacturing capability data 

are identified. Information systems capture data from the shop floor and send it to ME for 

analysis that further supports ME responsiveness to Design Engineering. The 

responsiveness takes the form of continuous feedback of capability to the integrated team.  

Taking into account the above concepts, Principle 1 is established as ‘use a data-driven 

process’. 

5.1.2 Building from core capabilities 

The concepts that relate to ‘build from core capabilities’ are: read across to reduce 

uncertainty and support influence; and accelerate manufacturing planning activity. 

Read across to reduce uncertainty and support influence 

‘Core’ manufacturing capabilities are those that have a strong data-driven demonstration of 

capable standard production methods that are associated with a component family and 

standard design features.  

Executing technical activities by building from core capabilities is beneficial to the quality of 

the solution. Proven capability and established technical expertise can be read across to the 

next NPI project. In the concept stage existing data associated with a standard method of 

manufacture for a component type is used to support concept evaluation and influence the 

design. Design Engineers are thus proactively front-loaded with ‘production capable’ 

features. If adhered to these help to ensure a production standard definition before the 

design concept has been finalised. In this way the project can enter the development stage 

(where change is costly to the project) with a viable concept. Manufacturing capability gaps 
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to take action for improvement later in the project can also be revealed by matching core 

capability to design requirements.  

Accelerate manufacturing planning activity 

Carrying out technical activities by building from core capabilities is useful for supporting a 

flexible project plan. Effective existing solutions require limited iterations during the 

development stage. 

The importance of core capabilities to aid planning of NPI is endorsed by the subject experts 

in consultations. At early project stages Manufacturing Engineers can anticipate and plan for 

the schedule of activities that will be part of the development stage, as well as identifying 

progressive release requirements. Predictable inputs such as these support flexibility; long 

lead time material and tooling orders for standard solutions are removed from the project 

critical path by decoupling reliance on novel definition. The need for production trials and 

testing is restrained where good process capability data exists. Furthermore, by reading 

across technical solutions and manufacturing evaluation completion technical activities can 

be accelerated.  

Principle 2 is ‘build from core capabilities’. 

5.1.3 Developing the standard  

The concepts that relate to ‘develop the standard’ are: align manufacturing capability 

improvements to support design requirements; and plan the resource to deliver 

manufacturing capability.  

Align manufacturing capability improvements to support design requirements 

In addition to agreeing core capabilities, it is important for ME and Design Engineering to 

agree a viable balance of innovation to help meet customer requirements. The focus for ME 

should be to invest in process capability improvement that is focussed onto a manageable 

number of important features that support the design. The importance of specific signals 

from Design Engineering for innovation in manufacturing capability that is important for the 

customer was proposed in the consultation phase. Core capabilities should be used to 

understand the specific signals regarding improvements to current production standards that 

will be valuable for the performance of the product. The resultant mix of core capabilities and 

development requirement should together maximise the available resources of the NPI 
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project. In this way a capable process that also drives forward innovation with each 

generation of NPI project can be possible for the ME function. 

Plan the resource to deliver manufacturing capability 

There is a current focus using testing, prototyping and production trials in reaction to 

manufacturing process capability issues (or gaps) that emerge in the project. Detailed testing 

and analysis in the later development stages of NPI enables ME teams to better understand 

and quantify gaps in the capability of the process to support the design requirement. 

However, the increasing complexity of projects and shortening lead times are already 

making this approach difficult to achieve. Upfront engagement is necessary to obtain an 

early awareness of manufacturing capability and designer’s need for innovation. In turn this 

is important for anticipating and planning the actions needed to enhance manufacturing 

capability that is viable for the current NPI project.  

Virtual simulation tools are especially useful during the development stage and computer 

models are also used to produce rapid prototyping mock-ups. These serve to generate 

information feedback that influences both manufacturing and design development in a rapid 

manner requiring lower resource in comparison to full scale production trials.  

Principle 3 is ‘develop the standard’. 

5.1.4 Deliver through a responsive process 

The concepts that relate to ‘delivering through responsive processes’ are: taking action to 

maximise the use of incomplete design definition; and engaging in continuous evaluation 

and feedback. 

Maximising the use of partial and preliminary definition 

By taking action to maximise the use of incomplete design definition Manufacturing 

Engineers are enabling parallel design and manufacturing processes. This ability benefits 

from early cross-functional interaction. The expert consultation phase highlighted that by 

softening, or delaying the requirement of a final definition the Manufacturing Engineers offer 

greater opportunity for designers to better meet customer product requirements.  

Working with partial definition and overcoming the dependency on completed design 

definition is the key ability that has been established by ME. The current practice 

investigation into NPI for aero engine components revealed a consistent strategy for using 
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incomplete definition. This ranged from: using a concept definition in the early stage of the 

project (to understand the method of manufacture and clarify downstream planning needs); 

preliminary definition in later stages (to initiate long lead time activities and to model 

‘roughing’ operations); and a final fixed definition (modelling ‘finishing’ operations, fixture 

tools, machine programmes and launching production).  

Manufacturing Engineers are exploiting the toolset available to enhance what can be 

achieved with partial definition. A number of the tools have been demonstrated as the key 

resources for allowing responsive ME processes. A standard computer-aided system is the 

primary tool for delivering planning definition. Computer-aided tools help to concentrate the 

risk of using incomplete definition onto modelling tasks. These have low impact on resource 

and lead time in the project. The computer system is used to structure together the data that 

is relevant for how manufacturing processes are modelled. When linked, final revisions from 

the design model can be rapidly cascaded through to derivative definitions. This is used to 

manage update of all information to the correct design standard. 

A culture of rapid iterations is also established on the use of virtual simulation and rapid 

prototyping. Again, these carry a limited burden in resource and time but can provide early 

and proactive insight into the impact of the design on the manufacturing process. 

Engage in continuous evaluation and feedback 

Concept and preliminary definition is important for driving evaluation of process capability, 

including Design for Manufacture assessments at early stages of the development project. In 

the development stage the later availability of feature-level information (in preliminary and 

fixed definitions) permits rigorous systematic manufacturing evaluation.  

By supporting continuous evaluation and feedback using incomplete definition there is 

greater opportunity for risks to be proactively identified at early stages of the project lifecycle. 

This is useful for engaging with designers. The objective is a progressively agreed 

‘production standard’ definition; this means manufacturing capability that is verified for all 

features and all risks addressed by ME.  

Continuous evaluation and feedback serves to deliver a flawless production standard 

drawing without the burden of alterations late in the process. By accurately understanding 

risk ME teams have greater ability and confidence to manage the downstream planning 

using incomplete definition. 
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Principle 4 is ‘deliver through responsive processes’. 

5.1.5 Align cross-functional and customer requirements 

The concepts that relate to this factor are: upfront agreement; and ongoing management of 

requirements. 

Upfront agreement 

In the early concept stages of the project the priority should be agreeing the balance of core 

capabilities signals to indicate areas for manufacturing capability development. The 

integrated team is the best environment for ME to receive and influence these signals that 

will impact how the NPI project will need to be carried out. By supporting the integrated team 

the Manufacturing Engineer representative ensures manufacturing requirements are 

coordinated with other functions. 

It is necessary to engage with other functions, principally designers and external suppliers to 

ensure a viable plan for delivering a flawless production method. Furthermore, a close 

relationship with the representatives of other functions is useful for obtaining clear 

requirement signals. The data-driven process has helped to establish an equal level of 

understanding of design, manufacturing and customer requirements.  

Upfront evaluation of the design concept (Design for Manufacture) is needed to agree a 

viable design concept. A viable concept balances customer requirements and can also be 

supported by a credible plan for design and manufacturing NPI processes. The key 

requirements of ME is determining a plan for progressive definition that will be needed to 

sustain parallel planning (supports lead times and process development) and to influence 

the level of risk in the design. 

On-going Management of Requirements 

It is necessary to review the alignment of requirements within the cross-functional team as 

knowledge about the product and component matures during the project. Actions to mitigate 

risks that emerge must be agreed and monitored by the team. Communication within the 

integrated team can be supported by co-location, direct visits between the functions and 

virtual communication methods. A predominantly quantitative or data-driven dialogue is 

conducive for both for in-person and virtual interaction. Email, telephone communication and 

shared network folders helped good communication to be maintained for dispersed teams.  
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Principle 5 is ‘align cross-functional and customer requirements’. 

5.1.6 Summary 

In summary, the five principles described in this paper guide the actions of the 

Manufacturing Engineer that are important at different stages of the product development 

lifecycle. The areas of the product development lifecycle that the principles can be aligned 

with are illustrated in Figure 3. 

Insert here:  

Figure 2 Principles for Aerospace Manufacturing Engineering New Product 

Introduction 

Principle 1 and Principle 5 are applicable throughout a product development project. They 

are aspects of cross-functional working and can have a positive influence on concurrent 

activities. Principles 2, 3 and 4 are about concurrent working. Principle 2 is important in 

upfront stages of the development lifecycle. Principle 3 and Principle 4 are relevant later in 

the project. Their activities are directly influenced by prior decisions made in Principle 2.  

5.2 Validation 

A progressive form validation was used at different stages of the investigation, culminating 

with the final development of the above principles. Validation of case study results was 

completed in workshops with the host businesses. This was both quantified (specific to the 

data recorded) and qualified validation (specific to the accuracy of the process maps). The 

interpretation and conclusions taken from survey (including the system model) were verified 

with the main stakeholders of the research. To validate the interpretation of the factors and 

the principles, a series of semi-structured consultations with stakeholders in the research 

and subject experts in the business were conducted. Participants assessed how accurately 

the factors explained integrated NPI activity for ME. A total of 6 consultations were carried 

out. The validation process was continued until the factors and their description as guiding 

principles was considered complete.   

6 Conclusions 

This paper has presented an investigation of practices in Manufacturing Engineering that 

add value during New Product Introduction. The research has been conducted to address 
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two gaps in the literature: how ME practices work together for integration; and the principles 

for successful ME in integrated NPI projects. 

Elucidating the Manufacturing Engineering subject and the research gaps are novel 

contributions to the literature for lean product development. The literature lacked an 

understanding of how Manufacturing Engineers operate in integrated product development 

projects, including how partial definition is managed effectively.  

A research strategy involving a mixture of methods has been used. This has provided both 

detail and breadth to the investigation which drew on the experience of aerospace 

component NPI for a range of examples in the industrial sponsor. The breadth is important; a 

diverse range of design and manufacturing challenges that influence how Manufacturing 

Engineers manage NPI were captured. In this way confidence that a good understanding of 

general practice was created.  

The investigation demonstrates that ME is a complex objective to accomplish: multiple 

practices are used together to create value, overcome barriers to the flow of product 

development information and achieve cross-functional integration. It is important to align 

together practices that reside Process, Organisation, and Tool categories. This corresponds 

to the ‘system’ for lean product development that is identified recent literature in the domain.  

The current practice is a foundation to strengthen in future projects. Cross-functional 

integration and parallel New Product Introduction processes have been important for 

enabling parallel ME. For the aerospace manufacturer that has sponsored this research 

these skills are either strongly established, or are a maturing experience achieved in recent 

product development projects.  

The Principles for Aerospace Manufacturing Engineering indicate a vision for priorities in NPI 

projects. Whilst ME teams are developing crucial practices for operating parallel planning, 

they should also prioritise tasks to proactively reduce risk of significant change and focus on 

innovation that adds value to the customer. The principles focus on forging stronger links in 

the cross-functional to understand requirements, equip an ability to support innovation and 

demonstrate willingness to take on the responsive role that is necessary for flawless and 

innovative NPI. Further work will be necessary to verify the priorities and tasks that the 

principles indicate within the ME NPI process used in the business.  
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