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ABSTRACT 

This paper adopts a socio-technical systems approach is taken to examine how 

airline operational efficiency can be enhanced from a human factors perspective.  

Four case studies are examined from this viewpoint: increasing operating efficiency 

on the airport ramp; increasing efficiency through flight crew rostering; increasing 

efficiency by promoting direct routing; and increasing efficiency through greater 

flight deck automation.  It is argued that the increases in operational efficiency (which 

is taken to be almost synonymous with cost) taking solely a human factors perspective 

will be minimal.  To truly enhance operating efficiency the human component in any 

system cannot be examined in isolation from all other components. 

 

 

Keywords:  Socio-technical Systems; Human Factors; Automation; Ground 

Handling; Flight Time Limitations; Free Flight 
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INTRODUCTION 

 

The term ‘efficiency’ in this context is somewhat difficult to define.   Traditionally, 

a treatise of this type should start with a dictionary definition, for example: 

‘Efficiency n. The quality or degree of being efficient’ 

‘Efficient a. …productive of desired effects; especially: productive without waste.’  

(Webster’s Third New International Dictionary). 

 

In the context of civil aviation ‘efficiency’ is most often, either directly or 

indirectly, related to cost; ‘waste’ refers to a waste of time or money.  However, for 

the sake of ‘efficiency’ the conclusions to this treatise can be stated up front.   Good 

Human Factors will not significantly increase efficiency by itself.  On its own, only 

small incremental gains may be made.  A wider, sociotechnical perspective needs to 

be adopted before any true efficiency gains incorporating good Human Factors can be 

realised.  

 

In the aerospace industry ‘Human Factors’ has become synonymous with Crew 

Resource Management and ergonomics.  However, there is much more to the 

discipline than this.  All boundaries and divisions created by man are artificial, and 

subject matter boundaries in the complex world of aviation operations are both 

artificial and arbitrary.  However, when addressing a topic such as the role of Human 

Factors in operational efficiency some structure is essential.  As a result this discourse 

is organised around a sociotechnical systems framework to impose some structure on 

the chaos.  This structure also reflects the organisation and operation of an airline and 

clarifies the influences that effect the manner in which it operates. The framework 
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used is the five ‘M’s model (Harris & Smith, 1997; Harris & Harris, 2004; Harris & 

Thomas, 2005).  

 

 

THE FIVE ‘M’S MODEL OF SOCIOTECHNICAL SYSTEMS 

 

The operation of an airliner is not just about the integration of pilot (huMan) and 

aircraft (Machine) to perform a flight (or Mission) within the constraints imposed by 

the physical environment (Medium).  This approach needs extending to encompass the 

societal environment, an additional aspect of the Medium.  The role of Management is 

also central to safety and efficiency.   

 

The (hu)man aspect of the five ‘M’s model encompasses issues such as the 

capabilities of the end user, their size and fuel requirements (elements falling within 

the ‘traditional’ realms of psychology and ergonomics).  From a user-centred design 

perspective, the (hu)man is the ultimate design forcing function.  It cannot be 

changed.  When (hu)man and machine elements come together they perform a 

mission.  It is usually the machine and mission components on which developers and 

designers fixate.  Note that when discussing ‘efficiency’, it is the efficiency of 

performing the mission which is being referred to.  

 

However, designers and engineers must not only work within the bounds of the 

technology, the capabilities of the end-users and the physical aspects of the Medium, 

they must also abide by the rules and norms of society (the societal Medium).  The 

performance standards for human-machine systems are primarily determined by 
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societal norms (regulations) e.g. the level of redundancy required (aircraft 

certification) or minimum standards of user competence (flight crew licensing).  

Management must work within these rules.  The airline Management is the link 

between the (hu)Man, Machine, Mission and Medium.  It performs the integrating role 

to ensure compliance with operating, licensing and certification requirements, and it 

promotes safe and efficient operations.  

 

The inter-relationships between the five ‘M’s are described in Figure 1.  In the case 

of an airliner, the pilots fly the aircraft to achieve a well-defined goal (the union of 

(hu)Man and Machine to perform a Mission).  The Management tasks this Mission 

and ensures the crew and aircraft conform to the regulatory requirements (societal 

Medium) and are fit to endure the demands placed upon it by the physical Medium.   

-------------------------------------------------------- 

INSERT FIGURE 1 ABOUT HERE 

-------------------------------------------------------- 
 

The Mission of a commercial aircraft is a simple one: to deliver passengers at the 

greatest possible speed and comfort while maintaining the highest possible standards 

of safety and economy.  These contradictory requirement define what is characterised 

as ‘efficiency, but therein lies the catch.  Regulatory objectives are specifically aimed 

at enhancing safety.  Organisational aims, however, need to balance safety against 

performance, comfort and economy.   

 

To illustrate how efficiency gains may not be realised through the modification of 

just one part of the system, four case studies are examined in what follows:  The 

human dimension to increasing operating efficiency on the airport ramp; increasing 



 6

efficiency by flight crew rostering; increasing efficiency through direct routing; and 

increasing efficiency through increased flight deck automation.  

 

 

INCREASING EFFICIENCY ON THE AIRPORT RAMP 

 

The prime drivers to enhancing operational efficiency in the last decade have been 

the low-cost carriers.  These operators now command a significant proportion of the 

market and have been responsible for the larger airlines having to achieve increases in 

efficiency to remain competitive.  As margins are low on each seat sold, load factors 

need to be high and turnarounds need to be swift.  However, some attempts to 

decrease operating costs may have a ‘hidden’ price.   This is evident when decreasing 

the aircraft’s time on the ramp is examined.   

 

An aircraft on the ground is both failing to generate revenue and is also costing the 

airline money as airport gates are charged by the minute.  In terms of Mission 

efficiency, it is beneficial to minimise this time, something the low cost operators 

have been successful in achieving.  However, a broader perspective needs to be taken, 

but before going further it needs emphasising that all aspects of Management, directly 

or indirectly, involve people.  What appear to be simple contractual or accounting 

decisions taken in an office have a human element associated with them which 

influences both airline safety and efficiency.   

 

In 1997 the cost of accidents and incidents on the airport ramp was estimated to be 

$2 billion, much of which was uninsured losses.  However, these direct costs 
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represent only a small proportion of the overall cost, e.g. damage to aircraft; repair 

and replacement of damaged parts.  Indirect costs are far more substantial, e.g. 

compensation; re-scheduling of services; service fees; replacement aircraft; loss of 

perishable cargo, etc.  Airports Council International (1996) reported that 84% of 

ramp accidents occurred when ground equipment struck an aircraft (known as ‘ramp 

rash’).  The following are typical: 

 

‘Refuelling vehicle reversed into a/c engine, causing damage to the engine fan 

cowling.  No external visual assistance available to driver of vehicle.’  

(Accident to Boeing 737-200, Manchester, February 1994: UK CAA database). 

 

‘RH wing tip hit by lorry.  Driver allegedly had no “banksman” to marshal the 

reversing lorry onto the aft cargo door.’  (Accident to Boeing 737-300, 

Edinburgh, November 1996: UK CAA database). 

 

‘[Company name] catering truck backed into LH aileron causing damage to the 

LH aileron and wing structure, after servicing another airplane. Driver of truck 

failed to follow [company name] procedures outlined in company station 

operations manual (SOM), by not utilizing a guide.’  (Accident to Avro 146 

RJ85A, Minneapolis, October 2000: FAA Incident report 2000102902463 C).  

 

The conduct of personnel and vehicles on the airport ramp is prescribed in 

company procedures, regulations and advisory material e.g.  CAP  642 (CAA, 1995); 

IATA Airport Handling Manual (IATA, 1998).  In the accidents described, if 
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requirements had been followed it is unlikely that these incidents would have 

occurred.   

An observational study at a major UK airport (Thomas, 1998; Harris & Thomas, 

2001) showed that deviations from recommended procedures when servicing aircraft 

were commonplace.  For example:  

• In 68% of all turnarounds, ground equipment was positioned around the 

aircraft without the help of a guidesman.   

• During 5% of turnarounds, vehicles were driven under the wings of aircraft 

without exterior guidance.  

• In 19% of turnarounds at least one vehicle was reversed up to the side of the 

aircraft without the external guidance.  

 

However, these observations merely describe what happened, not why.  When the 

reasons underlying such behaviours are proffered a more complex picture emerges. 

The most common explanation for such deviations in procedures (what Reason, 1990 

terms ‘violations’) was one of time and money.  Aircraft servicing is usually provided 

by a sub-contractor.  To keep prices down and margins high, sub-contractors are 

under considerable time (hence financial) pressures.  Competition is encouraged to 

suppress prices.  To remain competitive, sub-contractors operate with the minimum 

number of personnel.  As a result, a common explanation for procedural violations 

was that ‘no one was available to see me back’ or ‘there was no time to get someone 

to help me reverse’.  Reason (1997) suggested that such violations are quietly 

overlooked by management (until something goes wrong).  These suggestions were 

given strong support by Bennett & Shaw (2003) in an ethnographic study of ramp 

workers.  Deviations in safe operating procedures were frequently condoned (in fact 
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they were tacitly encouraged) to ensure on-time departures and maintain the 

profitability of the ground servicing supplier and the airline.    

  

The root cause for such behaviours, though, resides within the contracts branches 

of the airlines.  Competition between suppliers keeps prices low and punitive clauses 

are written into contracts to punish late or non-delivery.  There is an argument to be 

made that if margins were not eroded to the bare minimum, then incidences of ramp 

rash would begin to decrease.  There would be someone available to guide the driver 

of a reversing truck.  The provision of supplies may cost slightly more but the airline 

may save large amounts from the reduced requirement for aircraft repair, delays, 

insurance premiums, etc.  Arguing that a sub-contractor is responsible for these 

aspects of ramp safety is only a partial solution and does not address the root cause of 

the problem.  Taking a wider view of financial management which encompasses 

direct and indirect effects on worker behaviour may be beneficial in terms of 

efficiency and safety.  The action of people writing and negotiating contracts does 

influence human behaviour.  Paying more may ultimately promote efficiency and cost 

less. 

 
 

INCREASING EFFICIENCY THROUGH FLIGHT CREW ROSTERING 

 

High levels of efficiency in low-cost airlines require that crews are utilised to the 

maximum but without resulting in stress and fatigue.  This has not always been the 

case (Bennett, 2003).  These pilots may fly up to eight sectors in a working day.  

Little time will be spent in the cruise.  Most time will be devoted to the high workload 

phases of departure, approach and landing, and turnaround on the gate.  Gander et al. 
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(1988) suggested the problems associated with these operations were twofold: 

irregular hours of work and high workload from the number of sectors.   

 

Airworthiness authorities have strict duty time limitations.  A survey of these by 

Cabon et al. (2002) showed 13 criteria used in determining rest periods between 

flights (e.g. number of legs flown; reporting time; duration of legs).  No country, 

however, used more than 11 factors, and some used only two or three.  These duty 

time regulations highlight the conflicting requirements of safety and efficiency.  

Safety would be enhanced with more rest between flights but this is economically 

inefficient.  More rest periods requires more crew and higher away from home 

accommodation costs.  

 

In recent years, incidences of stress and depression have began to increase as a 

result of factors such as worries about company stability and large numbers of last 

minute flying schedule changes, which are common as a result of crew being used 

more ‘efficiently’ (Little et al., 1990).  These factors are also associated with drinking 

and flying behaviour (Maxwell & Harris, 1999).   UK Health and Safety executive 

estimates that work-related stress, depression or anxiety account for thirteen million 

lost working days every year in Britain (HSE, 2005).   

 

In a trial of a new flight rostering system (Stewart, 2005) it was found that changes 

could bring about both safety and efficiency gains.  However, as a result of the 

regulatory Medium these benefits were not easy to achieve.  Stewart noted that prior 

to the trial rostering practices were compliant with CAP 371 flight time limitations 
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guidelines (CAA, 2004) but that these were written four decades ago.  In the normal 

flight roster crews would work six days ‘on’ and three days ‘off’: 

• Day 1: backward diurnal phase shift  - starting 05:00  

• Day 4: forward diurnal phase shift  - starting 13:00  

• Day 6: end work at 23:00-24:00 with an option to extend duty to 03:00. 

 

This roster resulted in decrements in performance as the six days ‘on’ progressed.  

In the trial the company was granted a temporary waiver from current flight time 

legislation to evaluate a slow wave shift pattern (five ‘earlies’; two days off; five 

‘lates’; four days off).   The revised shift pattern was found to: 

• Reduce operational risk. 

• Produce less fatiguing work patterns and reduce crew duty hours. 

• Produce a reduction in insurance liability of the order of £4 million. 

• Improve crew productivity by 7%. 

• Increase roster stability. 

• Improve crew lifestyle and reduce sickness. 

• Improve pilot retention and reduce training liability. 

 

All of these factors represent an increase in operational efficiency.  It needs to be 

noted, though, that the company had to be granted a temporary waiver from UK flight 

time legislations.  Potential gains in efficiency (and safety) from the (hu)Man 

component in the system are often bounded by regulatory structures  which need to be 

changed before advances can be made.    
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The effects of the Mission, repetitive sectors, operating across time zones and 

working unsociable hours are only a few aspects impacting on the (hu)Man in the 

system.   The recent economic Medium has made a significant transformation in the 

operation of airlines considerably influencing the utilisation of the human resources 

within them.   

 

 
INCREASING OPERATING EFFICIENCY BY PROMOTING DIRECT 

ROUTING 

 

Air Traffic Control oversees an aircraft on every step of its journey.  Prior to 

takeoff, pilots inform ATC of their flight plan and are allocated a take-off slot, given 

weather information, and informed of restrictions concerning the areas over which 

they will fly.  Once in the air they are passed from ATC at the airport to en route air 

traffic controllers.   When being handed off from one sector to another pilots give a 

full status report to the new controller. This process is repeated until the aircraft is 

near its destination, where they are given a final altitude and position and are 

allocated a slot and runway for landing.  This is an extremely inefficient way of flying 

from A to B.  It is not the most direct route and it does not make best use of the 

Medium, e.g. prevailing winds and optimum altitudes for performance.  

 

Future air traffic management (ATM) practices will require aircraft to navigate in a 

different manner.  This concept, known as Direct Routing or ‘Free Flight’ will 

significantly affect the pilot’s role and responsibilities.  In Free Flight, responsibility 

for ATM will be delegated to the flight deck (self-assured separation).  Aircraft will 

fly direct routes and manoeuvre freely at their optimum speed and altitude, without 
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consultation with ATC.  IN this way, they will spend less time in the air and use less 

fuel, significantly increasing efficiency.  The impetus to move to such a system is also 

driven by the fact that the current system is inefficient in its use of the airspace 

available and unless changes are made, it will be impossible to cope with the 

increasing growth in air traffic.  For example, it is expected that air traffic in Europe 

will double by 2015 (Eurocontrol, 2002).   

 

However, changes to the physical airspace demand wide-ranging changes 

throughout all other components of the system.  To optimise efficiency gains as a 

result of changes in the Mission both ATC and aircraft need to be re-equipped with 

new navigation and surveillance equipment (Machine); crew need to be trained to use 

this equipment and associated new procedures (huMan); company management is 

responsible for integrating these mission, machine and human aspects and 

international regulatory agreement is required for the approval of equipment and 

operation of Free Flight airspace.    

 

Many human factors specialists a currently working in this area.  Changes in the 

airspace to allow free flight cannot be fully exploited if aircraft are not equipped with 

suitable display technology to allow pilots to manoeuvre to maintain separation from 

other traffic, avoid weather and undertake other aspects of real-time flight planning.  

Much work is being embarked upon developing such Cockpit Display of Traffic 

Information systems.   NASA Ames research centre has engaged in a great deal of 

effort developing such systems (see http://human-

factors.arc.nasa.gov/ihh/cdti/cdti.html).  Work has principally centred on the real-time 

representation of 4-dimensional traffic information to aid situation awareness and 
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decision making (e.g. Johnson et al, 1997; Johnson et al; 1999) and the development 

of rules for resolving airborne conflicts (e.g. Johnson et al., 2005).  However, without 

automated assistance pilots were found to be inefficient at resolving conflicts, 

(Johnson et al., 2003), clearly demonstrating that training is also required to 

complement display design to maximise efficiency  

 

However, while resolving potential conflicts is a central part of the pilots’ new 

tasks it is not the only one.  For utilisation of Free Flight airspace considerable effort 

will need to be expended on training and educating pilots in all aspects of aircraft 

performance, e.g. the effects of altitude and temperature; wind; and conserving energy 

in both the climb and descent phases.  Further increases in automation may help to 

some extent, however, simply continuing to increase the degree of automated 

assistance is not a universal panacea in increasing operating efficiency. 

 

 

INCREASING EFFICIENCY THROUGH INCREASED FLIGHT DECK 

AUTOMATION 

 

Weiner and Curry (1980) probably suggested that automation offers benefits in 

four basic areas: Safety; Reliability; Economy and Comfort. Ignoring the latter as it 

falls outwith the scope of this discourse, without a doubt, automated assistance has 

contributed significantly to safety, for example CAT III autoland capability.  This has 

also had the simultaneous effects of increasing on-time arrivals and reducing the 

number of weather-related diversions, hence dramatically increasing operational 

efficiency. However the fallacious argument that safety can be improved by removing 
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the operator from the system, thereby avoiding error, must be avoided.  There are 

three problems with this approach.  Firstly, automated devices are designed and built 

by human beings (just the nature of error changes). Secondly, such devices are not 

perfect and have the potential for generating errors.  Thirdly, a highly trained 

individual who understands the automation is required to monitor and intervene when 

automation parameters are exceeded or an unexpected event in the operating 

environment occurs.  Automation is only partially context aware.  For example, a 

CAT III autoland system cannot cope with a runway incursion.  Human intervention 

is required (see Bainbridge, 1987 for more ‘ironies of automation’). 

 

In terms of economy and reliability the autothrottle and autopilot can fly the 

aircraft more smoothly, accurately and economically than a pilot.  They adapt to 

environmental disturbances faster and can fly complex thrust management schedules.  

As a result, aircraft can be operated more economically under autoflight control and 

can function more smoothly, producing less ‘wear and tear’ thereby reducing 

maintenance costs.  Furthermore, the onboard sensors and automation allow for more 

precise control and navigation allowing shorter flying times, and hence increasing 

efficiency. In some sections of airspace vertical separations are being reduced to 

1,000 feet and in Free Flight area aircraft are required to self assure in-trail 

separations.  

 

However, despite the apparent operational efficiency gains described it has yet to 

be completely established if automation reduces whole lifecycle costs.  Modern 

aircraft are equipped with multiple automation modes to endow them with as much 

flexibility as possible.  This has benefits and drawbacks. Flexibility increases the 
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range of responses available to a pilot in a given situation, but can also overburden 

them during critical periods of high workload.  More options increase the cognitive 

demands on the pilot.  They must now be familiar with all the modes available and 

knowledge of how and when to apply them.   For example, the Airbus A320 has nine 

autothrottle modes, ten vertical navigation modes and seven lateral navigation modes.  

This places considerable training demands on pilots, hence simultaneously increases 

costs and opportunity for error.   

 

Dekker (2004) further attempts to disabuse the notion that automation reduced 

labour costs.  He points out that automation made some crew redundant (e.g. the radio 

operators, navigators and flight engineers) but the pilots left to fill the gaps remaining 

were required to attain competencies beyond their original job mandates.  As a result, 

automation increased the need to invest in human expertise. Dekker and Hollnagel 

(1999) suggest that procurement of new equipment is often driven by a trade-off 

between labour-intensive low-tech systems (with lesser training requirements) and 

high-tech systems for which it will be expensive to train and retain operators.  Taking 

an even broader view, the design, development, certification, production and 

maintenance of highly automated aircraft is undoubtedly far more expensive than that 

for a simpler machine.  Once training costs are also incorporated, the question still 

remains; taking into account the whole lifecycle of the aircraft, do these costs 

associated with highly automated aircraft outweigh the operational efficiency gains? 

 

 Notwithstanding the previous argument, there are two factors with their roots in 

the societal Medium which severely limit any further efficiency gains in the human 

element of the socio-technical system of operating a commercial aircraft.  Firstly, the 
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operating regulations require a minimum of two qualified flight deck crew (Code of 

Federal Regulations, Title 14; Joint Airworthiness Requirement – Operations [JAR-

OPS]).  Until the regulations are changed, no matter how highly automated the 

aircraft is, the airline will still be required to place two highly qualified, highly paid 

pilots on the flight deck.  Secondly, many departure and arrival air traffic control 

procedures still cannot exploit the automation available in modern aircraft.  This is as 

a result of such factors as the arrangement of the airspace near the airport, air traffic 

procedures not congruent with the automaton and/or a lack of knowledge on the part 

of Air Traffic Controllers about utilising the capabilities of a modern Flight 

Management System to best effect.  As a result, the flight crew have to semi-manually 

‘fly’ the aircraft and most automation is not particularly ‘efficient’ in these 

circumstances.  Flight deck automation has reduced crew workload where it was 

already low (e.g. in the cruise) but has increased it dramatically where it was already 

high, e.g. in terminal manoeuvring areas. Wiener (1989) called this ‘clumsy’ 

automation.  Basically, the human pilot will always be needed as automation is never 

fully context aware. 

 

CONCLUSIONS 
 
 

Significant increases resulting from enhancements in the efficiency of the (hu)Man 

component of the system alone are unlikely.  The Mark I Human Being cannot easily 

be re-designed.  As a result the whole system has to be designed around the 

capabilities and limitations of the end user, be it pilot, air traffic controller or ground 

staff.  When the human being is pushed towards its operating limits in an effort to 

increase efficiency, decreases in overall efficiency may result, as argued in the 

attempts to increase efficiency on the airport ramp.  However, when the capabilities 
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and limitations of the human are better understood, then efficiency and safety benefits 

may accrue, as described in the section on flight crew rostering.  In one instance it 

was forgotten that Management involves people.  In the other aspect, perhaps because 

it was blatantly obvious, it was central to the plan.   

 

Operational efficiency will only be marginally enhanced through changes made 

solely to the Machine or Medium component.  Automation does not replace human 

work; it merely changes its nature. Two members of flight crew (as a result of the 

regulatory Medium) will still be required on the flight deck.  Significant changes in 

efficiency could be achieved by operating aircraft with a single member of flight crew 

(up to 18% of direct operating costs in commuter aircraft are crew related). There is 

the potential to fly safely with a single pilot.  The military operate complex aircraft 

with one pilot on a regular basis. Intelligent automation to aid and monitor the pilot 

has been under development for sometime (e.g. Schulte and Stütz, 2001; Stütz and 

Schulte, 2001).  Furthermore, removing one crew member may actually enhance 

certain aspects of safety.  Poor crew communication has been implicated in many 

accidents (Civil Aviation Authority, 1998).  Removing one pilot removes this error 

mode! However, as has been argued, high levels of automation may not actually 

reduce costs.  Savings on flight crew may be offset by other factors in design, 

operation and maintenance.  Changes in the structure of airspace (and the resulting 

nature of operations) which may lead to large potential gains in efficiency can only be 

exploited if the aircraft (Machine) is equipped to do so  and the crew and trained in a 

complementary fashion.  
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Perhaps the greatest lesson, though, is that significant changes in efficiency will 

not be driven by changes in the (hu)Man, Machine or Mission alone. Revolution is 

required, not evolution.  Ultimately, changes in efficiency are dictated by what the 

Medium, in the form of society and legislation, will tolerate and these aspects of the 

Medium are risk averse.  Neither Human Factors nor Engineering can be considered in 

isolation from its sociotechnical context. 
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