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Optimum Structures

Introduction

The design of the best structﬁre for a given purpose
depends upon the criterion used for optimisation., Structures
may be designed to safely transmiﬁ a given system of forces using
the least weight of material. They ﬁay also be designed to have
maximum stiffness of a certain type for a given weight or
alternatively to have the’greatestypbssible»fundamental
frequency of vibfation. These proﬁlems,,although in general
distinct from one another, are closely related and much can be
achieved towards maximisation of stiffness and frequency by the
use of minimum weight designs, In fact it can be shown that‘a
minimum weight framework is'the stiffest structure of that weight
for the force system, which it is designed to carry.X
The present report is concerned exclusively with the problem of
the design'of structures of minimum weight, which are required
to transmif.speoified forces. Some attention will be given ﬁo
frameworks because, in particular, methods of approximate
numerical analysis are more readily formulated for this type of
Structure, but the main emphasis will be placed upon the design
of structures formed from plates of variable thickness reinforced

by direct load carrying members.,

® See para.l.l
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Section 1, Frameworks

The problem of designing the lightest framework which
will equilibrate a system of given forces was first considered
by A.G.,M, Michell (Ref.l). Structures designed according to
his principles are therefore called 'Michell structuresf.

Consider any system of forces in equilibrium F;.with
their'points of action contained in a region R of space,
within which a structure, which equilibrates'them, is required
to lie. (Fig.l) The system F can be balanced by an
infinite variety of pin-jointed structures S, lying in R,
and made from a material capable of carrying stresses
y (f »0) in tension and compression respectively. If T
is the end load in any member of any S with cross-section
area A, then | ' '

T < A . oo (1.1)

Impose a virtual deformation D on the region R,
restricted'so_that the change in length I of any linear

-segment of length L in R satisfies

AL £ el , eee (1.2)

where e 1is a positive infinitesimal, Let W be the virtual
work of F taken over the displacements of D. This will be
equal to the 'internal' virtual work in any of the structures

S and so

W = LTAL ces (1.3)

where AL applies here to a number of S and Z sums over
all members of S,
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Equation (1.3), using (1.1) and (1.2), then implies

lw| = \gT&L\é T ‘;TP;AL'[ < fe TAL = feV

¥

where V is the volume of maberial contained in the structure
S. It follows that, for any V of S and any D satisfying

W | .
V > ‘fe eee (1.4)

Picking out that D ‘which makes (W] a maximum then implies

vV oy v, cee (1.5)
where .
_  Wlimax
Vm - —"“f“é""—- N L2 ) (106)

The quantity Vm is thus a lower bound to the volumes of all
structures S which equilibrate the given forces.

‘The argument of para.l.2 does not show that there is a
structure S, with volume Vp. The existence of such a
structure has been shown in many special cases, but no general

proof is known, A Michell structure Sm is characterised by

T} = A | eee (1.7)

‘and by the existence of a Dm satisfying

|AL] = eL ve. (1.8)

for all its members and such that the sign of AL agrees with
that of T for all the members of S . Equations (1.3), (1.7)
and (1.8) then show that W = feV for a Michell structure and

so by (1.6) its volume is <V, . It must also satisfy (1.5)

m
and hence its volume is precisely Vm. A Michell structure,

if it exists, is thus the lightest possible structure which
equilibrates the given forces.
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A Michell structure is also the stiffest structuré‘among
all the frameworks of volume Vp,» which are able to transmit the
given forces F. The proof of this result falls into two parts.
In the first place a structure of given layout is'considefed
and that distribution of cross-sectional areas A is sought:
such that, for constant total volume V = ZAL, the work doné
U by given forces F 1is as small as possible., If w is the
displacement corresponding to F and € the strain in a member,
whose material has modulus E then U is given by '

1

U = =Iwn = Z(]‘?E

5 AL ' Ceee (1.9)

Consider then a variation A of A and let ©&w, &€ be the
consequent changes in w and ¢ . The condition for minimum U
is then , : ,

8U = %Fﬁw = [{do(fme)AL + (Fme )6AL» - 0 . (1.10)

where the OA are restricted by the constancy of V to sat:sfy
S6AL = O oee (1.11)

Now the deformation characterised by ow, B8e may be taken as a
virtual deformation for the unvaried structure which is in
equilibrium under F, It follows therefore that

Fow = Lo(5Ese’) AL oo (1.12)

and that the condition (1.10) implies

E(%Esz) BAL = O veo (1.13)

Combining (1.13) with (1.11), introducing a constant
Lagrangian multiplier A, then gives

z-s—-Ee -7\} BAL = O
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from‘which it may be concluded that ®
2

, _ 2

or that the strain energy density and in consequence the

numerical values of the strain and the stress are constant for
all members of the structure.

sConsider now, in the second place, structures which
transmit the forces F with constant stresses Te 4in all their
members. The total strain energy in such a structure is
(£2/2E)V and this reaches its minimum value when V = V ,
i.e., when it is a Michell structure. Tt has thus been
demonstrated that a Michell framework is the stiffest structure

among those of volume Vm?

The virtual deformation Dm associated with a Michell
framework must satisfy (1,2) in R and (1,8) along lines,
which are the layoub 1ines of the structure. The simples®
deformation of this kind is a uniform dilatation of space with
1inear strain e (or —¢). 1In this case all 1ines have the
strain e (or'—e) and no restriction ig imposed on layoutbe.
However all members must carry tension (or compression) loads
and so a rather specialised, but nevertheless important class
of structures results. Any structure which can carry forces F
by means of members which all have stress f (or -f) is an
optimum structure and all such structures have the same weight,
independently of their layout.

A second kind of deformation.Dm, appropriate to two-
dimensional structures, is that for which the values of the
principal strains are te. The principal strain lines are
then possible layout lines for Michell structures. It can
then be shown, as'in Sectidn 3 below, that compatbibility of

¥ The values of A are restricted by A > 0. If the best value
of U requires some members to have zeTro areas, then These can be

omitted from the summation L .

Lge? = 2 vee (1.18)

e o
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strain imposes geometrical restrictions on these layout lines,
which are the same as those satisfied by the slip lines. in
perfect plastic flow. 'They must in fact satisfy Hencky's
theorems (Ref.2, Chap.VI,4) and this immediately provides
methods for their construction., This analogue with plastic
flow has been exploited in for example Refs. 3, 4 and 5,

Very little is known about layout lines in three-
dimensions. Michell gave in Ref.l a structure for the
transmission of torsion consisting of members lying along the
rhumb lines on a sphere. Other optimum structures have been
obtained by rotating two-dimensional 1ayouts. However no
general theory has as yet been developed. |

Section 2. Michell Type Theorem for Reinforced Plates

The present section deals with the principles governing
the optimum design of reinforced plates P, lying in a region R
of a plane, which safely equilibrate a given system of forces
F or safely transmit these forces to a rigid support 4,
(see Fig.2). The plates are assumed capable of carrying
membrane stresses, with principal values fl and f2 and the
reinforcing members of carrying direct stresses fR' The

safety of the designs is ensured by imposing the Tresca

:yielding criterion:

-
Maximum difference between fl, fz, oL ¢ i

and ng £ f j
k.3

cee (2.1)

where f is the yield stress in tension.

® The plates P are designed in accordance with the philosophy

of 'limit design'.
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2.2 -~ Tet it be assumed that a plate PK can be formed, which -
satisfies
Maximum differencg between flﬁ, fgx, 0 = f«k (é )
- and |Itgt = f J B
and is such that a virtual deformation D of the region R
exists with principal strains e, and €ss lying in the same

directions as flx and fzx, and with magnitudes

= 1 = Te i - X . E_t

e, = =€ e, = +e in region R4, where ;7= £y = f} ..

e, = te e, = O in region R, , where fl}E = Ir ;f.n(Eaﬁ'
= = —E i 1 ® = -!_-

e, = 0 R e, = e 1in region R3 , where fg il

and which further has strains te along reinforcing members with
stresses.fR = ﬁf. The quantity e is a positive infinitesimal
constant and the deformation D is assumed to be produced by
conventional"small' displacements. These displacements are
assumed to vanish on 4. It will be shown in para.2.7 that
such a plate PK, if it exists, is an optimum design among all
plates P and since its specification in (2.2) and (2.3) is of
the same form as that of equations (1.7) (1.8) it may be

termed a Michell plate.

2.9 - Let W be the virtual work of the forces F ftaken over
the displacements of D. If fll’ f22 and f12 are the membrane
stresses in a P refered to the directions of ey and €5 and €
the virtual strain along a reinforcing member then

W= j tp(£1987 + £pp®p)aS +{g'ARfReds oo (2.4)
where tp is tﬁe thickness of the platé; Ag the cross-sectional
apea of a reinforcing member with arc length s, L a sum
over all reinforcing members and dS an element of plate area.

® It is to be remembered that a case such as f2X = 0 can be
included in either Rl or RE'
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In the case of the Michell plate P¥ , (2.2), (2.3) show
that (2.4) can be written

o

= g E T E = | S
W= Ritpvfeds + LJAR feds = feV’KV Y (2.5)
where V* is the volume of the material of p¥, | |
Equations (2.4) (2.5) yield the inequality
: R { ' i - t it » :
: £
rev® ¢ J e 1101 * Tpgep| S + Ay tf‘R“ g ds
SRR fggi‘ as + [ tge |11 jas + [ tpe ;f‘gz tds
R Ry Rs
+ ZJARe ifR ‘ds
2~$ f2
are both less than or equal to.
it follows by (2.1) that,

. 2 ‘
when (2.3) has been used, and so, since (fy{- f22) +4E
by (2.1) and [fi4| o If
the greatest of |f | , |f

221
2l

fevE g j £ efds + LAjefds = feV
) R S B

where V is the volume of material in P, It has been established
that | '

v 3V | . (2.6)
and so P® is the lightest plate structure which wiil safely.
carry the given forces F. Its volume can be calculated from
(2.5), when the associated virtual deformation D is known.

Section 3. Analysis of the Virtual Deformation in Two
Dimensions

The lines of principal strain of a virtual strain system
D, as defined in Section 2, may be used to define an orthogonal
system of curvilinear coordinates (a,B), which are to be taken
as right-handed with the strain ey along the a-lines and €5
along the B-lines. The linear element ds is given by
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452 = 22302 + BPap® | vee (3.1)

where A, B are positive functions of a, B. The angle ]

between the tangent to an a-line in the direction of a increasing
and a reference line, the x-axis of a Cartesian system Q(x,y),,
which is shown in Fig.5, 1is related to A,B by

%ﬁ___}_’él& 3 _ 1998 (3.2)
a 538 ° o - Eda ' eee NS
The relation between the éoordinates x,y and a,P is given by
(01':5)
x + 1y = gt 1y, + ' (Ada + iBdp)exp(igd) cee (3.3)

(050)
where (xo,yo) corresponds to a = p = 0, The equations (3.2)
ensure the uniqueness of the integral in (3.3), which follows,
using (3.1), from the standard formulae for direction cosines

of the tangent to a curve.

, Tet the displacements in the directions of a, B
inereasing be u, v. The direct strains irn the a, B directions
have the constant values ey €5 while the corresponding shear
strain is zero., Denoting the Trotation' by w, the standard
formulae for curvilinear coordinates (Ref.6, Chap.I, equations

= |

\
b
{
3

|

(36) and (38)) sive

i
|

Y
+
o
&
il

|
@

[

.

ves (3u1)

+
i<
i
N
€

Yy ¥
+ +
eI
3R &R
t
<
9 . e
i
o

T I

o/ Qjo/ o/

814 Qj< 815
+

W= o e
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The solution of (3.4) for the derivatives of u, v gives, in
differential form,

d(u + iv) = (Ae,da + iBe,dp)+ io(Ada + iBdg)- i(u + iv)dd

, . ] ‘oo-' (3‘5)
The condition that (3.5) is a total differential, yields on ‘
using (3.2), the relations

%%" = (eg - 92)%% s gié)' = (e - 62)%% .(3.'6)

which can also be written as.

o - (e, - e, )8 = constant on an a-line ) _
b ; e (3.T)
o+ (e; - e,)§ = constant on a p-line }

Finally the consistency of (3.6) yields, since e; ¥ ey,

2 |
%E%ﬁ' = 0 ’ - ees (3.8)

The result given in (3.8) shows that the lines of
principal strain of D, which are the &, B coordinate lines,
satisfy the same geometrical theorems, the theorems of Hencky,
as are satisfied by the slip lines in two-dimensional plastic
flow. The analytical and graphical methods given in, for
example, Ref,2 for the construction of slip lines can then be
used for the solution of the present problem of finding
virtual deformation fields D,

The a, B lines can also be used as layout lines for
two~dimensional Michell frameworks. This follows since the
associated virtual strain fields for frameworks, which contain
both tension and compression members, are a special case of
the general investigation of this section obtained by writing

+

e = - , e, = Fe,
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The conditions to be satisfied at a line of rigid support
& can be obtained from (3,5), by writing u + iv = 0. This
gives ’ ’
2 -

and this 1mp11es that ® is constant along zf and that the
coordinate lines meet ﬂ) at constant angles, For the regpn Rq
the angle is T/ and for R, and R3 either O or "/2.

Section 4. Examples of Virtual Deformation

The simplest example of a virtual strain field is obtained
by taking o, B to be rectangular Cartesian coordinates., TFor
these A =B =1 and so by equation (3.2) 4 equals a constant.
Equation (3.3) then gives

x = X, +a cosd - Bsing }r
¥

eoo (Bo1)

it

Y, *+ @ sind + B cosg

which shows that the origin of the (a, B) system is at (Xo,yo)
and that the a-lines are inclined at an angle g to the x-axis
(Fig.h). .
Equation (3.6) shows that @ = constant and equation (3.5)
integrates to give
u = uo - 3 + ela W;

v o= v, o+ oo e f j . (4.2)

A second example is obtained by taking (o, 8) to be polar
coordinates with A = 1 and B = a. Equation 1%,2) now gives

g = B+ By e (123)

and (5.3) yields
x = x +acos(p+ ) 1;

y o= Yot o sin(B + ﬁo) J

(4.4)
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This coordinate system is shown in Pig.5.
Equation (3,6) gives

w = -(e:L - e2)6 + | coe (4.5)

Whlch implies, since B and B + 27 gives the same radius’ vector,
that this deformation field must be restricted to a range of
P less than or equal to 2r. Equation (3.5) 1ntegrates to give

-~

u ClcosB + Cgsinﬁ + e, o i

il

| (4.6)
Vo= -0131n6 + Czcosﬁ + w o - (e - eg)aﬁ_f :

where (Clg 2) is the displacement of the origin of the (c,B)
system resolved along the reference line and its normal,

The fields of para.lt.l and para.4.2 may be combined
Together to give the field illustrated in Fig.6. In the region
OAA' the radii have strains e, and the circles strains eé.
The opposite is true in the region OBB'., The regions 0BCL
and OB'C'A' have rectilinear principal strain lines with
matching values of strain with those in quadrants, which they
meet along OA, OB, OA' and OB', The origin O may be assumed
to be at rest and the field may be taken to be symmetrical
about the bisector of the angles AOA' and BOB'. ‘This implies
by (4.5) that the rotation of OA is (el~e2) T/u, This is
shown in the figure, as are the corresponding rotations of
OA', OB and OB'., It is clear that continuity of displacement
can be achieved at the joins between the several regions by
giving the rectangles OBCA and OB'C'A' opposing rotations of
magnitude (el~e2)7/4. It is to be remarked that the field of
Fig.6 can be extended over the whole plane, since there is no
restriction on the length of OA.

3

This integration may be checked by (3.4)
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In the combined field of Fig.6 the angles AOA', BOB'
are right angles, A variant in which these angles are less
‘than a right angle, (say) 20, is shown in Fig.,7. The rotations
of the lines OA, OA', OB, OB' and of the squares OACB- , OA’C‘Bi,
are now (el—ee)e and in fact a consistent displacement field.
valid for the whole plane can be constructed assuming that the
regions OBB,, OB'Bj are in a state of hydrostatic strain with
a linear strain equal to egg. The optimum structures cannot
of course lie in these last regions, since the strains there
are inconsistent with (2,3). However the rest of the plane
may be used® and while it does not lead to absolute optima, .

it gives optimum structures for the case where OBBl and OB'Bi

are excluded,

If one of the a (or B) coordinates lines is a straight line
then all the other coordinate lines of this system are also
straight lines. This follows from (3.8), which has the general
integral 4 = Fl(a) + Fz(ﬁ), where F; and F, are arbitrary
functions, If £ is constant for any particular B then Fl is

a constant and so ¥ is constant along every a-line.

In the case where the}a~1inés are straight they will in
general envelop an evolute curve%%énd the B-~lines will then be
the corresponding involutes. The distance along the a-~lines
between any pair of evolutes is then a constant and the
coordinate o may therefore be taken to be such a distance
measured from a fixed involute a = O, The coordinate B may
be taken as the angle between an a-line and a fixed direction,
The distance, measured along an o-line, from a point on a = 0

to the evolute will then be a function of B, say F(B)
£

A detailed analysis is given in Appendix A,

% The complete plane is available for a framework or for
reinforced plates in which only reinforcing members lie
in the regions of hydrostatic strain.

/~ This may degenerate to a point to give the case of para.l.Z2.
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and then as may be seen from Fig,8 the values of A, B and 8

are ;
A = l’ B = o + F(ﬁ) ) ﬁﬁ = 5 ; ees (l{-oT) 3
Equation (3.3) gives g
B i
x+ 1y = x + iy  +a exp(ip) + i | exp(ip)F(B)dp ?
° cos (4.8) |
and (3.6) yields
w = CDO - (el - 92)5 LI ()-‘-09)
where @, is a constant. Finally (3.5) integrates to give
u+ iv = (uo+ivo)exp(~16) + {él+ i~{wo-(el—e2)§}] a

8
+ exp(-19) | fiep - @, + (e)-e,)Bexp(19)(p)as
oo (4.10)

1.6 An important development of Fig.6 is shown in Fig.9.
The discussion in para.l.5 shows that a consistent displacement
field can be found for the region shown with the points 0 and %
C taken at rest. The question then arises as to whether the |
lines of constant strain e and e, can be extended into the |
rest of the plane. The analogy with slip lines in plastic
flow shows that this is indeed possible beginning with the
orthogonal circles AA' and AA"™ or with BB' and BB, % pig.10
shows the general form of the layout and defines an appropriate
coordinate system in which AA™ and AA' are'coordinate axes!
and the coordinates (a,B) are determined by the angles through
which the tangents to AA", AA' respectively turn as their points
of contact advance along these circles,

# Ref.2, Chap.VI.
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~ If the reference direction § = 0 is taken as the direction
of the tangent to AA™ at A then 4 = -a on AA" or B = O and
'_é“= B on AA' or a = 0. Equations (3.7) then give, taking W,
as the value of w at A, ‘

w, = o(a,0) - (el - eg)(—a)

wO = CD(O,B) + (el - ee)B
(D(O,B) - (el - 62)5 = (D(C{,,B) - (el = 6‘2),6((1,5)
(D(OL,O) + (el - 62)(*-(1) = w(a,ﬁ) + (el" ee)ﬂg(aJB)

It follows that

| | g = -a+ B e (Ba1)
and ®© = o - (e1 - eg)(a + B). e (4,12)

Equations (3.2) then give
%’g— =B ana B -2 ver (1.13)

and an appropriate soluéion of these equations,x which
satisfies the initial conditions (A)ﬁ____o = (B)a=o =R 1is
given by i

i

Aa,p) Rr*f;IO(é[&,B} " /511(2/352‘ \L
| | | | J eee (L.11)
B(a,B) = A(B,a)

where IO and Il are modified Bessel functions of zero and
firgt order respectively.

Formulae may also be obtained from (3.,3) and (3.5) for
the cartesian coordinates (gigﬁ and for the displacements
(ulgp. in the region AA'DA',

*

See Appendix B
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Tt is found from Ref.7, Eq.(17),(18), that

uy(a,B) = ejR {(1+20)T (2/@B) + 2/aB I,(2/3R)) aas)
vi(a,8) = e {(1+28)I (2/aB) + 2/aB I,(2/aB)} R
xl(a,ﬁ) = 'R(xll+x12)

eeo (4.16)
yl(a:B) = R(yll+y12)

. o)
where X110 X100 Y117 12 are tabulated in Ref.7 for 5
intervals of a, B.

The further extension of the layout is illustrated in
Fig,1l, The curved lines A'D and the straight line AMcH
determine a field of coordinate lines in the region AYC" ™,
These consist of straight lines and involutes of the type
analysed in para.l,5, Exactly similar extensions can be found
for BMEE"™C" , B'EE'C! and A'DD'C'. The pairs of lines C'D",
C"™E" ani C'D', C'E' may now form the basis of further
extension., For example coordinate lines may be drawn in the
region C™™E" in much the same way as they were determined
above beginning with the circles AA", AA' and develeping a field
in AA'™DA', TFormulae and tables for the region C"D™ME" are also
calculated in Ref.7. With displacements along a,B curves
denoted by (ugve), and Cartesian coordinates (xg,ye) tangential
to the a,B curves at C", they are

jug(a"ﬁ) = :;R(“efuee) cer (527)
(vola,B) = gf-uz(ﬁ”o‘) |
gxéca’ﬁ) = R(x21+x22) (4 18’
WolesB) = Ry *pp)

and‘the functions Unqs Unos x21,x22,y21,y22 are tabulated in Ref,T.




- 17 -

The next stage consists of £illing the squares DD"FD‘,
EE'GE' with orthogonal straight lines, followed by constructing
i layouts of straight lines and involutes in regions such as
; FJHD", GKHE".

Further devlopments should now be clear., In fact step
by step construction in a similar manner to that described'
above will consistently determine a strain field with principal
strain ey and €5 extending over the whole plane,

Section 5.  Conditions of Equilibrium

5.1 The principal stresses fl and 16’23‘i acting in a Michell plate
will lieé in the directions of coordinate lines a, B with
layouts of the kind determined in Section L. These stresses

‘ willybe in equilibrium and using standard results given in for

i example Ref,6 art,331 the following equations are obbained

for the case where body forces are absent,

d e e 28 d 3
§§ EE(Btpfl) - Atpf2 5%- = 0, EE(Atpf2)+ Btpfl 5% = 0

}{ Here tp is the plate thickness. These formulae can be
| expressed in a manner similar to that of (3.2) by introducing

T, = Bt Ty T, = At,T, coe (5;1)

which must sabisfy |
i o _ 1% % - 1 Ty . (5.2)
! Ba‘ T_B'B' s B Tgs‘&" oo o :

il 1
The determination of T4 and T, is thus reduced to the same kind
of problem as that presented by the calculation of A,B. =

® The stars previously attached to these quantities in Sectiocn 2
will now be omitted.

£ See Appendix B,
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The integration of equations(5.2) requires the knowledge
of suitable boundary conditions, These are determined by the
conditions of equilibrium at the reinforcing members. RFig.l2
shows the forces acting on elements of such members lying

respectively along B and o lines,

The piece of the reinforcing member on the f-line has
length BdR and carries a compressive end load P, External
forces (Fa’ FB) per ungt length are assumed to act and balange
is achieved by a discontinuity in the plate stress resultant
which is determined by’Tl. Equilibrium reguires that

d P _. . |
AT:L = -P %* FQ’;B s BEB- = Fﬁ e 9 (5.3)

and P follows from the second equation, when its value is

known at an end of the reinforcing member.® The first equation

then determines the discontinuityu&@l in Tl. |
The second figure of Fig.l2 shows an element of'length’

Ada carrying a tensile end load T, In this case equilibrium

requires

el dr :
ATQ = =T 5% - FﬁA ’ Tda = —FC(, s 0 (504)

and the boundary Jjump in T2 is determined as before,

- The values of plate thickness tp, reinforcement area AR
of (2.2) which are imposed upon the stresses of a Michell

design, Taking as standard the cases where the virtual strain
along the a-lines is e, = +e or 0 and that along the R-lines

is e, = -e or 0, equation (2.2) gives
- f2 = T or f; = f or f2 = =f
and so introducing T, and Té’from (5.1), it follows that

£ Tn the cases considered in this report pairs of reinforcing

members begin at the points of action
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T T T T
' - L1 2 1 = L op -
tp = f(B - K—) or tp = gF or tp = -F

n

Hh

ese (5.5)

in the three strain conditions considered., The values of fl
and_f2 follow immediately if required, :

The areas of the reinforcing members also follow from
(2,2) they are

AR = T/f or P/f s o (5.6)
as the case may‘be.

The plate thicknesses tp and the areas of reinforcing
members must of course satisfy

ty > 0, Ap 2 0 eee (57)

Section 6. First example of a Force Reacted at Two Fixed
Supports,.(Case when the Force is normal to the

line of supports)

Let it be assumed that the two fixed points lie on a
horizontal axis at distance d apart and let an origin be taken
midway between the supports. The specified force F acts at
a point (1/d, h/d), where 1 is the horizontal distance from
the origin and h is the height above the horizontal axis, A
Symmetry shows that it is necessary to consider only the first
quadrant, In various regions of this quadrant, different layouts
of structure are required, as indicated in Fig.l3a.

Consider first the cases when F is acting on 1 = O,
The strain field Fig.7 is used with e; = -e, = e, and with the
force F acting vertically at the origin O, The positions of
pcints with zero horizontal displacement are then found, For
20 tge >1 (o 2.37025'), these points lie on the lines 0C,OC'
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with OA/AC = (20 tge-1)/(2e-tge) = OA'/A'C', The points

C, C!' can then be taken as the fixed supports and the
structure then consists of a compréssion member CA A'C!
joined to a plate AOA', When 6 = T/4 the points C, 0, C'
are co~linéar; this corresponds in Figw 13a to the solution
for F at the origin. When © = 37°25', the points with zero

“horizontal displacements lie along 0B; and OBf in Fig.7, so

that the structure is reduced to a two bar frame. The height
of point 0 above BlBi is given by the ratio h/d == 0.38. ’

If the force acts at a height h 2 0.38d above the
supports, the structure is simply a two bar frame, This
corresponds to the case 0« 6K 370 25' in Fig.7. The points
of zero horizontal displacement then lie in the hydrostatic
fields OBB, and OB'B{ . The angle subtended at O by the
supports varies from 2 x(900-37025’) = 105o 10' to zero, and
the two bar frame gives the required solution for all
h »0.38d. More detailed analysis of this strain field is |
given in Appendix A, ‘

Fig.7 also gives solutions for 0< 1< & if the fan |
angle 20 is replaced by 26 = @l + @2, where @l is the angle
between B'OA and the vertical, @2 is the angle between A'0OB
and the vertical, By varying the angles QP 92 repeatedly
from O to "/u, non~symmetrical structures of a similar form
to those of the case 1 = 0 can be found., The only difficulty
is that no structural layout results when @1 ;;37025'>and
eg.g 57025', since this corresponds to the case when the points
of zero horizontal displacement lie in OACB,; and OBiB'
respectively, This small forbidden region is shown by the
shaded area within 1< & in Fig.l3a. | |

2
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The strain field of Figs.1l0, 11 can be used to obtain
solutions for the case 1 2 g . The p01nts 0 and C are taken
as the fixed supports. The point of action of the force F is
restricted by the requirement that the applied force must put
relnfor01ng members along the a-lines in tension and those
along the B-lines in compression, &0 a8 to correspond with
the strains e, = =85 = e, It follows that the force F must lie
in the region -a +B = B -T/4 (see Fig.1l4), This is the
lower right hand region of Fig.lJla.

At the boundary of the region where a-p = T/n, the
force F is acting tangential to the bounding p-line of the
structure. This suggests a modification to the strain field
to give structures extending into the region above this
boundary. Such a field is shown in Fig.l5, where the tangent
DD' to AM™ at D is at right angles to OC. A'D is then used as
a starting a-line which together with DD' generates a field of
straight B-lines and involutes.  The basic struoture OA'DA"C
together with the bar D'D will thus transfer the applied force

from D to any point D! on DD' as indicated in Fig.l3a.

Since the fan angle of Fig,l0 cannot exceed 2 s solutions
for the larger value of 1/d must be sought from Fig.ll. No
structural layout results if the loading point lies in the
region DA'BC'™D", This is because the B-curves in this region
by-pass the fixed points 0 and C. The shaded area in Fig.lla
for 1 2 @/2 indicates this further forbidden region.

If the force F is acting in the region D'"C"E"H, the
resulting layout follows from Fig.ll and is shown in Fig.l2a,
As in the case treated in para.b6.3, since members along asp
curves must carry stresses of opp051te sign, only part of the
region can be used, If C"E" and c™" ape taken as the starting

, B curves respectively, the region is restricted by -a+B < T/y.
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At the boundary -o+B = T/) and the applied force is tangential
to the boundary s- ~curves, When the force is applied above
this boundary, the optimum structure will consist of the

ba31c structure on the boundary together with an addltlonal
strut (see Fig,13a).

Although there still remains llmlted reglons of the quadrant

where the optlmum is unknown, it is p0551ble interpolating from
the existing knowledge, to calculate and plot lines of constant
structural volume over the whole of the quadrant, Equation (1.6)
may be used to calculate the volume of the optimum structures,
This requires the knowledge of the virtual displacements of the
corresponding strain fields, As already mentioned in section

L, the required information has been tabulated in Ref, [« The
results of the appropriate calculations are shown in Fig,13b,
where llnes of constant volume are plotted using a non-dimensional
parameter,

Section 7, Second Example of a Force Reacted at Two Fixed
~ Points, (Case when the Force is Parallel to the
line of supports)

The two fixed points are assumed to lie on a vertical axis
at a distance d apart. An origin is taken midway between the
supports, By symmetry, only the cases where the force is
acting in a quadrant need to be considered. Any point in this
quadrant will be specified by the coordinates (1/d4, n/d) which
are defined in Fig,16a., For different regions in the quadrant
different structural layouts are required (See Fig. 16a)
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When the force F is acting on 1 = 0, so that the point
of action is collinear with the supports, the structure is
simply a strut joining the point of action to the nearest
support, '

For a small region near the origin with 1 £ d/2, the
structures are found to be two bar frames, The strain field of
Fig.6 is the basis of this conclusion, The origin O in Fig.6
is taken as the point of action of the force, For an arbitrary

,point'D in A'OA, the locus of points D' in B'OB is found for

which the distance D'D remains unchanged after the virtual
deformation. Since the members 0D and OD' will have strains

of opposite sign, they correspond to.a two bar frame carrying
forces from O to D and D', which can be regarded as fixed
supports. Such structures eover the region indicated in Fig.6.
At the point 1 = d4/2, h o= 0, the structure consists of the two
members OA, OB of Fig.6, which is the limiting structure derivable
from Fig.6,

For the case 1 » d/2, the strain field on Fig,l0 is uéed,
The appliéd force 1s now parallel to the fixed line 0C, In
order that the stresses correspond to the strain system
€ = =85 = €, i1t is necessary to restrict attention to that
part of region A'DA for which -a + B = 4 €< "/4, At the boundary
-0 + B = W/u, the force F is acting tangential to the bounding
B-line of the structure. For the region beyond this boundary,
the force may be transmitted by a strut to the basic structure
at the boundary (see Fig,l6a).

With the knowledge of the opimum strucﬁures for most of
the quadrant (except for the shaded region), it is possible
with a little interpolation to plot lines of constant volume,
The result is shown in Fig,16b using a non-dimensional
parameter V¢ = Vf/Fd.
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Section 8, Examples of the Determination of Volumes, Plate
Thicknesses and Reinforcing Member Sizesg

Ex. 8.1 Three parallel forces,

Considér_the case of a force F acting normal to the line:
of two supports with 1= 3.2342d, h = 0, From the results
of Fig.l3%a, the optimum structure is Ffound by using Fig.ll
with the force acting in the region C™"HE", Some details of
the 1ay0ut are shown in Fig,l7. The fan angles of the struoture
are exactly o = B = 20° = b in this case, (If the dimensions of
the structure do not coincide with a multiple of 5O of the fan
angles, interpolation using (4.18) is necessary to find the
boundary o, 6‘va1ues).

Volume of the structure

Since F 1s acting at a point o = B, the angle 4 = -a + B
between the a-curve and the xg—axis at the point of action is
zero., Resolving the virtual displacements in the direction of
the force, the virtual work done is then, from (4.17) with
e, = ~e, =€ , _
W = F(u200s7/4 - VQSinﬁ/q)azﬁzu

= /2 eRF(u,,+u,,)
21 22 a:ﬁ::p, »

From Eq.(1.6), the volume of the structure is, using the tables
in Ref.7,

, W I2RF '
Ve o= fs = S(ugtu,)
m fe £ 21 722 a=B=y
dF( dF
= (u,,+u,,) = 15,3953 —=
F\Fp1 Mo =P T
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Reinforcing members

To transmit the concentrated force F it is clear, first of
all that two reinforcing members are required along OA'DD" and
OB'EE"P to carry direct loads -//2 The area of these members
will be Ap = F/ J2r, '

Thickness of the plate

The thickness of the plate must be worked out in successive
regions starting from C"D'"E", By symmetry, only half of the
structure needs to be determined,

(2) In the regions C™"pE" (0g ‘cx< L, 0K B g p).
The boundary conditions for 15 T2 follow from (5.3),(5.4),

since g = -a + B, F, =Fg =0 and T = 3/5 asse
on D'"p (B = M) : Tg(a:“) = “13T2 = ‘E/Jm
— LI ] (801)
on E'P (a = p) @ Ty (wsB) = -aT = F//2,

Solving Eq.(5,2) with boundary conditions (8.1), the
results are (see Appendix B),

T (ep) = 5 {T,(/uma)(ae))+ (B8 1 (2/(wma) (5 ) )
cae (8.2)

il

Ty(a,8) = -1, (f,a)

The metric functions A and B in this region are known (from
Eq.(21), Ref,7) a

A(a,B) =R « 1' (Efa )+ I (2/6(&1-— )'*‘/:n'w Ii(E s('&??;—"n
B+% e
+J[:; I, (2/a(s+D)) .o (8.3)

B(a,p) = A(E‘:O‘) .
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Following Eq.(5.5), the plate thickness in the region is L
;

o = Ll 2y |

p ‘B A

3

where the functions on the right-hand side are given by (8.2)
and (8,3). Numerical values of the Bessel functions can be
found in Ref.7 for a, B as multiples of 5°,

As an example, the thickness of the plate at the loading
point P is calculated as follows:

Tl(p)u) = "TQ(H:P‘) = F/,jé |
A (u,p) = B (d,p) = 6.T0L3R

. - 2 F oo £ = 0.208; F_

<ty = 0l A - 0% ET PN 55

(b) In the region DA'C™" (0 <€ a< R,” 0g B g )

The origin of the coordinate (a,Bf) is taken at A",
a-curves are straight lines, so that Tl does not change along
an a-line from the boundary C"™" to A'D., From (8.2), the
value of T, on c"™" (e = R) is '

R e e
n@.8) = [ (efilaB) + [ 1 (2/utee))] ... (8.8)
The metric function B in this region is, from (4.7)
B(a,B) = a+ F(B) = a+ B(0,p)

where B(0,B) is the value of B at A™ (a =0).
Equation (L4.14), with a = T/2, gives

i — i R . ‘
5(0,8) = R [L(/27) + /g Ty(/Em)] .o (8.5)

%

In this region a is the distance along the normals to A'D
(ef, para.4.5)
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The thickness distribution of the plate is then given by
T, T, (R,B)

% = Bf = TBF -

(¢) In the region A'MAA™ (0 ag 2 OB W) .
The origin of the curvilinear coordinates in this region

is taken at A, Boundary values of Tl, T2 are given by (8.1)
and (8.4)¢

on A'D (B

il

wiz  Tola,p) = -F/2

on A (a =T T (Lw) = Z {uzxﬁ“@f@”)) +/op W(E/RGEE))] |

I
il

Solving Egs.(5.2) with the above boundary conditions and
4 = -a + B, gives the rasults :

r(e8) = E[1(e/Tmai(ep)e [2E :cl(e/("—;+u-w<u-s>>]

I

J2
R . (8.6)
T (a,8) = "F[I (2/(Fru-a) (u-)) + /—Ei—— 1, (2 [ (u-a))
| / -+u a
: . 1,71 To
and the plate thickness is tp = T(E" - K—) , where A, B

are given by (4.14).

(d) 1In the region ACA", A'OA

T, (Tl) remains unchanged from the boundary AA" (A'A)
to the singular point C(0). The values of T2, Tl on the

boundaries are given by {8.6): T, = Te(a,o), T, = T,(0,8).
The thickness of the plate in these regions is

TQ(O(':O) Tl(o:ﬁ)
t = e e or ,» Wwhere r is the distance

o] rf rf

from the singular point C or 0.
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Diagram of thickness distribution
The procedure for obtaining a diagram of contours of

constant thieknésées, Fig,18, is as follows,

(a) 1In general the thicknesses of the plate at the points
where a, B is a multiple of 5O are calculated by using the.
tables of Ref,7. In the case where the a-curves are straight
lines, the thicknesses can be determined at chosen p051t10ns on
- the a-lines, See Fig.l19,

(b) The positions of points (a,B) with reference to a cartesian
coordinate system are determined by using Eqs.(4.16), (4.18),

For example, the relation between the'coordlnates X = %( 2+y2)
in the region C™M"E" and | = 2(xl yl)R in the reglon AAA™
and the a, B coordinates is shown in Fig, 20.

(c) Values of constant thickness are then interpolated at
points on an a-curve or a B-curve using (a), and the
corresponding positions in space are obtained from (b).

(d) Contours of constant thickness are then plotted,
introducing the non-dimensional variable tp %;{Fig.IS).v

(e) The reinforcing members can be determined so that they are
of the same thickness as the plate on the contour line

ar _ .
by 5 8. Since
- E - E 5 _ ar
T E T Emct T @R T AT - R

the width of the reinforcing-member is R/8,

When the magnitude of the force F is given, the design

will be completely determlned by the value of the parameter
af/w, :
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Ex, 8.2 Symmetrical Cantilever,

The volume and thickness distribution of a 60° cantilever
shown in Fig,21 is determined in this example,

Volume of the structufe

The a, B curves intersect the line of symmetry AP at
450, and so the force F bisects the a, P directions at P,
Using (4.15) with &) = -, =¢e, a = B = 60° = us the volume of
the structure is obtained from (1.6)s

= N - E T _ in
Vi = F5 = fe(ul cosy v151n4)

('1,-:.5:“,

B [(wranz (20) + 2uz (20)]

i

11,1764 22,

Reinforcing members

The boundary a, B curves are OA'P and CA'P respectively,
Members along these lines must carry direct loads fF/Jﬁ'from
P to the supports C and C., The area of the reinforcing
members is AR =

F o,
Jor

Thickness of the plate

(a) In region AA'PA"

This region is bounded by AA" (B = 0), AA'(a = O)
A'P (B =) and A"P (o = p). Using Egs, (5.3), (5.4), the
boundary values of Tl’ T2 are ' '
- ¥z
F/j2

Il

on A'P : Tz(a,u) = - AT,

on A" Tlubﬁ) = -ATy

il
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Solving Eq.(5,2) with the above boundﬁry conditions gives,
as in (8,2),

my () = & 1 (2/(i=a](uB)) +/2F 1, (/00 —a5 B) ]
. (8.7)
To(a,8) = -T;(B,a)
, I 1,71 T
so that the plate thickness is tp = ?(ﬁ—-- K“J‘ where A, B

are given by (4.14).
(b) In region OA'A and CAA',

Since one set of coordinate curves are straight lines,

T, (T,) does not change from the boundary AA"(AA')-?O t?e

, : T,(0,B
sin la§ point 0(C). The plate thickness is tp = —l-F?‘ or
""T G,O

-25f—— ,» wWhere Tl(O,B), Tg(a,o).are given by (8,7) and r is

the distance from the singular point O or C,

Diagram of thickness distribution (Fig.22)

The quantities in (8.7)‘and“(4.14) can be calculated for
50 intervals of a,P by using the tables in Ref,7. The
thickness distribution is then obtained as follows:

(a) The thicknesses of the plate at the points where o, B is
a multiple of 5O are calculated and plotted in Fig.23.

(b) The positions of these points refefred to a Cartesian
coordinate system are determined by u51ng Eq,(4.16), In the
region A'AA"P taking coordinates x = 2(x +yl)g at A, the
result is shown in Fig.2L,

(¢) In the regions OA'A and CAA" , the thickness along a radius
is inversely proportional to the distance from the singular
point, '
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(a) vValues of constant thicknesses are then interpolated along
the a, B curves using the result of (a) and (b),

(e) Contours of constant thicknesses are plotted for the non-
dimensional value tp%§ in Fig.22.

(f) The reinforcing members are determined so that they are
of the same thickness as the plate at the contour line

tp %£ = .8, Since Ap %f = R , the width of the reinforcing

members is R/8, as shown in Fig,22.

Reacting forces at the supports
The reactions at 0 and C can, in this case, be determined

from statics; In general, it is required to integrate the
forces in the plate acting at 0 or C. For example, the forces
in the region OA'A are known to be Tl(O,B) The vertical and
horlzontal components of the resultant at 0 are fthus

“g = JE 81n(u~—)+ ( Tl(O 5)51n(5“"0dﬁ g
and Q
les' - Jg“ °°s(u-lz§)+ 5 T1(°’5)°°S(B"E>dﬁ ’
~0

which can be verified with the aid of the integration
formulae given in Ref.7.

Section 9, Method of Approximate Numerical Analysis

The exact solutions of Michell structures as demonstrated
in the previous sections require the knowledge of the deformation
fields, Only few such fields are at present known and lack of
knowledge is especially marked in three-dimensions. Methods
of approximate determination of minimum weight structure are
thus of great interest, For pin-jointed Michell frames, good
approximation can be achieved by using the method of linear
programming, (see for instance Ref.8).
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-In the general formulation of para.l.2, imagine the
region to be covered by a grid of points P, which includes the

points of application of F and the points where utructural

Jjoints are to be located, Generally in three-dlmen51onal spaoe,
each point Pl is specified by three coordinates (xl, xé} x3)
and these are three components of force (Fl, Fé} F3 ) and

virtual displacement (ul, ug, u 1) at each point., Possible

" structural members are assumed to lie along the segments

joining any pair of the points, P;j and Pj say, for which (1.2)
must be satisfied; i,e, for any i, J '

!

| % | | 3
. . . . S N . .
i J i 2
/. (Xk - Xlg> (u];‘ - uk") | £ e 2“ (Xk - xk‘?) oo (9_.1)
= ' ) . k=l . .
The work done is then expressed by,

B 3 X L , o

W= LR v s e (9.2)
J k=1 - )

where J is summed over all points P, Labelling the forces and
displacements for all péints in sequence, from 1 to n say, the
optimisation problem can be formulated from (1.6) as:

n _ '
To find £V = max. }  F,v, ' ees (9.3)

18

subject to | L a,.v.| € 1. , J=1 ,..m, ees (O41)
. | 4o 1d 1!
where evy is a typical virtual displacement, and the coefficients
13 lJ, F are determined by the geometry and the applied
forces acoordlng to (9, l) and (9.2), The numbers n, m
spe01fy the size of the problem. On a grid of k points in
space, the greatest possible values of h and m are n = 2k,

k
m = 02 .
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The problem (9,3)~(9.4) can be solved by the methods of
linear -programming, for example, using the simplex method
(Ref,8, Ch,3)., However it differs from the standard formulation
in two aspects. Firstly, Egs. (9.4) involve absolute-values,

which can be rewritten as

j = l’ eue M s e & (9.5)

The variables y. are not allowed to exceed Elj (the so-called
upper bound condition), In actual compubation, only the first
line of (9.5) need to be stored, (see Ref.8, P.387) .

Secondly, the variables vy can be positive or negative,
which is not usually -taken into account by the standard computing

programmes. However, the simplex method can be modified to

deal with this situation, (see Ref.9)

A computing programme based on the simplex method with
these modifications has been written on the Pegasus computer.
Two examples of the results of compubting will be given below,
An example in three-dimensional space can be found in Ref.10.

Ex. 9.1 The loading system is shown in Fig.25a with 1 = 3d,

The virtual deformation is assumed to be antisymmetrical about
OD and the grid used for its analysis is shown in Fig.25b.

' There are 33 variables and 125 inequalities of the form (9.4).

This figure also shows the value of v which maximise the work
done by the force F, Thelayout of potential structural members,
made up of those segments which have strains te (i.e, the
corresponding constraints (9.4) are satisfied as Egs.) is

shown in Fig.25¢ and a structure formed from them 1s given in
Fig.25a,%

*This is a special case, The most general structure formed from
Fig,12 is three-fold redundant., Its volume is of course

independent of the redundancies.
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The structure of Fig.25d is the optimum on the grid and -
has a volume v, = 13.8% Fd/f. Compared with the exact solution
to the problem given in Fig,l6a, the above approximation is
only some 6 per cent above the ideal value,

Ex,0,2. The loading system is‘shown in Fig.26a wWhere C,C‘\
are fixed supports. A grid with the value of v which maximise
the work done by the force F is shown in Fig.26b; There are

26 variables and 73 inequalities of the form (9.4) involved

in the analysis. The layout of potential structural members

is shown in Fig.26c and the only structure formed from them is
given in Fig,26d, The volume of the structure, as indicated by
the value v at P, is Vo, = 9 Fd/f., The structure resulting

from this computation led directly to the discovery of the
strain field of Fig,15,

Section 10, Future Developments

The subJject has now reached the stage where data for
practical application can be produced, A cdata sheet for a
force parallel to two fixed supports or indeed at any angle
could now be drawn with very little further work, Extension
to the more general case of three specified forces in equilibrium,
which is under consideration at the moment, will doubtless be
resolved by further research. A series of appropriate layouts
are known which depend upon a variable parameters, which by
adjustment will permit a measure of control on the nature of
the reacting forces, The resolution of the three force problem
now seems a realisable objective for future research,

The general two-dimensional problem for any layout of
given forces and supports and for a variety of loading cases,
can of course be solved by the numerical methods, However as
things stand at the moment the calculations are rather large in
extent and further research to develop more powerful techniques
is necessary. This should results, in the long run, in standard
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programmes for the approximate determination of the best
reinforced plate or framework structures for two-dimensional
problems, '

The extension of this work to space structures, in
particular to reinforced shells, is at present in its infancy.

The active pursuit of this proldem is of great engineering
interest and should constitute a long term aim of the research
programme, w o
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Appendix A

Detailed Analysis of Fig.7.

Fig.7 is reproduced as Fig.27 in order to show to various
coordinate systems which it is convenient to introduce. (al,Bl)
is a system of polar coordinates to be used in OAA', (ag’ag)
are Cartesian coordinates for the region OA'C‘Bi , which are
also used in OB'Bi . (a3’63) are polar coordinates in OBB',
Finally (x,y) are Cartesian coordinates with Oy along the line
of symmetry of the figure,

A?ben;ion will be directed to the special case, required
for appiid%%ion, for which

L e, = e, e, = -e eee (A.1.)

Also for simplicity O will be taken as a fixed point and Oy as
a line of zero transverse displacement.

Equation (4,6) gives for the region OAA‘

u; = ed; , Vv, = =Reoyfy eee (AL2.)

This determines the displacements on OA' and so by (4.2)
gives '

U, = ea, + 2e6B, , v, = =-ep, - 2e6a, ees (A3.)

for the region OA'C’Bi . Equation (4.2) may also be used to
find the displacements in OBiB’, by writing e =€, = -

and matching displacements along Ay = 0 with those of (A.3),
This gives

u2 = -ea2 + 29952,

= -652 e 2@@@2 ‘ ses (Aou)

Vo
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The relation between the coordinates (a2,52) and (a3,63) at
the line OB' is | ‘ -

Oy = “Bj cos20 , 62 = ﬁ3 sin2e
and that between the corresponding displacement components on
this same line is ” ' '

u3 = Uy sin2e + vzvcos 20, v5 = =U, cos26 + Vs sin 20

Using (A.4) gives for the line OB' the result

U.3 = QeQBB s v = —635 ’

) B
which agrees with the displacements in OBB', which after the

manner of (A.2) may be shown to be _
= ' = - [N ] A- °
U 2605353 s vy P (A.5 ?
Application of this strain field requires a knowledge of

those points for which the displacement Uy parallel to Ox is
zero., In the region OA'C'B]

1 o ,
u, = U sing = Vs cose
and so by (A.3) u, = 0 occurs on the line with slope
Bo _ (26cose - sing)
/ég - EZGsinQ - COSO) *ee (A‘6‘>

When 6 = "/ , 52/o'.2 = 1 and, as is clear from Fig.6, the locus
of points with u, =0 consists of the line C'0C, which in this
case coincides with 0x, As 6 decreases the line of zero ux
turns towards OB
o o 37°%25',

i and coincides withit when cote = 20 or
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In the region B'OB; the locus given by u, = 0 has after (A.h)

the equation

26 cose + sin® (A7 )

52/- =
a —
2 50 sind - cose

| B
This is a line in B'OB:{ so long as =~ %o & 2/01.2 £ - tan 20,

The lower limit gives coté > 20 or o< %7°25', whereas the
upper limit imposes no restriction.
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Appendix B

Analytical Method For Integrating the
Hyperbolic Differential Equations

For the deformation fields considered in Figs.10 and 11,
g = -a + B. Eas.(3.2), (5.2) and the first two of (3.,4) then
become ‘ " ' S

g‘% = B , %:.Bz = A H eee (B.1)

BTE BTl

5‘6—'= Tl K 5;&"—= T2 ; 'R (Bdg)
and ' %§-+ v = elA,%%'+ u = eEB . veo (B.3)

Equations (B.l), (B.2) give immediately

2
%&%—5—-~ A = 0 , %%‘5 -B = 0 , |
3% . ee (Beb)
1 ' 2 _ ‘
WC{‘ B - Tl = O, B-T-a 5 - T2 = 0 K]

while (B.3) gives, by using (B.l):

S -u = (eeE |
32 .eo (B.5)
5&%5 -v = —(el—eg)A .
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‘The equations (B.X), (B.5) are hyperbolic differential
equations of the form
%'SHFS - H = @& , ces (B.6)

where G is a known function of a, B.

Given boundary values H(a,0), H(0,B8), Eq.(B.6) can be
solved by means of Riemann's method, which gives

n(a,8) = H(0,0)T(2/aB)+ | I,(2/(a-e)p) L) a

B O
+ ] 1, (efalEm)) SRy,
O
B . |
+ ] ] I (2f(a-g)(B-n))G(€,n)dtan ... (B.T)
o ©°

The success of this-methdd depends on whether the
integrations in (B.7) can be performed readily. Some analytical
results for this kind of integral are given in Ref,7, and are
sufficient to obtain solutions for the present purpose.

As an example, assume the boundary values are given on
the lines o = u, B = p and that it is required to find Tl(a,B),

TE(OL,B) for 0 a g py, 0K B . Let
Tl(u;ﬁ) = Cl ona = K o,
TE(G:H) = 02 onf = u,

where Ci, 02 are constants. A transformation is needed in
order to apply (B,7). Setting a =p - £, B = - n the
boundary values become

Tl (hsp-n) = Cl on & = 0,

Te(u"é:U)
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and it is required to obtain values of Tl(p,-é, B=n) s Te(p.-é,p,-n)
for 0 €gp, 0 n<p. Eq.(B.7) gives, by using (B.2) and
writing H(£,n) = T, (p-£€,p-n) N

| & | |
Ty (p-€,u-n) = H(&,n) = Tl(u,u_)lo(af"é"ﬁ)-fo Lo(2/(E~E)n)To(p-t,0)at
£ S
= Oy L(2/en) - ¢y ) T (2/(¢-t)n)ab

¢, I.(2/n) - cgjf’%i 1, (2/€n) .

tees Ty(esB) = 0 I(2/(ama) () - ©p JEEE 1 (2/(5a) (8 B))
Similarly . L e o
T5(@,B8) = C, I (24 (p-d(p-8)) - C; \;"’ﬁ‘:'a' I (2/(p-a) (u-p))
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