Hyperspectral imaging for the remote sensing of blood oxygenation and emotions

Date published

2012-08-22

Free to read from

Authors

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

Department

Type

Thesis or dissertation

ISSN

Format

Citation

Abstract

This PhD project is a basic research and it concerns with how human’s physiological features, such as tissue oxygen saturation (StO2), can be captured from a stand-off distance and then to understand how this remotely acquired physiological feature can be deployed for biomedical and other applications. This work utilises Hyperspectral Imaging (HSI) within the diffuse optical scattering framework, to assess the StO2 in a contactless remote sensing manner. The assessment involves a detailed investigation about the wavelength dependence of diffuse optical scattering from the skin as well as body tissues, under various forms of optical absorption models. It is concluded that the threechromophore extended Beer Lambert Law model is better suited for assessing the palm and facial tissue oxygenations, especially when spectral data in the wavelengths region of [516-580]nm is used for the analysis. A first attempt of using the facial StO2 to detect and to classify people’s emotional state is initiated in this project. The objective of this work is to understand how strong emotions, such as distress that caused by mental or physical stimulations, can be detected using physiological feature such as StO2. Based on data collected from ~20 participants, it is found that the forehead StO2 is elevated upon the onset of strong emotions that triggered by mental stimulation. The StO2 pattern in the facial region upon strong emotions that are initiated by physical stimulations is quite complicated, and further work is needed for a better understanding of the interplays between bodily physique, individual’s health condition and blood transfusion control mechanism. Most of this work has already been published and future research to follow up when the author returns back to China is highlighted.

Description

Software Description

Software Language

Github

Keywords

DOI

Rights

Relationships

Relationships

Resources

Funder/s