Modeling the effects of concentration of solid nanoparticles in liquid feedstock injection on high-velocity suspension flame spray process

Date

2016-02-03

Free to read from

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society

Department

Type

Article

ISSN

0888-5885

Format

Citation

Mahrukh, M. et al. (2016) Modeling the effects of concentration of solid nanoparticles in liquid feedstock injection on high-velocity suspension flame spray process, Industrial and Engineering Chemistry Research, Vol. 55, Iss. 9, pp. 2556-2573

Abstract

This paper presents the effects of the concentration of solid nanoparticles in the liquid feedstock injection on the high-velocity suspension flame spray (HVSFS) process. Four different concentrations of solid nanoparticles in suspension droplets with various droplet diameters are used to study gas dynamics, vaporization rate, and secondary breakup. Two types of injections, viz. surface and group, are used. The group-type injection increases the efficiency of droplet disintegration and the evaporation process and reduces the gas cooling. The initiation of the fragmentation process is difficult for small droplets carrying a high concentration of nanoparticles. Also, smaller droplets undergo rapid vaporization, leaving clogs of nanoparticles in the middle of the barrel. For larger droplets, severe fragmentation occurs inside the combustion chamber. For a higher concentration of nanoparticles, droplets exit the gun without complete evaporation. The results suggest that, in coating applications involving a higher concentration of nanoparticles, smaller droplet sizes are preferred.

Description

Software Description

Software Language

Github

Keywords

DOI

Rights

Attribution 4.0 International (CC BY 4.0) You are free to: Share — copy and redistribute the material in any medium or format, Adapt — remix, transform, and build upon the material for any purpose, even commercially. The licensor cannot revoke these freedoms as long as you follow the license terms. Under the following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. Information: No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Relationships

Relationships

Supplements

Funder/s