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1. Introduction and motivation

High value products are typically technology intensive, expen-
sive and reliability critical requiring continuous maintenance
throughout their life cycle. Continuous maintenance is an
engineering service that allows products to achieve required
performance through-life with optimum through-life cost. Exam-
ples of the high value products include high-tech machine tools,
aircraft engine, nuclear power station, train, defence equipment,
high-end car, medical equipment, and wind turbine (Fig. 1). In
addition, manufacturers are looking for opportunities to provide
the maintenance service within the in-service phase of the product
life cycle to generate additional revenue and profit. Customers and
end users are expecting to pay for the usage of the product rather
than the full ownership. This is known as ‘servitisation’ phenome-
non within the manufacturing sector. A full study of the
phenomenon under the ‘Industrial Product-Service Systems
(IPS2)’ CIRP Collaborative Working Group was presented in 2010
[113]. When manufacturers provide continuous maintenance for a
product they have developed, especially within an industrial
product-service system context, it provides additional opportu-
nities to improve the design and production of those products
using the in-service feedback. This can lead to overall reduction of
the through-life cost together with reduction in material

durability and reliability is also consistent with the Europ
Commissions recent action plan on Circular Economy [36]. 

action plan emphasises on better product design by aligning
producers, users and the recyclers. The new IPS2 model 

prompted additional changes and has become the key motiva
for continuous maintenance:

� Engineering for life and extending life of the legacy high va
products with optimum cost [7].
� Better understanding of the foundations of product in-ser

degradation.
� Applying new technologies to improve efficiency and effect

ness of the maintenance: large scale data analytics (or Big Da
automation and autonomy.
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A B S T R A C T

High value and long life products require continuous maintenance throughout their life cycle to ach

required performance with optimum through-life cost. This paper presents foundations and technolo

required to offer the maintenance service. Component and system level degradation science, assessm

and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and 

base required for the continuous maintenance. Advanced computing and visualisation technologies

improve efficiency of the maintenance and reduce through-life cost of the product. Future of continu

maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber secu
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consumption. There are also new challenges in the area of
maintenance service [144] [22] due to the new context. Continu-
ous maintenance of high value products to achieve enhanced
Fig. 1. Scope of the keynote.
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plying advanced repair and retrofit technologies for legacy
stems.
nctional improvement of a high value product over time.

ith technological developments such as Additive Layer
ufacturing (ALM), Industry 4.0 and Internet of Things (IoT)

. 2) there is a paradigm shift in our ability to better repair or
ace individual components, better understand the health of a
uct and plan maintenance based on the availability of

ificantly large volume of data. The increasing amount of data
cted requires the development of new product-service
ness models. Whether the collected data belongs to the
ufacturer or the customer/user of equipment is a critical issue

e solved when designing the product-service business models.
ufacturers could pay customers for providing the usage data,
use with the data the manufacturer improves product quality
eding back retrieved information in the product development
ess following the example of ‘‘Total Cost of Ownership (TCO)’’
racts. The data collection could improve the quality of service
ived by the customer (as ‘‘serviceability’’) and implement

autonomous maintenance approach to reduce the through-life cost
of the equipment and increase the customer satisfaction [27].

This keynote presents different technologies and fundamental
knowledge that is essential to provide continuous maintenance,
their challenges and how the technologies are changing in the
future, associated opportunities, uncertainties and risks. The scope
of this keynote (Fig. 3) includes continuous maintenance of high
value and long life industrial products and the manufacturing
facilities for the products within the industrial product-service
system context. The keynote will cover technologies that are
relevant at component level as well as the whole system level and
will also include continuous maintenance approaches used for both
workshop-based maintenance and ‘in-situ’ maintenance of large
equipment (e.g., power generation gas turbines). The paper will not
consider shorter life products (e.g., consumer products) and will not
include retrofitting technologies used to maintain the legacy
systems. The keynote does not include ‘design for continuous
maintenance’ or associated product design challenges. This keynote
does not also cover the environmental effect of the maintenance
and the decision making process for upgrade, overhaul or renewal.

There are several terminologies used in academia and in practice
that have similarities with continuous maintenance. The terminol-
ogies are Maintenance, Repair and Overhaul (MRO); Through-life
Engineering Services; Life Cycle Engineering and Asset Manage-
ment. The context of this keynote is based on industrial product-
service systems and includes several similar terminologies such as
product-service systems, performance based contracts, ‘power by
hour’ contracts and availability contracts. Although the terminolo-
gies have similarities there are some differences. For the purpose of
this paper, the term continuous maintenance is being used in this
document. The earliest paper related to computer-assisted mainte-
nance within the CIRP Annals is from 1981 [24]. There are
66 maintenance related papers within the Annals so far with several
more papers published within the CIRP Life Cycle Engineering and
CIRP Sponsored Through-life Engineering Services conferences.
Spur et al. [153] discussed challenges in robotics task execution for
maintenance in space platforms, then an extension of the task
classification for automation was reported by Farnsworth and

. Technological challenges that will affect manufacturing significantly (based

6,52,180]).
Fig. 3. Continuous maintenance – fundamental knowledge required and technological challenges.
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Tomiyama [42]. A number of researchers also reported work on
monitoring and diagnostics at the machine tool and the plant
maintenance levels [50,107,116,125,126,152,170,182]. Over the
years the community has moved on from a component level
monitoring to a system level monitoring due to availability of latest
technologies, both in terms of sensors and management of data
through Clouds. Maintenance planning is another major area of
investigation which the community is focused on over the years
[11,21,67,76,85,90,94,166,190,201]. The research has evolved over
the years from resource-based maintenance planning to whole
system planning and optimisation. Model based maintenance has
also supported the planning and prognostics research along with a
life cycle management perspective [31,77,163,164]. In recent years,
study of degradation, automation of maintenance-repair-overhaul
(MRO) and virtual reality applications to support maintenance has
gained significant interest [78,111,115,122,129,156]. This keynote
focuses on the recent technological knowledge challenges at the
component and system level and presents major research trends
inside and outside the CIRP community.

The keynote is presented in five major sections before it is
concluded. After this introduction section, market size of continu-
ous maintenance is investigated across industry within the UK and
globally. The next section presents six fundamental knowledge
areas that are necessary to develop continuous maintenance
solutions. The knowledge types define the current and future
technical challenges that are faced in the maintenance tasks. The
fourth section focuses on the technologies used in continuous
maintenance and their challenges. This section also outlines the use
of different technologies across multiple sectors and their limits to
solve the continuous maintenance challenges. The suitability of the
technologies for equipment used in industrial product-service
systems context is also discussed. The fifth section describes future
technology trends and investigates new challenges to continuous
maintenance. The keynote is concluded in the sixth section with a
summary of key technology trends across sectors for maintenance
and the major challenges faced to achieve step change in availability
of long life equipment with optimum through-life cost.

2. Market size of continuous maintenance

Fig. 4 estimates the global aerospace MRO market is going to be
around $89 billion by 2023 (ICF International Analysis report,
2013). The MRO spend growth will be driven by the Asia-Pacific
and Middle East sectors. The growth is mainly due to the significant
increase expected in the commercial aircraft numbers. Transpor-
tation sector (e.g., train) is experiencing significant through-life
cost pressures and are also focusing on improving their ‘whole
systems approach’ for maintenance of carriages together with the
network infrastructure (Technical strategy leadership group, office
of the rail regulator, UK, 2014). A recent report on UK service and
support industry [112] identifies the global market in ‘service and
support’ across high value manufacturing sectors as £490 billion
today, growing to £710 billion by 2025.

Fig. 5 shows the value of machine tools consumed in 

5 countries [51]. Global machine tools consumption value
2015 was $75,197.5 million. Assuming that the life expectanc
machine tools is typically 14–15 years, the machine tool opera
in global market is estimated as worth $500 billion, and
approximately equal to half of the total number of turnouts for
last 15 years. There are no statistics about the global machine 

MRO market, but it can be estimated, assuming spare p
expense occupy 10–15% of the sales of the machine 

manufacturer. Therefore, the estimated market size of the mach
tool MRO globally is in the tune of $50–75 billion.

Aerospace, maritime, defence and nuclear sectors dominate
continuous maintenance market. As an example, Fig. 6 show
breakdown of the number of companies that provide 

maintenance service within the UK as of December 2014. Wit
the aerospace sector, Rolls-Royce has an annual turnover in exc
of £14 billion, with more than half derived from the service 

support for their products. Their annual costs for providing serv
are in the order of £5–6 billion. One of their primary comp
strategic goals is to reduce this cost going forward. Their 

competitiveness in this crucial engineering services market wil
the key to future growth, prosperity and profitability. Anot
example is from Germany, where Fig. 7 shows that, along with

Fig. 5. Consumption of machine tool over the years by top 5 countries.

Adapted from [51].

Fig. 6. Number of companies in the UK in the service and support sector, oper

by standard industrial classification (SIC) system in December 2014.
Fig. 4. Global aerospace MRO market in 2023.

Source: ICF International Analysis report 2013.

Fig. 7. Size of MRO market across different sectors in Germany (actual values until

2013).

Source: statista 2016.



auto
grow

3. F

C
know
syst
and 

fina

3.1. 

M
envi
in d
adeq
IPS2

resp
deve
the 

mea
appr
spar
elec
but 

the 

ingl
man
few 

whe
of a 

Fig. 

mat
com
and 

agei
inclu
Ther
to co
et al
in r
eval
func
pres
disc
prod
ousl

Fig. 

degra

R. Roy et al. / CIRP Annals - Manufacturing Technology 65 (2016) 667–688670
-car sector other sectors are also showing a stable or slightly
ing MRO market.

oundations of continuous maintenance

ontinuous maintenance is dependent on six fundamental
ledge areas: degradation mechanisms of components and

ems in service; repair mechanisms; monitoring, diagnostics
prognostics; autonomous maintenance; obsolescence; and

lly an integrated planning.

Degradation mechanisms of components and systems in service

odern machines and components are exposed to changing
ronmental influences and material ageing effects. This results
amages or degradations that needs to be taken care of by using
uate repair and maintenance technologies (Fig. 8). Within the
context, replacement or repair of components and systems is a
onsibility of the manufacturer often for a fixed price. By
loping products that have less degradation the profitability to

manufacturer would increase. This would also mean longer
n time to failure (MTTF), this is in contrast to a previous
oach where manufacturers were earning revenue by selling
e parts. Study of degradation mechanisms for the mechanical,
trical and electronics components and systems are not new,
they are mostly limited to degradation of material used against
operating or environmental conditions [37,127,137]. Increas-
y manufacturers need to understand how the design and
ufacturing features affect degradation as well. Following are
examples of how components degrade and eventually fail and
re there is a need for further research. Fig. 9 shows an example
design parameter affecting the fatigue life of a component [29].
10 shows the effect of surface damages (e.g. white layer and
erial drag), after making a hole in a nickel based super alloy
ponent, on the component fatigue life. Mechanical, Electrical
Electronic systems degrade over time due to use, natural

ng and exposure to environment. The types of degradation
de chemical, thermal, mechanical, electrical and radiation.
e are two main approaches to model system level failure due
mponent level degradations: discrete and continuous. Takata

. [167] has simulated wear (mechanical) of gears and bearings
obot manipulator joints as component deterioration and
uated the resultant positioning error of an end-effector as
tional degradation. In a similar attempt, Iung et al. [78]
ented a component level degradation state model based
rete simulation approach to predict the functional failures of a
uct (Fig. 11). In an attempt to model degradation continu-
y, dynamic degradation modelling for bearings is developed

Fig. 9. An example of design parameters affecting fatigue life: effect of outer groove

curvature radius of a ball bearing on the fatigue life of outer race [29].

Fig. 10. Surface damages (e.g. white layer and material drag) produced by hole

making operation affect fatigue performance (endurance) of the Ni-based super

alloy significantly [63].

Fig. 11. A mapping approach between degradation mode and the component modes

(OK = normal function, Dg = damaged, Dd = dead).
8. An image of an aerospace mechanical component exhibiting typical

dations in use, such as cracks, corrosion and delamination [111].
with auto regression models developed from vibration data from
sensors. Kalman filter is used to track the model to predict the
mechanical degradation of the bearing [135].

Similarly, there is significant interest in understanding the
degradation mechanism of electronic components and systems for
reliability predictions. Electronic components and systems are
often replaced rather than repaired due to low cost of replacement
and efficient turnaround. Connectors at system-level failures due
to degradations will cause intermittent failures of electronics
systems and this is a major challenge for efficient repair of
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electronic systems, especially in quick turnaround scenarios.
Electronic system degradation in service could occur at the
component, board, line-replacement-unit (LRU) or at the system
level. The component-level degradation includes ageing impacted
by the environmental conditions, such as temperature, vibration
and radiation damage, which will lead to sudden, intermittent or
gradual failures. Intermittent faults will lead to what is called ‘no
fault found’ (NFF) problems. A failure is termed NFF when it cannot
be reproduced at the testing stage in a laboratory. At the board
level, the joints and bond failure due to thermal cycling and
vibration is common along with the intermittencies in the
performance. The LRU and the system levels often degrade in
service through a combination of component/board-level failures
with the ‘no fault found’ type problems. Alghassi et al. [2] identify
thermo-mechanical stress as a major factor for connector failures
for power electronics, such as isolated-gate bipolar transistor
(IGBT). Fig. 12 shows three major types of degradations of power
electronic modules as wire bonds, emitter metallisation and chip
destruction. There are three major types of failure modes for the
wire bonds: heel crack and fractures due to physical constraints on
the wires and thermal changes, ‘liftoff’ due to mechanical stresses
generated as a result of different coefficient of expansion between

Al and Si, and also metallurgical damage due to the therm
mechanical stress due to the thermal property difference betw
the Al and Si [150]. Fig. 13 shows microscopic images of wireb
failure and solders failure due to thermo-mechanical loading 

stress. Fig. 14 shows the cause and effect for NFF failures
electronic products. It is worth noting the skill level of people 

their behaviour also causes NFF failure. There is a need
understand the impact of system architecture and the compone
on the probability of NFF so that the failure mode can be redu
and can be made predictable with better accuracy.

3.2. Repair mechanisms

Repair mechanisms are versatile. Prevalent principles 

separating, joining, coating and cleaning technologies for mech
ical products. For electronics soldering, wiring and re-balling
Ball Grid Array (BGAs) are used. Mechatronics components 

often substituted in case of damage. A potential future technol
for spare part production is Additive Layer Manufacturing 

allows producing directly from 3D scan data [3,47,103]. 

mechanism involves cleaning the damaged area, depositing n
material (Fig. 15) or replacing any component and then machin
the geometry through a finishing operation [101]. While there
several approaches to repairing metallic components, repai
composite material is still a major research topic. The compo
failure mechanism is still less understood [87] due to uni
properties of composite materials. Bonded composite repair is
most common approach to repair structural composite parts. 

of the main challenges in the process is to achieve the j
strength and avoid human error. The joint strengths can

Fig. 12. Major types of degradations in the power electronic modules [150].

Fig. 13. Bond wire damage due to thermo-mechanical load (microscopic image

breakage and lift-off at the marked area; (b) failure due to bond wire lift-off [
Fig. 14. An example cause and effect diagram for No-Fault-Found (NFF) conditions in electronic products [134].
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roved by designing the repair section for a shear dominant
ss state and induce minimum peel stresses in the adhesive
r [58]. Fig. 16 shows laser based repair concept of composite
s with precise layer-by-layer removal of the damaged area
. There are attempts to automate the repair process as well to
rove efficiency [174] and reduce human error. Part of the
posite parts repair process is to assess the damage more
rately (moving from qualitative assessment to quantitative
ssment) using advanced techniques like active thermography,
tal shearography and laser ultrasonics [87,111].

Monitoring, diagnostics and prognostics

onitoring of machines to check their state of degradation due
se or health parameters (e.g., temperature and vibration) is
e either using an additional network of sensors [39] or by
ysing signals which are available in machines (e.g., position,

maintenance. Verl et al. [182] presents a sensor-less monitoring
of machine health by analysing the positional error and vibration
energy in a drive system (Fig. 18). Dependency of the sampled data
on the speed in case of a rotating machine is eliminated through
the integration of complex wavelet transform-based envelope
extraction of speed-varying vibration signals with computed order
tracking [186]. Lanza et al. [95] have also proposed a dynamic
optimisation of preventive maintenance schedule using actual
operating life of components. The research uses a stochastic
technique based on Weibull Cumulative Damage Model and
multiple service related stress profiles (e.g., mechanical, thermal
and humidity stresses) to predict the remaining useful life of the
component. A Bayesian learning based prognostics is also proposed
by Ferreiro et al. [44] to reduce the maintenance cost. Uncertainty
in measurements is a major source of inaccuracies and therefore a
challenge for the condition monitoring. Similarly, there are major
challenges in the diagnostics and prognostics in terms of simplicity
of the assumptions used during the model development, effect of
the operating conditions on the heuristics and data driven models,
and also lack of knowledge while extrapolating for the operational
envelope.

The work on prognostics should, in summary, address:

15. The process to repair a mould using cold spray deposition and then

ining [101].

Fig. 16. Laser-based repair of CFRP [45].

Fig. 17. A remote monitoring and maintenance system for machine tools [116].

Fig. 18. Effect of wear (2nd half) on vibration energy parameter over time [182].
d and drive current consumption) [182]. Diagnostic and
nostic tools are classified into two major categories based on

 the monitoring data is analysed and the conclusions reached:
-driven and model-based. Sensor based monitoring example is
ealth Usage and Monitoring System (HUMS), first used in
opters. The system records vibration measurements taken at
rent critical components using different sensors and stores in a
ovable memory for further diagnostics. Fig. 17 shows a
osed remote monitoring and maintenance system for machine

s [116], where a simple mobile phone based communication is
blished to connect 8000 machine tools for the remote
� The type of results expected. It is remaining useful life (RUL), a
future situation or behaviour and a risk concerning the
appearance of future failure modes.
� The abstraction level for which the result is expected – at the

component/subsystem/system level.
� The degree of confidence to be associated to the result (e.g.,

uncertainty).
� The data from which the prognostics results will be calculated. It

means data/information related to the past, current or future
usage/mission/situation of the item to be analysed. The future
can be defined from degradation laws, contextualisation, etc.
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� The method/tool to be used for performing projection/forecast-
ing from the data/information available.

3.4. Autonomous maintenance

Automating the continuous maintenance of machines can lead
to significant reduction in through-life cost. The automation could
come from inherent resilience of a system or a component or could
be assisted using external agents, such as robots. The resilience is
often achieved at the hardware and software level using self-
healing and self-repairing technologies. Self-healing is a bottom-
up approach, where the components of a system heal the damage
internally. Whereas, self-repair is a top-down approach, where
the system is able to maintain or repair itself [48]. In both these
cases the system exhibits a degree of autonomy. On the other
hand, maintenance efficiency could be improved by using
automation (e.g., using robots to support maintenance tasks).
Fig. 19 shows categorisation of self-healing and self-repair
technologies. Farnsworth and Tomiyama [42] identified key
challenges in using robots to assist maintenance as: maintenance
is often irregular, non-uniform, non-deterministic and non-
standardised. In their research, they proposed building blocks
of maintenance tasks and automated the tasks using a standard
robot. Effective automation of maintenance tasks would require
further co-ordination between robots and advances in autono-
mous robotics.

3.5. Obsolescence

A component becomes obsolete when it is no longer available
from the original manufacturer or its authorised supplier for an
affordable price [141]. For long life equipment the risk of
obsolescence can come from electronic components, materials,
software, mechanical components, test equipment, processes,

will require a systematic and proactive approach to man
obsolescence [113].

3.6. Integrated planning

Maintenance planning is a major capability to perfo
continuous maintenance. Houten et al. [68] identified the prod
data model to support a model based maintenance planning
integrated maintenance-planning platform was proposed by I
et al. [75] that connects different parts of an enterprise to supp
the maintenance planning, as shown in Fig. 20 [167]. Arnaiz e
[6] presents a methodology of predictive maintenance techn
gies that is integrated with specific business scenarios 

upcoming technologies. Optimisation of preventive maintena
schedule and spare parts supply is proposed using a stocha
algorithm that uses a load-dependent reliability model [94]. Tak
et al. [165] have proposed three feedback loops (Fig. 21)
maintenance management, combined with maintenance plann
Managing life cycle data across the enterprise and decision supp
is essential for an integrated maintenance planning capab

Fig. 19. Categorisation of mechanisms for self-healing and self-repair [48].
Fig. 20. An e-maintenance framework showing different parts of the technology

used, called TELMA [75].
skills, and documents [146]. The drivers for obsolescence include
technological development and commercial decisions to phase out
some products. With the performance based contracts (or
industrial product-service systems) becoming more popular, the
obsolescence risks are found to increase with the manufacturers
rather than the customers. The manufacturers are now more
interested to design equipment to reduce the impact of obsoles-
cence. A key capability to manage obsolescence and reduce the
through-life cost is the ability to predict component procurement
life [145] and also to predict the cost of obsolescence resolution
[142,143] Effective continuous maintenance of long life systems
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]. Colledani et al. [20] have integrated manufacturing system
ntenance performance with the productivity to implement a
prehensive continuous improvement. There is a significant

 to integrate the production and maintenance considerations
he manufacturing planning and scheduling.

echnological challenges

ey technologies that support continuous maintenance, utilis-
he six knowledge types mentioned above, can be classified as:

-destructive evaluation (NDE) for degradation assessment,
ir technologies, prognostics, self-healing and self-repair
nologies, remote maintenance, digital maintenance-repair-
haul (MRO), big data and visualisation of maintenance tasks
, using augmented reality) for planning and training.

Non-destructive evaluation for automated degradation

ssment

ssessing degradation of a component in service using non-
ructive evaluation techniques and automating the assessment
ess are two major trends in continuous maintenance. The
niques used for the degradation assessment include: visual
ection, dye penetrant inspection, magnetic particle inspection,
sonic testing, eddy current inspection, X-radiography, photo-

inescence piezo-spectroscopy and thermography [92,181]. Al-
gh there are several techniques already used in assessing in-
ice degradation, thermography is becoming popular in recent
s for their ease of use and affordability [196]. Thermography is a
d, large area inspection, low-cost and non-destructive evalua-
 technique that is performed by directing an infrared camera at
rget (i.e., a component with in-service degradation) and
rding a heat map image (also known as a thermogram) of
specimen in order to detect variations in temperature emitted

e component or transmitted from behind it. These changes can
ct a change in temperature or in the material’s thermophysical
erties, either of which can be exploited to seek assessment of

in-service degradation. There are two main types of thermog-
y: passive and active. Based on the sources and nature of
gy for active thermography, there are six different types: pulse
], lock-in/modulated [131], pulse phase [72], vibrothermogra-

/thermosonics [43], eddy current [199] and laser spot thermog-
y [17]. Thermography is mostly used in studying thermal
viour of manufacturing operations. Mehnen et al. [111]

ents the use of thermography to quantitatively measure the
ervice degradation assessment for aerospace components

lack of suitable examples available to demonstrate, a question mark
has been applied. For example, it has been suggested that laser
stimulation can be used in pulsed thermography to deliver a well-
controlled heat injection. While this would facilitate detection of
planar sub-surface damages, demonstration of this in practice is not
yet sufficient to arrive at this conclusion. The Fig. 23 functions as
‘rule of thumb’ guidance, and is based on a combination of proven
applications and subjective interpretation of capability from
conceptual understanding of the techniques only. The figure clearly
identifies Ultrasound, X-ray and pulsed thermography having the
widest range of applications for metallic components. Fig. 24 also
presents a mapping between the key types of mechanical
degradations in different industrial sectors and corresponding
commonly used NDT techniques to identify them based on
literature review [88,92,93,136,162]. Mehnen et al. [111] has
presented the suitability of pulsed thermography for automation to
improve repeatability of the assessment and increased efficiency.
Thermography is more effective for composite part degradation
assessment [105]. The major limitations of pulsed thermography
are:

� Not well suited to closed degradations that are still adjoined, a
break in material to provide change in thermal property is
required.
� Not well suited to cracks propagating normal to the surface,

change in material must be through-depth.
� Small damages are harder to detect with increased depth.
� Heat-trapping subsurface features such as voids, air pockets and

structural channels obscure similar size features below them.
� Thermography inspection requires absorption and re-emission

of the injected heat, which requires a high emissivity value at the

1. A framework for life cycle maintenance with three feedback loops [165].

Fig. 22. Inspection of coating delamination indicated by red and green plots in the

thermogram on an aerospace component (a), with sound coating plotted for

comparison (blue). Logarithmic temperature cooling curves (b) show heat

obstruction from delamination, with 2nd differential indicating the time of peak

cooling rate change (c) [111].
 22). Inspection of this component’s cooling at various locations
cated differing behaviour of coating close to spalling, indicating
surface delamination. The research then proposes to use an

ge processing approach to measure the shape and size of the
mination. Future work involves improving the quality of the

 measurement and performing similar active thermography on
ccessible areas. Inspiration for Fig. 23 has been drawn from non-
ructive testing or NDT comparison charts already in use for
ing purposes that are available online. Further details have

 added based on literature and understanding of working
epts of the techniques. Where a statement is unclear due to a
surface, so is not well suited to reflective metallic surfaces; a
coating is required in this instance.

4.2. Repair technologies

Regarding repair and overhaul strategies, different approaches
exist [173,179]: starting from single repair events that can be
handled by replacement with spare parts up to complete overhaul
strategies combined with facelifts and modernisation of machines
[172]. Different technologies are needed to fulfil the necessary
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requirements. Especially in the field of cost-intensive and lo
living machine tools complete exchange of major components
often be too expensive to keep machines in business [177]. Au
mated repair [70,159] is a major trend to avoid human er
associated with the manual process, along with the repair of no
materials. Robot guided reworking of functional areas and ra
manufacturing of spare parts is becoming popular [9,140]. F
thermore it is necessary to significantly reduce the produc
stoppage. This correlates with the productivity of machines 

the costs of repair processes. To cover all repair cases a flexible 

robust process chain consisting of inspection, repair and rema
facturing technologies as well as quality control is nee
[18,160]. Additionally, mobile technologies offer advanta
compared to stationary technologies, because there is no n
for disassembling and transportation of damaged parts. Re
tasks can be processed in different repair plants or in situ where

Fig. 23. A comparison of strengths of non-destructive evaluation (NDE) techniques for degradation assessment in metallic aerospace components, highligh

thermographic strengths. The suitability of techniques against various damage and defect types have been graded 1 (appropriate) to 4 (inappropriate).
ent
ncy
. A

tive
can
d as

also
ose

Fig. 24. Mapping of key types of mechanical degradations in different sectors and

the most commonly used NDT techniques.
large part is directly inspected. Another important requirem
addresses the consumption of resources and energy efficie
aspects corresponding to repair and overhaul technologies
potential future technology for spare part production is addi
manufacturing that allows parts production directly from 3D s
data [171,175]. The important repair technologies are presente
below [178].

4.2.1. Cleaning technologies

Cleaning technologies are not only used for better look but 

as a preventive measure to maintain functionality. Many of th
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ciples are using chemicals that have a negative environmental
act. Thus, the application of flexible and eco-efficient cleaning
esses has taken on greater significance. In addition, newly
loped and adjusted cleaning technologies are able to reduce
ntimes, because they can be either used during machine
ation or need short time compared to other repair technolo-

 [159].
ry ice blasting is a dry cleaning technology that causes no
ues (Fig. 25). Dry ice pellets are used as an abrasive for

ting processes. They are solid at ambient conditions with a
perature of �78.5 8C and change directly into the gaseous state
ng blasting. Due to its low hardness, it is suitable for gentle
ning and processing of sensitive surfaces. Unfortunately the
hardness makes the pellets sensitive to external impacts or
ion. Dry ice blasting is predominantly used to clean easily
ssible surfaces. For areas with limited accessibility, different
ting nozzles are available [154].
esides blasting technologies other cleaning technologies are

 cleaning (e.g., ultrasound), mechanical cleaning (e.g., blow off)
thermal cleaning principles [130]. For printed circuit boards
ciples without electrostatic effect can be used such as ultra-
n water, compressed carbon dioxide, blowing, suction or
hing; the major challenge is to reduce adverse environmental
t [104].

. Coating technologies

o-called ‘‘patch processes’’ have been established for the repair
gine and turbine components. Damaged component areas are
tified and replacements are attached. Subsequently, the
our is re-established with mechanical procedures. Laser metal
sition as an example is a technology to create a metallurgical

ded material deposition on a substrate. It can be used to repair
n surfaces or to produce a hard facing layer [10]. A laser beam is

 to melt the surface of a specimen and a powdery filler
erial is injected in the molten pool [54,132]. The low
allurgical impact is particularly important for preservation
aterial’s microstructure (e.g., high-strength steels) [53,102].

example is given in [66], where titanium carbide is used together
with an Inconel 718 metal matrix to improve wear performance.

4.2.3. Additive manufacturing technologies for making spare parts

Additive manufacturing technologies mostly follow a custo-
mised single part production principle. They are advantageous
compared to conventional production technologies like milling,
drilling or casting, because they are not limited to conventional
design guidelines [171]. They allow production of organic freeform
geometries as well as undercuts and multipart production in one
step. Polygon data in STL format generated by 3D scanners can be
used as direct input for these manufacturing principles. Examples
for additive manufacturing and rapid prototyping principles are
Selective Laser Melting (SLM) [149], Stereo-lithography (SL), Fused
Deposition Modelling (FDM), Wire and Arc Additive Manufacturing
(WAAM) [57,185] and Laminated Object Manufacturing (LOM). A
future challenge is to overcome material and microstructure
limitations to enable better functionality e.g., better surface
quality, better dimensional and geometric distortion control,
better fatigue strength and increase reproducibility. Furthermore,
the process has to be accelerated for use in serial production (e.g.,
SLM is relatively slow process). General Electric (GE) is going to
enter series production of fuel nozzles using SLM and is supposed
to manufacture more than 100,000 additive parts until 2020. First
projects in Germany like BMBF and AutoAdd even focus on small
series in the automotive industry. Another goal is the support of
multi-material production, which would allow producing conven-
tional assemblies as single parts (Fig. 27).

5. Dry ice injector principle for cleaning [176].

e: Fraunhofer IPK.

Fig. 26. Effect of welding parameters (power – P, spot diameter – d, welding velocity

– v, powder mass flow – m) on bead width and height, nickel-based superalloy [53].
Fig. 27. Example for SLM optimisation: An assembly consisting of 8 parts and

different materials were redesigned and produced with SLM as one single part.

Source: Euro-K GmbH in cooperation with Fraunhofer IPK.
or proper use knowledge about process parameters and their
ence on weld bead geometry is necessary [98]. This influence
own in Fig. 26, using a nickel-based superalloy as example

. While bead width is mainly determined by laser power, main
ts for bead height are welding velocity and powder mass flow.

 knowledge allows adjusting the bead geometry for the specific
ir task, e.g., high and narrow weld beads for tip repair.

 future challenge is to develop mobile laser metal deposition
tions. Laser metal deposition is used for metallic materials or
posites consisting of carbides in a metallic matrix material,
cally tungsten carbides or titanium carbides are used. An
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4.3. Prognostics

In the past, maintenance was regarded as repair work.
Machines were operated until they broke down, and there was
no way to predict failures. With the development of reliability
engineering in the 1950s, the concept of preventive maintenance
was advocated, and time-based maintenance (TBM) was intro-
duced [165]. Reliability centred preventive maintenance [82] and
performance centred maintenance [184] are introduced in recent
times. In order to realise preventive maintenance, several different
approaches have been done. Several papers researched model
based prognostics, which is simulation of degradation process. A
maintenance decision-making tool using Bayesian Dynamic Net-
works (BDN) was proposed [79]. Two Remaining Useful Life (RUL)
tools were proposed: the component RUL (RULc) and the function
RUL (RULf) were researched in order to improve the prognosis
efficiency [78]. Kara [86] has also proposed a novel approach to
predict the RUL based on history of a part and remaining
technological life. It is very difficult to simulate a degradation
process therefore there are not many industrial applications. The
functional integration of maintenance within the product life cycle,
based on experience obtained from work was introduced
[26]. Odds approach was also proposed for the integration of
the maintenance at the production planning stage for developing
opportunistic maintenance task keeping conjointly the product –
production – equipment performances [76]. Sensing technologies
are often used to predict system failure.

Technologies used for prognostics can be applied at the
component and system level. Fig. 28 presents a prognostics
process as part of a system level prognostics and health
monitoring. At component level, the focus is:

� A direct tracking of the degradation by calculating Reliability/
RUL from a degradation modelling based on processes such as
Gamma, Markov, Wiener and by taking into account usage and
contextualisation. It implies to have at disposal data for
parameter calculation [151].
� An indirect tracking of the degradation by using COX model to

calculate the RUL [71].

The historical data, i.e., historical signals or indicators, is used to
extrapolate the current trajectory of the component observed. It
could be done by working on a mono-dimensional health index
(Relevance Vector Machine tool) [191] or multi-dimensional
health index (Match Matrix tool) [83]. Fig. 29 shows an application
of self-organising map technique to classify the different
degradation states of bearings.

On the other hand, at the system level, the focus is on the
performances/services expected at the system level and repre-
sented by the evolution of the properties of each flow (ex. product,
energies) [78] produced by the system. Embedded prognostics and
self-repair capability could also support more resilient systems.

Fig. 30 shows the different sensing technologies used in mach
tools today. The sensing technologies cover component and sys
level feedback and support the evolution of the system le
information. This evolution is built from a functional/dysfunctio
analysis allowing a link to be made between the component le
and the system one through the flows exchanged between 

different functions at different levels together with the propa
tion of the component degradations at each level. In that way, 

possible to propose a generic pattern for prognostics, which co
be applied at different abstraction levels [183]. For example, fr
the instantiation of this generic pattern to a specific system, 

proposed to create a Dynamic Bayesian Network (DBN) and
combine it with an event model (creating a set of ‘‘event’’ D
variables that correspond to the degradation (a) and maintena
(b) events) [79] in order to adjust the parameters given a pr
with the real value of the parameters. The final prognostics mo
is resulting by combining the two models [118].

The system level focus continues to be on

� The concept of fleet: the prognostics are calculated in line w
similar situations already known and stored in knowledge b
It is supported by Ontologies [110].
� The types of interactions between the components 

redundancy, functions distribution and criticality). The pr
nostics is using the models developed at the component level
by considering the relative weight of each component and
interactions within the co-variables [33].

Some of the key prognostics challenges are:

� The prognostics aims at calculating RUL, but this calculatio

Fig. 29. (a) Vibration signals from bearing degradations and (b) health ma

different bearing failure modes using a self-organising map [100].

Fig. 30. Different sensing technologies used in Machine Tools.

Source: DMG MORI Co. Ltd.
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Fig. 28. Prognostics process within PHM loop.

Adapted from: PHM Society.
very different with regards to the component technolo
addressed because the degradation laws are sometimes diffi
to model.
� The prognostics are using data/information produced by 

monitoring, health assessment and diagnostics upstream p
cesses. The mastering of these processes in terms of robustn
precision; quality of the raw data consumed are key issues to
addressed.
� Uncertainty in the input data and as a result the degree

confidence on the prognosis is still a major challenge. Ther
also uncertainty associated with the model developed. Chan
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 the process, equipment or the environment can all introduce
certainty that further complicates the RUL calculation.

n order to support environmental and economic sustainability
ugh maintenance services, recently prognostics techniques
loped for health prediction are also used to predict the energy
umption and environmental impact [74].

Self-healing technologies

elf-healing technologies are used for autonomous mainte-
e. Self-healing can be achieved in materials, in the electronic
ponents and in the software [48]. Thakur and Kessler [169]

 presented a review of self-healing polymer nanocomposite
erials. Harrington et al. [60] have studied a number of case
ies on the biological archetypes for self-healing material
lopment. In a recent development, Nair et al. [121] presented

circuit board integration of a self-healing mechanism to repair
 faults by physically restoring fractured interconnects in the

tronic circuits. Significant research is required to mature this
 before it could be directly useful for continuous maintenance.
arallel, research must develop techniques for qualification of
self-healed state for certification purposes. There are three

ples of self-healing technologies under development: self-
ing MEMS, self-healing robots and fault tolerant sensor
ems that are relevant for continuous maintenance.

. Self-healing MEMS

EMS devices can be very cheap on its own, but can have
ificant impact on the overall availability of the system where it
ed. There is a strong motivation to improve robustness of the
S for more resilient systems. There are two principal ways to

lop the self-healing capability, one by using redundancy and
other protecting the MEMS device from damage using surface
ication. Self-healing MEMS accelerometer has redundant
ing finger modules. With a built-in-self-repair strategy, when
module becomes damaged a circuit connection control

hanism replaces the damaged module by a redundant one,
 result improving the robustness of the MEMS device
]. Applying lubricants in between silicon oxide surfaces to
ce friction could also reduce the in-service degradation of the
ces (Fig. 31). The lubrication along with the redundancy could
lop next generation of robust MEMS devices [69].

. Self-healing robotics

elf-healing in robots is often achieved through re-configur-
ty, modularity, redundancy and adaptive behaviour. Recon-
ration or self-repair by replacing a failed module with another
tionally homogeneous module is the most common approach.
mber of self-configuring robots already exist [157]. Following
idea of redundancy, the solar-powered Odysseus [109] also
orms self-repair on the fly. That is the aircraft will be able to
nomously modify its body while rejecting any failing modules.
sseus is a project within the DARPA Vulture programme,
ing at an aircraft, which can remain airborne over a duration of
years. Another radically different self-healing capability in a

robot is about modifying its internal model of itself to the changing
state of its body, and thus to find alternative ways to maintain its
functionality. For example, a walking robot which loses a limb will
modify its gait to still be able to walk [13].

4.4.3. Fault tolerant sensor systems

Fault tolerant sensors that are used in systems for monitoring
along with the actuators in feedback loops helps the system to self-
adapt, which is a step in the direction to achieve self-healing
[80]. This self-adaptation allows the system to correct any minor
deviations (may be due to the in-service degradation) automati-
cally and autonomously. Brandon et al. [16] have presented an
integrated approach to sensing and self-healing for structural
health management of deployable structures (e.g. on the moon). A
passive wireless sensor network is used in conjunction with self-
healing materials, identifying any damage to the structure,
monitoring the self-healing process and raising an alert for major
damages for human expert intervention. Verification and valida-
tion of the sensor network robustness is still a major challenge.

4.5. Remote maintenance

Remote monitoring and diagnosis was discussed considerably
in the 1970s, when the technology for data transmission via
telephone line was first developed. Although many machine tool
manufacturers offered remote maintenance service at that time,
this type of service had not become popular due to the immaturity
of the technology [165]. Currently, machine tool shipments are
growing year after year. This trend is expected to continue for the
foreseeable future. Currently, whenever problems occur with
machine tools, service technicians are likely to visit the customers’
plants to troubleshoot and resolve them. To deal with this
situation, the first step is to improve product quality to reduce
the number of potential service calls. The second is to increase the
efficiency of the service itself. In order to do so, the ideal solution is
to acquire the customers’ machine tools operating status, perform
diagnostic and analysis remotely at manufacturers’ service base
and conduct necessary preventive maintenance immediately
online. In the 2000s remote maintenance with mobile phone
technologies was developed and applied by several machine tool
manufactures [116]. Remote maintenance with mobile phone
structure is shown in Fig. 17. DMG MORI and other machine tool
companies around the world have already installed remote
maintenance system for several thousand customers’ machines.
Successful remote maintenance would require data communica-
tion across the Extended Enterprise. The remote maintenance is
mostly at the level of accessing the health parameters of a machine
remotely and perform software-based repair and upgrade tasks.

Another approach for remote maintenance is to use remotely
controlled robots to perform maintenance tasks within uncertain
environments. Use of remote controlled robots for maintenance is
widely used in Nuclear [106], space and any hazardous industries.
Fig. 32 is showing a concept maintenance system for nuclear
installation, the manipulators are to be operated remotely. The
existing remote maintenance technologies work best when the
environment is very structured and the state of a machine is less
uncertain. Researchers have used Virtual Reality based training
systems for the remote maintenance operator training [12]. In an
effort to explore use of robots for autonomous maintenance,
31. (a) MEMS degradation: Cycles before failure of 6% cationic polymer

cant (CPL) in dry and 50% relative humidity (RH) as a function of time interval

een cycles, (b) cycles before failure of 15% CPL in dry and 50% RH as a function

e interval between cycles [69].
Fransworth and Tomiyama [42] have proposed a novel task
classification for automation and collaborative robot application.

4.6. Digital MRO

Digital MRO comprises all Maintenance, Repair & Overhaul
(MRO) activities facilitated by IT-solutions. There is a need to
develop new processes, methods and tools for MRO applications, in
order to exploit the potential of virtual technologies for MRO
optimisation in practice. For instance, solutions for fast access to
information on important lifecycle phases and MRO activities,
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solutions to interface conflicts between various multi-player
systems, or to enable remote-servicing with mobile tele-coopera-
tion devices via narrow-band connection are addressed [155]. Dif-
ferent kinds of IT systems are used for scheduling of MRO tasks,
resource planning and communication. Predominant IT-Systems in
Germany (for example) are self-made or customised software
solutions as well as Microsoft Office applications, because the
diversity of MRO business makes it difficult to develop a single
solution that fits to all requirements:

- Management of inspection plans, protocols and reports
- MRO tasks: Administration, planning, cost control and docu-

mentation
- Asset management: Machine data, handbooks, check lists,

warranty information, inspection intervals, service contracts,
date of purchase, predicted lifespan

- Stock management: Administration of spare parts and availabili-
ty, tools, aids and expendable items

- Statistics and analysis: Number of MRO jobs, date of inspection,
run time information

- Reports for continual improvement process
- Comparison of planned and actual data.

Computerised maintenance management systems (CMMS) aim
to cover all of these requirements. However, these systems are
costly and need training for use. In case Enterprise resource
planning systems are used, CMMS may be an add-on or an
integrated part. As a general rule companies are using diverse IT-
systems simultaneously without adequate interfaces and with the
problem of redundant data. Furthermore, systems are neither
integrated horizontally with customers, suppliers and OEMs nor
integrated vertically with MES (Manufacturing Execution System),
SCADA (Supervisory Control and Data Acquisition) or PLC
(Programmable Logic Controller). Besides IT-solutions product
design data and technical documentation are important for
functional understanding, repair and overhaul. Unfortunately

limitations and difficult part disassembly make 3D digitisation 

a laborious task which is followed by a high effort in data p
processing [156].

4.6.1. Major scientific and technological challenges

The scientific challenge is to create a digital MRO solution
provide all information, data and knowledge that is needed
MRO planning and execution. Of course there are restriction
data and information exchange between life cycle stages, B2B 

B2C relations due to business models and intellectual prop
rights that can only be solved by new product-service syste
[113]. Technical solutions are needed for monitoring, retrac
determination and prediction of product state to optimise 

schedule for the MRO operations. Intelligent resource mana
ment systems should enable reactive condition based planning
system interface models are necessary to prevent redundant d
storage and to provide all relevant data and to facilitate n
mobile assisting devices. In addition, technology has to del
product data of actual product condition for reengineering, sp
part production or renovation of mechanical and electro
components using future production technologies such as addi
manufacturing [9,149]. In order to reduce downtimes of 

intensive products automation of operations is very importan
well.

4.6.2. Solution approaches for overall reduction of through-life c

Products can become intelligent cyber physical systems
RFIDs or integrated chipsets and communicate with cloud-ba
management services. Big data solutions are developed to ena
collection and interpretation of all product related data, whic
created during a life cycle. Thus, tracing of product chan
through MRO could deliver knowledge that can directly be use
assist MRO planning and operation and to support prod
configuration management. Vice versa product data from des
stage can be used to support inspection workflows in the M
stage. In this context Augmented and Virtual Reality can
powerful tools to visualise product changes compared to C
design. Intelligent information analysis and production techn
gies enable automation and specification of future digital M
factories. Therefore adequate and efficient project managem
and workflow tools have to be created. Furthermore, acqu
information in combination with advanced 3D scan and compu
tomography data analysis systems (Fig. 33) [56,96] could iden
single parts of a product and deliver a bill of material and prod
structure [41,156]. CAD parts in a database could be used
automated building of assembly models. In case of electro

Fig. 32. Section of proposed DEMO vertical maintenance system architecture with

remote controlled manipulators [106].
Fig. 33. Automated superposition of a 3D scan and a computer tomography of a

printed circuit board.

Source: Fraunhofer IPK.
technical documents like bill of material and design drawings or
data as well as maintenance protocols are hardly available for
maintenance companies that are not from the original equipment
manufacturer (OEM) [41]. Product changes are unknown if
different companies maintain the same product one after another.
An additional issue is around obsolescence of components
[198]. Highly experienced staff is needed to perform these tasks
[55] and IT-Infrastructure has to enable acceleration of innova-
tions. Modern 3D scanning technologies deliver 3D models of
actual product geometry and allow deviation and tolerance
analyses in case of available reference models. However, optical
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ponents schematics and layout plans could be reconstructed
epair and reproduction of spare parts. In this context quality
rol systems are able to realise automated 3D comparison of as-
gned, as-produced, as-maintained, as-is and as-defined
uct geometries [55,81]. Product changes and operation can

visualised with Virtual Reality solutions augmented with
ection information. Virtual Reality also allows immersive
ing sessions for faster learning results.
imulation of maintenance tasks for resource optimisation and

 estimating is becoming popular. Datta et al. [28] has
onstrated an application of discrete event simulation (DES)
nique to study maintenance resource utilisation for an
lability type defence contract. Alrabghi and Tiwari [4] have
rted the dominance of DES for maintenance system simulation

 of reported publications use DES). There is also use of hybrid
elling approaches where DES is integrated with a continuous
ent to represent time dependent degradation process. The
r simulation techniques used include agent based simulation
continuous simulation.

Big data and data analytics

ith the growing popularity of condition monitoring, prog-
ics, Internet of Things (IoT), Industry 4.0 and cloud computing,
volume of data available for continuous maintenance decision
ing has increased significantly. This large volume of relevant
 is now referred as Big Data. The Big Data is defined to be high
me, high-velocity information assets, that comprises unstruc-
d text, audio and video files [49]. It has a strong impact in
ost every sector and industry [84]. Current methods in big data
yses are semantic data mining and integration of operational
. The key challenges in dealing with this high volume of data

 diversity in data types (variety), uncertainties in the data
acity) and in some cases the speed of data collection and
sion making (velocity) for maintenance purposes. In general,
Big Data complexity comes from data at a computational and
em level. There is a lack of quantitative studies to understand
essential characteristics of the Big Data complexity. It is also
rved that traditional data analytics techniques are not effective
he Big Data processing. Because of the fast changing Big Data
, from continuous health monitoring across a number of assets
in an enterprise), the analytics cannot rely on past statistics.

eloping big data based maintenance decision support system
 have significant system complexity due to the diversity of data
, text data mining for the maintenance logs along with the
ation and temperature monitoring data from sensors). Man-

ent of the data across long life cycle and beyond is a major
lenge in terms of governance, storage, access and supply chain
boration. Fig. 34 presents a classification of Big Data. There is a

 for value based analysis of the Big Data to answer specific
ain questions and that will reduce the computational burden.
here are major research initiatives around the World that are
rested in Big Data [84]: US Big Data research and development

initiative involving DARPA, DoD, NIH and NSF; UK Innovate UK and
EPSRC initiatives across multiple industry sectors, EU Horizon
2020 focus on Big Data and Japanese through ‘‘The Integrated ICT
Strategy for 2020’’. All these major initiatives are developing
advanced tools and techniques to extract knowledge and insight
from the data and that will help us to better understand the health
of our machines and plan for the future spare parts and
maintenance requirements.

The Big Data analytics could generate new knowledge by using
the relationship of service events, component degradation and
component design [25,108]. Applying the generated knowledge to
the manufacturing environment, improves prediction accuracy of
machine state and maintenance scheduling of the ERP system
[97]. Ninety-five percent of big data is unstructured. Because of its
heterogeneity and missing data structure the analysis of big data
requires the development of new complex algorithms [49]. The
faster the algorithms work, the better the distinction between
valuable and trash data is, and the better the results will be [84]. To
reduce costs of the extensive resources that are required for big
data analysis cloud computing can be used, as shown in Fig. 35
[61]. This requires computing time and storage time that is actually
utilised and has to be paid for only. Selecting appropriate cloud
services for the data analytics is a challenge. Wang et al. [187] have
presented an AHP based approach to select the cloud services
based on computational cost and network communication load. In
the CIRP keynote paper [50], the historical development of
prognosis theories and techniques are summarised, and their
future growth enabled by the emerging cloud infrastructure is
projected. Techniques for cloud computing are highlighted, as well
as the influence of these techniques on the paradigm of cloud-
enabled prognosis for manufacturing and maintenance. The use of
quantum computing offers further potential for reduction of
computation time [73]. Shortened computation time can enable
data analyses algorithm to evaluate data in real-time without the
need for several hours of computing. In addition, the usage of
advanced approaches of machine diagnostics [119] and stochastic
optimisation algorithms [94] can gain their full potential when
combining with big data.

Visualisation of the large volume of data is essential to support
human analytical thinking and decision making for the continuous
maintenance. The visualisation tools, also known as visual
analytics, synthesise multi-dimensional information and knowl-
edge from complex and dynamic data in order to support
assessment, planning and forecasting. Adagha et al. [1] have
presented a comprehensive analysis of the design of visual
analytics (VA) tools and suggests four key attributes any VA tools
should: provide multi user access to the data, support intuitive
communication, support multiple and linked displays and track
information flows between the users. Along with the tool
development, there is also a requirement to use large visualisation
spaces to display the large volume of heterogeneous data and
support interaction with the users [138]. Design of a continuous
maintenance approach (or service) at the early design stage of a
complex engineering system can also benefit from VA tools [8]. The
early design phase visualisation could assist in the design
evaluation and creativity through exploration of alternative future
scenarios with associated uncertainties.

4.8. Augmented reality for maintenance support and training
Fig. 34. Big Data classification [61].
Augmented reality (AR) has the potential to become a major
tool for the continuous maintenance, by overlaying and integrating
virtual information on physical objects [32]. AR technology uses
three fundamental techniques for the maintenance support:
optical combination, video mixing and image projection. The AR
tools are used in conjunction with a head mounted device (HMD)
or a portable hand held device (e.g., a tablet) or a spatial display
unit and a tracking system. Original ideas were developed in 1960s
[161] and since then a steady progress has been made with the
advancement of computing power and image analysis. Dini and
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Mura [32] identified aerospace, automotive and industrial plant as
the top three areas of AR application. Similarly, video mixing is the
most popular approach for the AR solution development. HMDs are
the most popular AR device used in the applications, followed by
tablets. AR is used to support a maintenance task through a step-
by-step guidance, diagnostics and inspection and training. Fig. 36
presents a research project to apply tablet based AR for NDT of
pipelines [5]. To justify incorporation of AR technology to support
aerospace maintenance, Suárez-Warden et al. [158] have pre-
sented a microeconomic analysis of the benefits of AR for
aerospace maintenance assembly task. The microeconomic analy-
sis incorporates the investment required, impact of downtime and
the maintenance variable cost reduction.

In spite of the advancement of the AR technology, it is still not
well established in industrial use yet. Current research on
augmented reality on the shop floor deals with legibility of text
that is projected on surfaces [34]. When information projected on
surface in the shop floor is legible, it can assist the maintenance
worker by providing valuable information about the maintenance
task. Application of AR to assist maintenance tasks on the shop
floor is dependent on the lighting conditions. We need to develop
augmented reality technologies that can work consistently within
industrial environment (both in poor light and open day light
conditions). Regenbrecht et al. [139] has presented a number of
early industrial applications of augmented reality where relevant

information is overlaid on equipment for maintenance guida
Nee et al. [122] provided an overview of augmented rea
application across multiple manufacturing applications, includ
maintenance. The team identified tracking as a major trend in
augmented reality research. This is also very important for 

maintenance research where we could overlay real time he
data on equipment. Industrial applications of AR will also dep
on the ease of AR content creation, especially related to the con
of the real life object in focus, and adaptation of the AR respo
based on the object context [200]. The context aware AR sys
architecture is presented in Fig. 37, showing a rule based con
reasoned working with a database of different contexts. The offl
content creation and adaptation of the AR response is v
important for continuous maintenance as the AR service co
adapt based on the technician expertise. There is a need to ext
the offline authoring to an interactive input interface to capture
technician feedback and reasoning for a maintenance decision o
physical object (e.g., repairing a hydraulic valve). In a very rec
work, ‘Cognitive Augmented Reality’ is described as an automa
AR content creation technique based on video analysis, adap
feedback (Fig. 38) and real time learning [133]. Based on 

limited case study, the technique has significant potential wh
Augmented Reality is applied to a number of maintenance train
tasks. The training involves effective content management 

efficiency of the AR technology to link the virtual information w

Fig. 35. Use of cloud computing for Big Data storage and analysis [61].
Fig. 36. Augmented reality applied to NDT for pipelines using a tablet device [5]. Fig. 37. Architecture for a context aware AR system [200].
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physical objects, cognitive aspects of the training on the user
ning and usability of the AR equipment. Schwald and de Laval
] presented an early study on the effectiveness of AR
nologies for maintenance training within industrial context.
research represented a scenario based context development

 can provide step-by-step training for a maintenance task. The
sical limitation of the HMD (e.g., weight, lack of complete
less connection) and its impact on prolonged use by the

ntenance technicians is highlighted as a major challenge at the
. This basic issue about the HMD still exists and as a result
e mobile and handheld technologies such as tablets and
rtphones are gaining popularity in industry. Neumann and
oros [123] highlighted the difference between cognitive tasks
direct work piece manipulation tasks and their relationships to
evel of attention required for different maintenance tasks. Use
R would reduce manual interaction with the work piece and
ment search and study, but the training must address the
l of attention’ required for a maintenance task. This is
icularly relevant for continuous maintenance of life critical
pment. De Crescenzio et al. [23] presented industrial case
y of AR for aircraft maintenance training. The study developed
arker less AR technique supported by the training authoring
em and proved its effectiveness within the industrial context.
el et al. [189] discussed advantages of advanced AR equipment
 as haptic feedback through a vibrotactile bracelet for

tional and translational movements. The study also highlight-
he use of a training platform with AR based virtual elements

ing better measurement and evaluation of the trainee’s
ormance with a level of detail that is not possible when
orming the actual task without the virtual elements. The

quality assurance and monitoring of continuous maintenance
technician’s performance are essential for complex engineering
systems.

5. Future of continuous maintenance within the Industry
4.0 context

Cyber physical system (CPS) is the basis for Industry 4.0 or
Internet of Things (IoT). Cyber physical systems (CPS) are the
interconnection of physical objects through global or local data
networks. They are the technological driver for collaboration in
organisations. Cyber-physical systems gather the information that
is the base for big data analyses. Objects autonomously communi-
cate with each other to reach a common goal [147] within a CPS.
Industry 4.0 provides an opportunity to collect more real time data
about current state of machines, which can then be analysed using
Big Data Analytics. Preventive maintenance events can be
scheduled assuming smaller safety margins and the risk of
unplanned failures will be reduced. The inventory level for spare
parts can be reduced, because less safety stock for unscheduled
events has to be stored. With the availability of current state of the
systems, it would also be possible to plan spare parts availability
across a geographic location to minimise the inventory cost.
Further research is required to automate the maintenance
planning activities that maximises the utilisation of available
resources and availability of the systems at an optimum cost.
Fig. 39 shows sources of data and communications within an
Industry 4.0 based manufacturing plant for maintenance purposes.
The obvious questions for future vision are:

� How maintenance is going to change in this highly connected
industrial environment? Maintenance technology needs to adapt
to the dynamic and agile manufacturing environment based on
‘Industry 4.0’.
� How do we maintain more than one product in a system (e.g.,

twenty machine tools in a production line): maintenance of
multiple machines simultaneously and optimisation of mainte-
nance and operation schedules together.

According to these questions, Herterich et al. [64] have already
assessed the impact of CPS on industrial services in Manufacturing.
More precisely for the maintenance, they outlined the impact of
CPS relates to ‘‘predict and trigger services activities’’, ‘‘remote
diagnostics, ‘‘replace field services activities’’, ‘‘empower and
optimise the field service and ‘‘information and data driven
services’’. Based on the additional and real time data collected from
the machines, efficiency and quality of the maintenance can be
improved. In addition, Yokoyama [195] is investigating new

8. Examples from an automatically authored AR-manual: the half-transparent

ays (left) were automatically extracted from the reference sequence. The green

ring (middle) indicates a correct completion of the task, red a wrong posture or

ion. [133].
Fig. 39. A manufacturing plant based on Industry 4.0 showing the sources and communications of Big Data for maintenance purposes.
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maintenance services in line with CPS through the ‘‘Smart
Maintenance Initiative’’ advocated for Railway applications. An
integrated maintenance platform will capture track irregularity
and material condition data frequently by trains in operation and
perform maintenance decision-making based on the condition of
the individual track. CPS in the future will improve the ability to
monitor individual systems and even components for mainte-
nance.

In relation to fault prediction service, Xu et al. [194] are
proposing an intelligent system based on IoT. Three major
challenges in using IoT for the fault prediction of a machine group
are: (1) communication of data from the IoT sensor network, (2)
non-stationary and nonlinear fault prediction and (3) massive data
processing. The IoT acts as an enabler for more efficient continuous
maintenance, but the need for fundamental understanding of the
degradation mechanisms and root causes for the failure modes
remains unchanged. More globally, the cyber-physical system
comprises of machines and work pieces that communicate
autonomously with each other to reach the common objective
of realizing the processing in production. Work pieces communi-
cate their position and work progress, and machines communicate
their status (e.g., working, waiting and mounting). The communi-
cation between machines and work pieces negotiates the point of
time to start of the following production step. The resulting
collaborative architecture is assimilated by Zuccolotto et al. [202]
to an Artificial Immune Intelligent Maintenance System (AI2MS)
which is biologically inspired. In a complementary way, with
regards to life cycle consideration Denkena et al. [30] are using the
term of gentelligent components to form new intelligent
(maintenance) system. Gentelligent combines the attributes of
genetics and intelligence in one adjective. Gentelligent compo-
nents are able to feel, communicate and store information from
their environment and thus act as autonomous intelligent
individuals. In specific CPS-based maintenance, the information
of machine status and condition monitoring information is sent
continuously to a big data storage system (e.g., Cloud). Big data
analysis algorithms watch and analyse all incoming data.
Maintenance plans and schedules are derived based on the results
of the big data analyses. Maintenance activities are scheduled
depending on the machine condition. The maintenance plan is
constantly adapted according to the machine status and work
schedule. Lee et al. [99] are showing the impact of industrial big
data analytics and CPS for the future maintenance and service
innovation. Moreover, during execution of maintenance opera-
tions, information from the big database assists the maintenance
workers. Videos or text information about maintenance task are
provided to the worker by using innovative wearable devices
meeting the needs of cloud manufacturing [59]. In turn the worker
feeds back his or her findings and experience during the
maintenance process into the database. In addition, spare parts
can hand over all required data for the machine control unit
automatically like an USB-device in a PC [35]. With time the
increasing database enhances the accuracy of maintenance
planning and information for augmented reality based mainte-
nance worker assistance. Use of IoT as an enabler for continuous
maintenance is still at its infancy. Fig. 40 shows a scheme for
condition monitoring of engineering systems using IoT and cloud
computing [192]. With the IoT and the cloud, condition data from
various modules of an engineering system distributed across

high traffic capacity [40]. Major industrial players are 

introducing their own reference architectures.
� Addressing and naming of heterogeneous IoT devices with

network. Although there are several object naming services [
there is a lack of knowledge about the robustness of the servi
� Supporting IoT object mobility, where the objects withi

manufacturing system (e.g., products in an assembly line) m
with time.
� Machine to Machine (M2M) communications between hete

geneous IoT devices [50] in terms of routing and end-to-
reliability is essential for efficient maintenance. In future, 

network congestion has to be addressed in large scale IoT ba
systems.
� Intelligent and flexible Gateways (GWs) to connect hetero

neous devices and to cater for different characteristics of 

devices.
� Remote device and data management [187] within a resou

constrained environment of IoT (e.g., memory, energy c
straints). Scalability of the device and data management is go
to be a major challenge for the maintenance.
� Understanding traffic characteristics will be a major challeng

maintain an IoT enabled manufacturing system.
� Providing security for the IoT enabled systems is a critical issu

series of properties, such as confidentiality, integrity, authe
cation, authorisation, non-repudiation, availability, and priv
must be guaranteed for IoT based future systems [19,62].
� Standardisation of IoT devices and the communication interfa

is also essential to perform effective continuous maintena
[65]. Höller et al. argues for open standards to address the
scalability issue [65].
� Long term management of big data from the IoT devices for

Fig. 40. A scheme of condition monitoring of engineering systems using IoT

cloud computing [192].
ntly

t of
eys
the
ces

ajor
fied
yer
om
multiple locations can be collected and analysed together using
cloud based data fusion and data analytics. The knowledge about
the system health can then be fed back to the design team to
achieve a closed loop design process.

There are still several key open issues in IoT for its adoption in
the industry for the maintenance support [14]:

� Scalable, flexible, secure and affordable reference architecture
for IoT solutions with components, devices and systems.
Standards organisation, such as IEEE, 3GPP and ETSI have
developed IoT reference architectures for network scalability and
maintenance purposes. Cloud based data storage is rece
proposed to address this challenge [15].

Common Internet protocols are unsuitable for the Interne
Things, because resources on devices are limited. Security k
and algorithms have to be developed that allow for 

autonomous communication of devices with limited IT-resour
[124]. Cyber security of the cyber-physical systems is a m
topic of research in recent times. Zhang et al. [197] have identi
three major areas of cyber security threats: aware execution la
(i.e., from sensors and actuators), data transport layer (i.e., fr
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ork architecture) and application control layer (i.e., from user
 storage) (Fig. 41). Knowles et al. [89] have presented a review

yber security management techniques for industrial control
ems. They have highlighted development of international
dards (e.g., IEC 62443 for control systems and IEC 27000 series
nformation systems) to protect hardware and software. It is
rved that legacy systems are a major challenge in the absence

uilt-in cyber security features. Olivier et al. [128] presented a
el software defined network (SDN) architecture for the IoT
d systems. Continuous maintenance of complex engineering
ems needs to protect the security features both at the
ware and software level and the SDN architecture could be

 effective against any cyber threat.
ontinuous maintenance also requires standardisation of IoT
], Industry 4.0 and bid data analytics. The standards
lopment is in its infancy and would require developments

oth hardware and software. European Commission funded a
ber of IoT architecture development projects as first step for

er standardisation [91]. The scalability issue is addressed by
ral competing reference architectures: ETSI M2M, FI-WARE,
A and IoT-6 [117]. Miorandi et al. [114] have highlighted a lack
andardisation in ontologies, data formats and data models to
sed in IoT applications and in terms of its service level

rfaces and protocols. Lack of standardisation of the IoT devices
d increase the cost of continuous maintenance of the
neering systems. IoT software platforms are likely to converge

 a few key players, such as Android and iOS, and this will have
or challenges in integrating with the platforms used in the

Continuous maintenance of an IoT enabled complex engineer-
ing system will require the IoT standards work with the existing
maintenance standards such as PASS 55 (i.e., specification for
optimal management of physical assets) and ISO 55000 (a family of
standards: overview, principles and terminology).

Effective utilisation of the big data analytics and IoT for
continuous maintenance will require resolution of the following
challenges as well:

� Knowledge on ‘smart intelligence’ (e.g., control parameters) that
would be necessary to control the maintenance of engineering
systems.
� Knowledge to select the maintenance strategy for an integrated

engineering system (e.g., service design).
� Ownership of data (including system and component design, bill

of materials) is a major challenge to deliver the continuous
maintenance across the supply chain. In the future, a ‘data supply
chain’ with necessary reward structure has to be established to
support the maintenance.
� Design and manufacture for continuous maintenance will

require regular feedback to the designers and manufacturing
engineers.
� Through-life data management across the life cycle of a engineering

system would be essential. The data should also support detailed
component level information to track degradation over time.
� Better integration of machine (e.g., robot) and human operators

for collaborative maintenance solutions. This approach will
address current challenges in autonomous maintenance.

Fig. 41. Types of security threats for IoT based continuous maintenance (based on [114,197]).
neering systems. Similarly, the IoT communication technolo-
 that are critical for an effective IoT based maintenance
form are [65]:

wer line communications (PLC)
N and WLAN

uetooth low energy (Bluetooth Smart)
w rate, low power networks
v6 over Low power Wireless Personal Area Networks
v6 Routing Protocol for Low Power and Lossy Networks
nstrained application protocol.
6. Concluding remarks

Continuous maintenance is changing due to the business model
evolution and the drivers such as ‘optimising the through-life cost’
or ‘increasing the availability’ of high value and long life products.
Manufacturers are expected to guarantee performance over the
contracted period and provide the maintenance service, often with
a fixed price. Engineering for life is becoming popular to reduce the
through-life cost. Manufacturers are now interested in better
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understanding of in-service degradation mechanisms of their
components and systems; repair mechanisms; monitoring, diag-
nostics and prognostics; autonomous maintenance; obsolescence
and integrated planning. In-service performance (e.g. degradation)
feedback to design and manufacturing, although not covered in
this keynote, is necessary to improve new products. Automating
the feedback to the designers and manufacturing engineers will
reduce current manual and expensive practice in industry and
reduce cost. Developing condition-monitoring technologies to
support legacy products that are not currently suitable for
prognostics and remote maintenance is also very important to
increase their remaining life.

The basic knowledge and skill sets required for the continuous
maintenance research and practice are around the six foundations,
and includes component and product level in-service degradation
science and modelling based on material, design features and
manufacturing process parameters for different environmental
and use conditions. Manufacturers need to use this degradation
information in the product development life cycle stages and
integrate the organisation to implement an ‘engineering for life’
culture. The second most important skill in the future will be real
time data capture, analysis and modelling of the ‘big data’ from the
products in use within a ‘highly connected’ manufacturing and use
environment so that the maintenance efficiency can be improved.
Knowledge of uncertainty modelling will become more important
for the data modelling. The other major knowledge and skill that
are very relevant for the maintenance in the future are: autonomy
for maintenance efficiency, repair technologies for new materials
(e.g. composite repair) for resource utilisation and life extension
and an integrated approach to obsolescence management.
Globally, skills development for the continuous maintenance
knowledge base is behind than that for the production technolo-
gies and systems. There is a significant lack of R&D investment in
the area, especially considering the level of contribution from
‘service and support’ activities (often 50% of revenue) within the
high value manufacturing sector.

Continuous maintenance technologies will enhance ability to
assess health of components and products, develop autonomous
maintenance solutions for efficiency and remote operation,
visualise complex and uncertain data for decision making within
an integrated maintenance planning environment and reduce the
risks and cost. Advanced repair technologies are also important
and are building on the advances in cleaning technologies, coating
technologies and additive manufacturing. Self-healing technolo-
gies are still at its infancy and at the component level. Significant
challenges have to be addressed to develop the ideas at the board
level. Use of adaptive augmented reality in maintenance support
will allow customised help and improve safety (i.e. less human
error) and efficiency of the maintenance tasks. A cross-sector (e.g.
manufacturing, construction, health care and IT) approach to
research and technology development will allow mutual learning
and reduce the R&D costs required to support continuous
maintenance of high value products in the future. With the
emphasis on using more and more life cycle data, secure data
communication across the Extended Enterprise is essential for the
maintenance to work in practice. The Extended Enterprise will also
require a well-governed data supply chain, which is often missing
in industry today.

With the foundations and technologies, there is a need to

only a major enabler of continuous maintenance, but effec
utilisation of this technology for continuous maintenance depe
on ‘smart intelligence’, service design, sharing of data across
supply chain, data feedback and management and better hum
and machine collaboration. Scalable architecture of the IoT ba
products; communication protocols and standards will be ess
tial to support the future of continuous maintenance.
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Computing and Internet of Things: A Survey. Future Generation Comp
Systems 56:684–700.

[16] Brandon EJ, Vozoff M, Kolawa EA, Studor GF, Lyons F, Keller MW, et al (2
Structural Health Management Technologies for Inflatable/Deployable S
03.
tical
nfra-

sing
164–

e IP-
226.
010)
rna-

 and
tems
develop novel business models and contractual frameworks
between the manufacturers, their customers and the supply chain
to share the risks of guaranteeing the through-life performance. A
stronger partnership between the manufacturer, their customer
and the supply chain will be essential in the future. The partnership
has to be supported by an internal organisational culture based on
‘engineering for life’ and servitisation.

Industry 4.0 is developing across the world and is the future
context for continuous maintenance. It is observed that Internet of
Things (IoT) and cloud computing are going to play a major role in
the near future within the Industry 4.0 context. IoT on its own is
tures: Integrating Sensing and Self-healing. Acta Astronautica 68:883–9
[17] Bu C, Tang Q, Liu Y, Jin X, Sun Z, Yan Z (2015) A theoretical study on Ver

Finite Cracks Detection Using Pulsed Laser Spot Thermography (PLST). I
red Physics and Technology 71:475–480.

[18] Capello E, Colombo D, Previtali B (2005) Repairing of Sintered Tools U
Laser Cladding by Wire. Journal of Materials Processing Technology 

165:990–1000.
[19] Cirani S, Ferrari G, Veltri L (2013) Enforcing Security Mechanisms in th

Based Internet of Things: An Algorithmic Overview. Algorithms 6:197–
[20] Colledani M, Ekvall M, Lundholm T, Moriggi P, Polato A, Tolio T (2

Analytical Methods to Support Continuous Improvements at Scania. Inte
tional Journal of Production Research 48:1913–1945.

[21] Colledani M, Tolio T (2012) Integrated Quality, Production Logistics
Maintenance Analysis of Multi-stage Asynchronous Manufacturing Sys

http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1000
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1000
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1000
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1005
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1005
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1005
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1010
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1010
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1010
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1015
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1015
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1020
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1020
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1025
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1025
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1025
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1030
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1030
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1030
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1030
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1035
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1035
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1035
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1040
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1040
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1040
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1045
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1045
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1050
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1050
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1050
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1055
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1055
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1055
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1055
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1060
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1060
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1065
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1065
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1070
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1070
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1070
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1075
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1075
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1075
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1080
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1080
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1080
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1085
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1085
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1085
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1090
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1090
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1095
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1095
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1095
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1100
http://refhub.elsevier.com/S0007-8506(16)30198-6/sbref1100


[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]
[52]
[53]

[54]

[55]

R. Roy et al. / CIRP Annals - Manufacturing Technology 65 (2016) 667–688686
With Degrading Machines. CIRP Annals – Manufacturing Technology 61:
455–458.

 Colledani M, Tolio T, Fischer A, Iung B, Lanza G, Schmitt R, et al (2014) Design
and Management of Manufacturing Systems for Production Quality. CIRP
Annals – Manufacturing Technology 63:773–796.

 De Crescenzio F, Fantini M, Persiani F, Di Stefano L, Azzari P, Salti S (2011)
Augmented Reality for Aircraft Maintenance Training and Operations Sup-
port. IEEE Computer Graphics and Applications 31:96–101.

 Crossley TR, Merchant ME (1981) A System to Assist in the Running of
Complex Industrial Processes. CIRP Annals – Manufacturing Technology
30:377–381.

 Cunha PF, Wiendahl H-P (2005) Knowledge Acquisition from Assembly
Operational Data Using Principal Components Analysis and Cluster Analysis.
CIRP Annals – Manufacturing Technology 54:27–30.

 Cunha PFF, Duarte JAC, Alting L (2004) Development of a Productive Service
Module Based on a Life Cycle Perspective of Maintenance Issues. CIRP Annals –
Manufacturing Technology 53:13–16.

 Datta PP, Roy R (2010) Cost Modelling Techniques for Availability Type
Service Support Contracts: A Literature Review and Empirical Study. CIRP
Journal of Manufacturing Science and Technology 3:142–157.

 Datta PP, Srivastava A, Roy R (2013) A Simulation Study on Maintainer
Resource Utilization of a Fast Jet Aircraft Maintenance Line Under Availability
Contract. Computers in Industry 64:543–555.

 Deng S, Hua L, Han X, Huang S (2012) Finite Element Analysis of Fatigue Life
for Deep Groove Ball Bearing. Proceedings of the Institution of Mechanical
Engineers Part L: Journal of Materials: Design and Applications 227:70–81.
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