Investigating the PIO-susceptibility of the F-4C

Date published

2000

Free to read from

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

Department

Type

Technical Report

ISSN

Format

Citation

Abstract

Pilot Induced Oscillations are still a serious safety problem in aviation. Especially in regard of the continuous evolution of modern fly-by-wire flight control systems, PIOs seem to occur more frequently. Although test pilots, flight test engineers and handling qualities specialists have dealt with this phenomenon over the past three decades, it still is difficult to apprehend and all too often it catches pilots as well as engineers by surprise. This report gives a brief overview of the mechanisms and the contributing factors in pilot behaviour, in aircraft dynamics and in the environment that lead to a PIO-condition. A great effort has been made over the years to develop reliable tools, analytically as well as experimentally, which are capable of identifying PIO-prone and PIO-resistant configurations. Five of the most acknowledged, state-of-the-art frequency and time domain criteria for evaluating PIO-susceptibility, based on linear aircraft dynamics, are introduced and compared. These are the Neal and Smith Criterion (original definition), the Bandwidth/Pitch-Rate Overshoot Criterion, the Smith-Geddes Criterion, the Gibson Phase Rate Criterion and the Gibson Dropback Criterion. These Criteria are applied to two selected flight conditions of a linearised, small perturbations model of the F-4C (Phantom II) aircraft, based on the longitudinal equations of motion. The responses of the mathematical aircraft model, which is developed for this purpose using the state space method, are examined and verified with the MATLAB software package and the applicability/suitability of the criteria for this configuration is assessed. Finally, similarities and differences in the application of the criteria, the utilised criterion parameters and the obtained results are discussed. The objective of this exercise is to provide a consolidated review of current criteria for longitudinal PIO-evaluation.

Description

Software Description

Software Language

Github

Keywords

DOI

Rights

Relationships

Relationships

Supplements

Funder/s

Cranfield University

Collections