
March 17, 2012 16:41 International Journal of Systems Science IJSS_v2

International Journal of Systems Science
Vol. 00, No. 00, 00 Month 20xx, 1{21

RESEARCH ARTICLE

Gain-scheduled H1 Control via
Parameter-Dependent Lyapunov Functions

Sunan Chumaleea and James F Whidborneb�

aResearch and Development Centre for Space and Aeronautical Science and Technology,
Royal Thai Air Force, Bangkok, Thailand

bDepartment of Aerospace Engineering, Cran�eld University,
Bedfordshire MK45 0AL, United Kingdom

(Received 00 Month 20xx; �nal version received 00 Month 20xx )

Synthesizing a gain-scheduled output feedback H 1 controller via parameter-dependent Lyapunov functions
for linear parameter-varying (LPV) plant models involves solving an in�nite number of linear matrix inequal-
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et al. 2009, Corno et al. 2008, Lu et al. 2006), function substitution (Shin et al. 2002), or state
transformation (Balas 2002, Shamma and Cloutier 1993), are normally used to derive an LPV
model from the original nonlinear model. Moreover, in the literature, there are several di�erent
varieties of LPV models, e.g. grid LPV model (Corno et al. 2008, Lu et al. 2006, Wu et al. 2002,
1996), a�ne LPV model (Apkarian and Adams 1998, Apkarian 1997, Apkarian et al. 1995)
(or polytopic LPV model), tensor-product (TP) convex polytopic model (Baranyi et al. 2006,
Baranyi 2005, 2004), etc.; these have been introduced for gain-scheduledH1 control synthesis
and analysis which is usually based on single quadratic Lyapunov function (Apkarian et al.
1995, Becker and Packard 1994) or parameter-dependent Lyapunov function, e.g. parameter-
dependent (Corno et al. 2008, Wu et al. 2002, Apkarian and Adams 1998, Wu et al. 1996), a�ne
parameter-dependent (Gahinet et al. 1996), piecewise-a�ne parameter-dependent (Lim and How
2003, 2002), blending parameter-dependent (Shin et al. 2002), multiple parameter-dependent
Lyapunov functions (Lu et al. 2006, Lu and Wu 2004).

Using a single quadratic Lyapunov function, for both the a�ne LPV model (Apkarian et al.
1995) and the TP convex polytopic model (Chumalee and Whidborne 2009) cases, a �nite number
of LMIs need only to be evaluated at all vertices while, for the grid LPV models (Wu et al. 1995)
case, an in�nite number of LMIs have to be evaluated at all points over the entire parameter space
in order to determine a pair of positive de�nite symmetric matrices (X ; Y ). However, in practice,
the symmetric matrices (X ; Y ) can be determined from a �nite number of LMIs by gridding the
entire parameter space with a non-dense set of grid points. Having determined the symmetric
matrices (X ; Y ), a more dense grid points set can be tested with these determined symmetric
matrices (X ; Y ) to check whether the LMIs are still satis�ed (Wu et al. 2002, 1996). If not,
this process is repeated with a denser grid until the symmetric matrices (X ; Y ), that satisfy the
LMIs for all points over the entire parameters space, are obtained (Wu et al. 2002, 1996, Lim and
How 2003). However the result of such a heuristic gridding technique is not necessarily reliable
and the analysis result is dependent on the choice of gridding points (Wang and Balakrishnan
2002). In addition, for a grid LPV model case, the resulting gain-scheduled controller has high
computational on-line complexity at the gain-scheduling level (Wu et al. 1995) while, for the
other two cases, the gain-scheduled controller is constructed as an a�ne matrix-valued function
in the polytopic coordinates of the scheduled parameters (Apkarian et al. 1995, Chumalee and
Whidborne 2009).

In general, the single quadratic Lyapunov function is more conservative than the parameter-
dependent Lyapunov function when the parameters are time-invariant or slowly varying (Gahinet
et al. 1996). In addition, when the parameters have a large variation, the piecewise-a�ne
parameter-dependent (Lim and How 2003, 2002), blending parameter-dependent (Shin et al.
2002), and multiple parameter-dependent Lyapunov functions (Lu et al. 2006, Lu and Wu 2004)
are less conservative than the parameter-dependent Lyapunov functions. This result from the
fact that an LPV model with a large parameter variation can be modelled as a switching linear
parameter-varying (SLPV) system which can be made discontinuous along the switching surface
by dividing the entire parameters spaces into parameters subsets that are small variation regions.
Solving LMIs with the parameters subsets improve the performance measure (
 ). Moreover, Yan
and Ozbay (2007) provide su�cient conditions to guarantee the stability of the SLPV systems in
terms of the dwell time and the average dwell time, where a switching signal of the SLPV systems
with dwell time � means a time interval between any two consecutive switching from one model
to another model is equal to or greater than � . However, using parameter-dependent (Corno
et al. 2008, Wu et al. 2002, Apkarian and Adams 1998, Wu et al. 1996), blending parameter-
dependent (Shin et al. 2002), and multiple parameter-dependent Lyapunov functions (Lu et al.
2006, Lu and Wu 2004), an in�nite number of LMIs have to be evaluated at all points over the
entire space of parameters. Furthermore, the resulting gain-scheduled controller requires more
complex on-line computations at the gain-scheduling level (Corno et al. 2008, Lu et al. 2006, Lu
and Wu 2004, Shin et al. 2002, Wu et al. 2002, Apkarian and Adams 1998).
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In this paper, we consider the design problem of gain-scheduled controllers with guaranteed
L 2-gain performance for a class of a�ne LPV systems using parameter-dependent Lyapunov
functions. By simple manipulations on the parameter-dependent Lyapunov functions or the
bounded real lemma (Apkarian et al. 1995) inequality, a symmetric matrix polytope form of these
inequalities is obtained. Hence, the LMIs need only to be evaluated at all vertices of the system
state-space model matrices and the variation rate of the scheduled parameters. In addition,





Fig. 2. Spectrogram of the generated OFDM signal forEb=E0 = 15 dB

As is displayed in Fig. 2, the generated OFDM signal
demonstrates its characteristics, such as 14 tones, central
frequency of 15000Hz, bandwidth of 10000Hz, etc., that match
the desired con�guration. The periodic intervals during the
transmission signals are observable, which proves the success
of embedding spectrum holes using the simulation framework
presented in Fig. 1.

III. SPECTRAL CORRELATION FUNCTION

With the assumption of periodicity in spectrum holes, cyclo-
stationary feature sensing is expected to outperform conven-
tional methods, e.g. energy detection, especially in low SNR
regions due to better noise immunity [21]. Spectral correlation
function (SCF) is one of the most common methods to extract
cyclic features in the frequency domain and is introduced in
this section.

According to [22], the cyclic autocorrelation function (CAF)
RX [� ; � i ] of a discrete signalX [n] is de�ned in the time
domain as follows:

RX [� ; � i ] = lim
L !1

1
L

L= 2X

n = � L= 2

RX [n; � ] e� j 2�� i n � (1)

where� is cyclic frequency belonging to the cyclic frequency
set A ; � is the time lag;� corresponds to the time interval;
L is the length of the signal.

SCF of x [n] is the Fourier transform (FT) of CAF [23]
with the expression as:� X (f ; � ) = F [RX [� ; � ]]. Practical
method of estimating SCF is based on using an averaged
periodogram, hence the estimated SCF is given as follows [24]:

�̂ X (f ; � ) =
1

K �

K � 1X

k=0

X k
n w

[f + (1 � � ) � ] �

X k
n w

[f � �� ]�
(2)

where X k
n w

is obtained from short time Fourier transform
(STFT) of X [n] with an averaging window de�ned by co-
ef�cients kth ; K = I [(L � nw ) =R] + 1 with L is signal
length,nw is window width, andR is a sample index allowing
overlaps.I is a ceil function that returns the smallest integer
value that is bigger or equal to the input value.

The three dimensional representation of the SCF of the
simulated communication signal (generated using the system
in Fig. 1) is shown in Fig. 3.

Fig. 3. Spectral correlation function of the generated OFDM signal

As one can see from the Fig. 3, the CAF of the desired
communication signal has an observable pattern in a form of
multiple peaks. We can easily extract some other characteris-
tics, e.g. the central frequency is around 15000 Hz, bandwidth
is 10000 Hz, number of tone (presented as peaks) is 14, and
cyclic frequency is 88 Hz. The above results are in accordance
to our desired con�guration and this validates the effectiveness
of SCF method in extraction of cyclic patterns of the simulated
signal.

IV. L EARNING BASED DETECTION SOLUTION

In this paper, we propose to use a learning based scheme to
detect and extract spectrum holes, where R-CNN is considered
as a intelligent detector for spectrum sensing because of its
ef�ciency in 'recognition using regions' [18]. The framework
of the proposed LB solution is presented in Fig. 4.

Fig. 4. The framework of R-CNN based detection

As illustrated in Fig. 4, the framework of the proposed LB
solution contains the following parts: data stream generator
(presented in Sec. II), the cyclostationary detector (SCF based
sensing explained in Sec. III), a learning based detector (R-
CNN is explained in Sec. IV-B) and the extractor of spectrum
hole parameters (explained below).

The �rst step of our LB solution is to use the SCF, de�ned
by equation (2), to extract the feature map of the processed
signal. At the second step, by performing the deep learning
based detection, the presence of spectrum hole is detected and
its characteristics are extracted.

The representation of R-CNN output (called bounding box)
is commonly de�ned as rectangle described by parameters
(t; l; w; h ), wheret and l are the top and left corner indices,
and w and h are the width and height of the rectangle,
respectively.
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equations

�
_x
_x k

�
= A cl(� ; _� )

�
x
x k

�
+ B cl(� )w

z = Ccl(� )
�

x
x k

�
+ D cl(� )w (25)

where

A cl(� ; _� ) =
�
A (� ) + B 2D k(� )C2 B 2Ck(� )

B k(� )C2 A k(� ; _� )

�
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(28), we get
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where the notation ? represents a symmetric matrix block. Moreover, substituting (22) and
(35){(42) in (44), we have
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in which the inequality (45) can be also rewritten as
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where
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By Lemma 2.1 and knowing the matrix vertices (X̂i; Ŷi); i = 1 ;2; : : : ;m, the system ma-
trix vertices K̂i can be determined from (46), that is an LMI in K̂i, at all vertices for which
(K̂1; K̂2; : : : ; K̂m) have to satisfy all of m2(m + 1) =2 LMIs. Furthermore, knowing ~Aki

; : : : ; ~Dki
,

the controller system matricesAk(�; _�); : : : ;Dk(�) can be computed on-line in real-time using
(29){(31) and (38) with instantaneous measurement values of� and _�, where the proposed inter-
mediate controller variablesÂk(�), B̂k(�), Ĉk(�) and Dk(�), and

�
X(�);Y(�)

�
depend a�nely

on the parameters� and they can be computed on-line in real-time using (35){(40). Hence, the
proposed method reduces computational burden and eases controller implementation compared
to the explicit controller formulas (Apkarian and Adams 1998, Gahinet 1996).

However, usually, the parameter derivatives either are not available or are di�cult to estimate
during system operation (Apkarian and Adams 1998). To avoid using the measured value of_�, we
can constrain eitherX(�) or Y(�) to depend a�nely on �. This yields _X(�)Y(�)+ _N(�)MT (�) =
�(X(�) _Y(�) + N(�) _MT (�)) = 0 (Apkarian and Adams 1998), hence equation (29) becomes

Ak(�) = N
�1(�)

�
Âk(�) �X(�)

�
A(�) �B2Dk(�)C2

�
Y(�)

�B̂k(�)C2Y(�) �X(�)B2Ĉk(�)
�

M
�T (�) (48)
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Lemma 3.1: (Gahinet and Apkarian 1994, Projection lemma) Given an inequality problem
of the form

	 + Q
T
K

T
P + P

T
KQ < 0 (49)

where	 2 Rm�m is a symmetric matrix, Q and P are matrices with column dimensionm. Let
Q? and P? be any matrices whose columns form bases of the null spaces ofQ and P respectively;
the above problem is solvable for a matrixK of compatible dimensions if and only if

Q
T
?	Q? < 0; P

T
?	P? < 0 (50)

By Lemmas 2.1 and 3.1, the LMIs of (46) are solvable at all vertices forK̂i if and only if
there exist a pair of positive de�nite symmetric matrices

�
X(�);Y(�)

�
that satisfy the following

theorem.
Theorem 3.2 : There exists an LPV controller K(�) guaranteeing the closed-loop system,(21)
and (23), quadratic H1 performance
 along all possible parameter trajectories,8(�; _�) 2 ���,
if and only if the following LMI conditions hold for some positive de�nite symmetric matrices
(X(�);Y(�)) , which further satisfy Rank(X(�) �Y

�1(�)) � p.
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(54)
�

Xi I

I Yi

�
> 0; for i; k = 1 ; : : : ;m and 1� i < j � m (55)

Note that Theorem 3.2 provides a new approach where an alternative to the multi-convexity
approach (Apkarian and Tuan 2000) is given in Appendix B. In addition, NX and NY denote
bases of the null spaces of [C2;D21] and [BT

2 ;D
T
12], respectively. The inequality (55) ensures

X(�);Y(�) > 0 and X(�) �Y(�)�1 � 0.

4. Numerical example

To demonstrate the e�ectiveness of the proposed approach, we consider the example of Leith
and Leithead (1999). For this example it has been shown that for an LPV plant model derived
from the Jacobian, a common approach, with an LPV controller synthesized using the method of
Apkarian et al. (1995), the closed-loop system is only stable when the LPV controller is applied








