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ABSTRACT 

Efficiency of tillage depends largely on the nature of the field, soil type, spatial 

distribution of soil properties, and the correct setting of the tillage implement.  

However, current tillage practice is often implemented without full understanding 

of machine design and capability leading to lowered efficiency and further 

potential damage to the soil structure. By modifying the physical properties of 

soil only where the tillage is needed for optimum crop growth, variable depth 

tillage (VDT) has been shown to reduce costs, labour, fuel consumption and 

energy requirements. To implement VDT it is necessary to determine and map 

soil physical properties, spatially and with depth through the soil profile. Up until 

now the measurement of soil compaction for VDT has been soil penetration 

resistance, expressed as Cone Index (CI).  

In this research a multi-sensor and data fusion approach was developed that 

allowed augmenting data collected with an electromagnetic sensor, a standard 

penetrometer, and conventional methods for the measurement of bulk density 

(BD) and moisture content (MC). Packing density values were recorded for 

eight soil layers of 0-5, 5-10, 10-15, 15-20, 20-25, 25-30 30-35 and 35-40 cm. 

From the results only 62% of the site required the deepest tillage at 38 cm, 16% 

required tillage at 33 cm and 22% required no tillage at all. The resultant maps 

of packing density were shown to be a useful tool to guide VDT operations. The 

results provided in this study indicate that the new multi-sensor and data fusion 

approach introduced is a useful approach to map layered soil compaction to 

guide VDT operations. The economic benefit analysis demonstrated fuel 

savings of 48% by implementing the proposed system. Further work is needed 

to implement the packing density map for VDT in larger numbers of field in 

order to generalise the approach. 
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INTRODUCTION 

Traditional tillage practices use a whole field approach in which the tillage effect 

is applied uniformly across the whole field. Management decisions on which 

cultivation machinery to use and how deep to operate it at are usually decided 

on historical management or occasionally based on information derived from a 

soil inspection. This universal approach is attractive to growers because it 

requires little specialist knowledge of the soil, simply relying on cultivator design 

to achieve a satisfactory result. 

There are several disadvantages to this approach. Firstly from an economic 

perspective, disturbing the soil unnecessarily in areas where the soil structure 

and condition is not required is wasteful of time and fuel (Keskin et al., 2011). 

Secondly, incorrect tillage depth can cause damage to the soil structure by 

smearing wet plastic soil (Gill and Vandenberg 1965). This problem can lead to 

the formation of an impervious layer, restricting the development of plants roots, 

negatively impacting on yield. Finally inappropriate tillage may lead the soil to 

be susceptible to erosion where nutrients are not retained in the soil but are lost 

to the environment through leaching and runoff (Halcro 2013). 

Recently, with increasing economic and environmental pressures, researchers 

have been looking at methods to improve cultivation efficiency by assessing the 

physical soil parameters and varying tillage depth according to soil structural 

need and crop requirements. Growers on the other hand have been using an 

informal approach to this problem, generally making manual tillage depth 

adjustments to the cultivator on a field by field basis. Although some with a 

more advanced knowledge of soil structure, aware of the damage caused by 

inappropriate tillage, have taken within-field measurements to quantify and 

understand the cause of variation thereby going some way to avoid the 

disadvantages already discussed.  

With modern GPS technology, soil variability can be managed by delineating 

areas or management zones with similar properties and yield potential. This 
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management zone approach is now a widely accepted practice for variable rate 

application of agrochemical and nutritional crop inputs. Recent attempts to 

implement variable depth tillage however, haven’t been universally accepted 

because of the time taken to collect the necessary data has been perceived to 

outweigh the benefits.  

This thesis examines the problems associated with variable depth tillage and 

offers a solution to improve the collection and interpretation of data using a multi 

sensor data fusion approach. 
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1 Literature Review 

In this chapter a literature review about different aspects related to soil 

compaction and the need for tillage is provided. 

1.1 Soil profile 

As soils develop over time they are each subject to a 

particular combination of influences causing a 

different set of layers to form. A vertical exposure of 

this sequence is termed a soil profile (Brady and Weil 

2006). For this work understanding the soil profile is 

essential for working out the best strategy to follow 

when varying the tillage depth.  

In agricultural soils there are two soil horizons which 

impact crop production and tillage (Figure 1-1). The 

A horizon or topsoil is the surface layer, 

predominately mineral containing partially 

decomposed organic matter which leads to a dark 

colour. Most tillage activities take part within this 

layer with the type of tillage governed by soil texture 

and other influencing soil physical properties. If this 

layer is subjected to tillage practices repeated at the 

same depth over several years or tillage carried at an 

inappropriate time a plough pan is created. To date 

the primary method of locating the depth and thickness of hardpans has been 

achieved with a cone penetrometer (Clark, 1999). 

Immediately below the topsoil is the B horizon or subsoil. This layer, which is 

rarely subjected to annual movement by tillage, can become dense due to the 

natural settling of the soil particles and or damage from mechanised operations  

creating a hard pan, preventing roots from penetrating, reducing their volume 

and their ability to uptake nutrients (Mouazen and Neményi, 1998). This has a 

Figure 1-1 Schematic 

diagram of soil horizons 

(Mount St Mary's Uni, 

Maryland, USA. 2015) 
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significant impact on a soil’s productivity potential; hence, hardpan and plough 

pan should be removed by subsoiling. However, subsoiling is an expensive 

operation (Mouazen and Neményi, 1999), which necessitates the need to 

reduce the cost of this operation. One way to do that is by variable depth tillage 

(VDT). 

It is well documented that topsoil compaction is easier to ameliorate by the 

assistance of the natural processes including swell-shrink of the soil due to 

wetting-drying cycle or freezing-melting (Brady and Weil 2006). Other biological 

activities like earth worms may contribute to the amelioration of top soil 

compaction. However when compaction occurs in the subsoil, it is difficult to 

ameliorate as natural processes and biological activities are minimal. However 

an efficient method of mapping the spatial and through profile distribution of soil 

compaction would enable VDT to become a viable approach in compaction 

remediation. 

1.2 Soil texture 

Soil texture obtained by particle size distribution (PSD) test is used to describe 

the physical composition of soil. Particle sizes are defined precisely into three 

groups, with the upper limit of ‘soil’ set at 2mm. The classification of the soil 

texture is determined using a ternary graph where the apices represent 100 per 

cent sand, silt and clay fractions respectively (Quarishi, 2013; Marshall et al., 

1996). The relationship between soil texture and compaction is of a strong 

correlation and is affected by moisture content, especially in medium and heavy 

textured soils (Spivey et al., 1986; Domzal et al., 1991). Soil texture is also 

highly correlated to moisture content and bulk density (Gupta and Larson, 1979; 

Spivey et al., 1986). The lighter the soil (towards the sandy type), the smaller is 

the water holding capacity and moisture content (Mouazen et al., 2015) and the 

larger is the bulk density (Abramson et al., 2002) and vice versa. Literature 

showed that heavy soils (e.g. clay soils) when wet are much more susceptible 

to compaction occurrences than light soils (e.g. sandy soils) (Quarishi, 2013). 
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Textural assessment is one of the most important tests that can be done on soil 

as it can give a guide to the retention of soil water, structural stability, erodability 

and ease of cultivation (Batey, 1988). Soil texture also influences soil 

compaction. Ellies Sch et al. (2000) reported that in soil with a coarse texture, 

the dominant stress during soil penetration was in vertical direction, while in a 

fine texture stress propagation was multidirectional. This demonstrates that 

soils with different soil textures will compact at different depths and directions, 

therefore soils of varying texture would benefit from a VDT approach to be 

investigated in the current work. 

1.3 Soil structure 

Soil structure is defined by the arrangement of soil particles and the spaces and 

soil pores between them. (Batey, 1988) The relevance of structure to good soil 

husbandry is intrinsically linked to the soil pore’s ability to allow drainage of 

water, aeration and passage of roots (Figure 1-2). 

 

Figure 1-2 Schematic diagram comparing differences between well-structured 

and poorly structured soil (State Government, Victoria, Australia 2015) 

 

(Not to scale) 
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The pore spaces are also home to many living organisms ranging from 

microscopic bacteria to earthworms and beetles (Batey, 1988). The annual 

practice of tillage repairs and maintains the soil structure by increasing the 

number and volume of pores spaces, reducing the soil bulk density and 

increasing the mass flow of moisture and gasses within the soil profile 

(Quarishi, 2013). The presence of a hard pan or plough plan will have a huge 

impact of these soil physical properties, hence it is necessary to eliminate the 

compacted layers with VDT. 

1.4 Soil consistency 

Soil consistency is categorised as solid, plastic or liquid (Marshall et al., 1996) 

(Figure 1-3).The solid category is further sub divided in to hard and friable. Hard 

soils are more difficult to cultivate than friable ones because the forces required 

to fracture them are much higher. Plastic soils on the other hand will initially 

deform rather than fracture as the energy transferred during tillage is absorbed 

by the soil (Hamza et al., 2005). 

 

Figure 1-3 Consistency and shrinkage states of remoulded soil illustrated by 

values appropriate to soil of a high clay content (Marshall et al., 1996) The 

optimum soil moisture for tillage (Allmaras 1969) is indicated by the red line. 
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It is important for growers to recognise the different soil textures and soil 

moisture content as these have a significant impact on the cost and 

effectiveness of tillage (Ohu et al., 1989). Allmaras et al. (1969) noted that 

tillage carried out at 95% of the lower plastic limit was the point of optimum 

workability. This is because cultivating when the soil moisture content is greater 

than the plastic limit will damage the soil structure by smearing and 

deformation. Conversely, if soil is below the shrinkage limit, then more energy 

will be required to fracture the soil. Therefore it is important to till the soil at the 

right soil moisture if compaction is to be minimised (Gysi et al., 1999).   

1.5 Soil compaction 

The Soil Science Society of America (1996) defined soil compaction as “the 

process by which the soil grains are rearranged to decrease void space and 

bring them into closer contact with one another, thereby increasing the bulk 

density”, as shown in (Figure 1-4). Soil compaction is the spill of air, which is 

different than soil consolidation, which is defined as the spill of water.  

 

Figure 1-4 Effect of soil compaction on altering soil pore orientation and spacing 

(Adapted from University of Minnesota, 2001) 
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This combination of higher bulk density and lower porosity in the compacted 

layer as opposed to the soil directly above or below it can be as a result of 

external pressure caused by agricultural machinery (Gorucu, 2006), or natural 

factors such as hard pans caused by particle settling and cementation (Brady 

and Weil 2006). Either the naturally occurring or pressure induced soil pans can 

have a significant impact on the growing crop. If the layer of soil is extremely 

dense, and the soil penetration resistance value is over 2 MPa (Taylor et al., 

1996) roots may not penetrate, decreasing the rooting volume, reducing nutrient 

uptake and increasing drought susceptibility. Furthermore, the compacted layer 

may prevent water infiltrating into the subsoil, thus limiting available water for 

plant growth and increasing surface run off and the potential for soil erosion 

(Raper, 2005). However if the layer is of a density that does not restrict root 

development, gas exchange and drainage, it can play an important part in 

absorbing compaction stresses before they reach deeper sections of the subsoil 

(Spoor, 2005). This is important to note, as deep soil compaction is difficult to 

ameliorate. 

Soil compaction caused by anthropogenic activities such as heavy farm 

machinery or result of cyclic tillage is a big concern for farmers as it is directly 

related to crop growth and potentially to yield. Other factors, such as heavy 

rainfall and natural cementation can also lead to soil compaction. According to 

the natural soil susceptibility to compaction, Houšková and Montanarella (2008) 

divided soils in Europe into four categories of low, medium high and very high 

susceptibility to compaction. Soil compaction is associated with increase in bulk 

density and penetration resistance, while significant reduction of porosity and 

pore space may be expected (Hakansson, 1990). Therefore, soil compaction 

also affects the hydraulic properties of the soil. The decrease in infiltration rate 

leads to surface run off, which enhances soil erosion particularly in areas with 

intensive rainfall (Franzen et al., 1994). This also causes increased risk of 

flooding, particularly in areas with steep slopes that experience intensive rainfall 

(Presbitero et al., 2005). The increase of soil resistance to penetration affects 

not only plant growth but also leads to increase energy requirement for tillage. 
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Therefore, the occurrence of soil compaction should be avoided otherwise a 

proper management of tillage should be utilised. 

1.6 Causes of soil compaction 

1.6.1 Mechanized farm operations 

Heavy wheeled machinery with high axle loads exerts a vertical pressure on the 

soil. This force is localised directly below each wheel, where it increases soil 

density and reduces porosity. If the force is sufficiently large surface ruts are 

formed (Hamza and Anderson, 2005). The depth of compaction varies widely 

from 10 to 60 cm (Flowers and Lal, 1998; Hamza and Anderson 2005). 

Furthermore multiple layers of compaction can be created by tillage when the 

soil is too wet. As draught increases and traction is reduced, the wheels on the 

tractor slip, creating a smeared layer or plough pan. Further soil damage can be 

caused by the tines of the cultivator which can also smear the soil creating an 

additional impervious layer inhibiting the natural function of the soil. (Godwin 

and Spoor 1978; Daniel et al., 1988). 

1.6.2 Natural factors 

Rainfall on fine, naturally unstable soils can lead to slaking (running together of 

the surface creating an impenetrable cap of up to 5mm thickness). This can 

restrict the seedling emergence. Heavy rainfall on compacted soil can cause 

erosion due to reduce infiltration of water through the soil surface (Houskova et 

al., 2011). Genetic hard pans also have a significant impact on crop 

performance. These hard layers form naturally within the soil profile where the 

soil texture is coarser than the adjacent layers, gradually cementing over time. 

(Hakansson and Lipiec, 2000). 
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1.6.3 Animal traffic 

Grazing livestock can cause soil compaction (Figure 1-5), (Quarishi 2013; Batey 

1998). The areas at most risk are those where the animals congregate namely, 

gateways, feeders and tracks (Betteridge et al., 1999). This type of soil 

compaction, known as poaching, often takes years to recover as the fields are 

rarely cultivated (Quarishi 2013, Warren et al., 1986; Whitmore, 2010) 

 

Figure 1-5 Soil compaction caused by grazing livestock can take many years to 

recover naturally. (Quarishi 2013) 

1.6.4 The misuse of tillage tools 

Tillage is often implemented without full understanding of machine design and 

capability. However, this can be put down to a bad choice or a poor design of 

implement, which leads to lowered efficiency and further potential damage to 

the soil structure. Tillage tools can also create damage by working below their 

design depth. In this situation the soil absorbs the lift energy and smears the 

mass of soil above (Vandenberg, 1965). Naderman (1990) observed that the 

cultivator should be set below the hardpan layer but above the finer textured B 

horizon. He suggested that when the clay soil is within reach of the cultivator, 

the optimum tillage depth must be set at the depth of the B horizon. 
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1.7 Methods of detecting soil compaction  

Soil compaction can be measured by assessing bulk density, porosity, and pore 

size distribution. Therefore there are direct and indirect methods of measuring 

soil compaction (Figure 1-6). 

 

 

 

 

 

 

 

 

 

 

Figure 1-6 Summary of direct and indirect methods of assessing soil compaction 

(Lal and Shukla, 2004) 

In addition to the above conventional methods of measuring soil compaction, 

there are innovative methods such as those established recently for on-line 

measurement of topsoil bulk density (Mouazen and Ramon, 2006; Mouazen et 

al., 2009). Although the system measures topsoil bulk density, it is based on 

multi-sensor and data fusion approach, which will be considered in this work for 

fusing vertical penetrometers and a geophysical method (e.g. Electro Magnetic 

Induction). 

  

Porosity 

• Total 

• Macro pores 

• Void ratio 

Bulk density 

measurement 

• Core 

method 

• Clod 

method 

• Radiation 

technique 

Soil strength 

measurement 

• Penetration 

resistance 

• Vane shear 

test 

• Gaseous 

diffusion 

• Oxygen 

diffusion 

rate 

Water 

infiltration 

rate 

Hydraulic 

conductivity 

Water Movement Air Movement and porosity 

Indirect Methods 

Soil compaction assessment 

Direct methods 



 

22 

 

1.8 Cone penetrometer for the assessment of soil compaction 

A cone penetrometer is a simple tool designed for measuring the soil strength 

or soil bearing capacity (Figure 1-7). Soil strength is traditionally referred to as 

the cone index (CI), i.e. penetration force per unit base area of the cone 

expressed in MPa and is universally accepted as a method to estimate soil 

compaction caused by field traffic and soil tillage (Domsch et al., 2006). The 

diameter of the base, top angle and the surface coarseness of the cone are 

parameters of the penetrometer which affect the measured value (Krajko 2007; 

Bajla, 1998). 

To enable a comparison between obtained readings, dimensions of the cone 

penetrometer were unified and defined by ASAE Standard 313.3 (ASABE, 

2004).  

 

Figure 1-7 Soil cone penetrometer (after ASABE, 2004) 

The main advantages of a cone penetrometer are its simplicity of use and cost 

effectiveness, however even when automated, the stop go nature of the 

operation makes it very time consuming and the small volume of soil measured 

mean results can be highly variable (Adamchuk et al 2003). To overcome these 

limitations a number of horizontal penetrometers have been developed enabling 

on-the-go sensing of soil strength which have been used to obtain data at 

specific or multiple depths, Figure (1-8) (Richards, 2000; Sun et al., 2006; 

Hemmat et al., 2009). Alihamsyah et al. (1990) developed a horizontal cone and 
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wedge penetrometer to measure soil strength at a particular depth. He found 

encouraging correlation coefficient R2 of 0.74 and 0.98 between measurements 

made by a horizontal penetrometer and those from a vertical penetrometer. 

(Quarishi, 2013)  

 

Figure 1-8 Horizontal penetrometer system (after Sun et al., 2006) 

Chung et al (2003) developed a horizontal prismatic penetrometer that 

measured soil strength to 50 cm depth with 10 cm increments. The cutting 

forces of five prismatic tips in front of the main blade were measured by load 

cells as the sensor operated through the field. Hall and Raper (2005) developed 

a mechanical impedance sensor to measure horizontal soil wedge penetration 

resistance. The authors reported similar results between the wedge index and 

cone index. A difficulty in translating the sensor data to cone index is caused by 

the type of soil failure. This is because a vertical penetrometer is always in a 

bearing capacity failure mode whereas a chisel or knife type sensors act as a 

simple rigid tines (Hemmat and Adamchuk, 2008).  

To determine the extent of compaction across a field using a penetrometer 

requires a robust and methodical procedure (Domsch 2006). To gain a 

meaningful understanding of soil variation within a field, not only do multiple 

tests have to be undertaken but soil moisture content, soil bulk density, organic 

matter content, soil texture and soil porosity all have to be taken into account 

when interpreting value of the soil penetration resistance.  
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One method of minimising the variation is to restrict data collection to conditions 

of constant moisture states, e.g. at field capacity (Domsch, 2006). This will 

ensure that when a threshold value is required to decide if to cultivate or not, 

measurements within a site can be compared. In a study looking at the effect of 

soil texture, moisture content and bulk density, Kumar et al. (2007) concluded 

that higher soil cone indexes occurred at the greater soil depth and bulk density. 

Since penetration resistance of the soil is simultaneously affected by moisture 

content, bulk density, texture, salinity and organic matter content, cone index 

alone is not a scientifically accepted option to mapping soil compaction. 

1.9 Electro-magnetic Induction (EMI)  

EMI is a proximal sensing method which measures a soils ability to transmit 

electrical current or apparent electrical conductivity (ECa). It is commonly 

expressed in units of milli-Seimens per meter (mS/m) (Grisso et al, 2009). The 

proximal nature of the measurement method means that the values recorded 

define the apparent soil conductivity as a weighted average for a column of soil 

to a specified depth (Doolittle et al., 1994). The primary factors which affect the 

measured ECa are the pathways of current flow in the soil. Rhoades et al., 

(1999) identified these pathways as (i) liquid phase, (ii) solid-liquid, and (iii) a 

solid pathway. McNeill (1980) and Krajko (2007) listed other physical 

parameters of the soil which can affect ECa readings, namely soil moisture, 

cation exchange capacity, salt content of the soil sensing depth and 

temperature. Furthermore, low conductivity is associated with sandy soils, 

whereas medium and high conductivities are associated with silt and clay soils, 

respectively.  
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The basic principle of operation of the EMI instrument is shown schematically in 

Figure (1-9). A transmitter coil (Tx) located in one end of the instrument induces 

circular eddy current loops in the soil. The magnitude of these loops is directly 

proportional to the ECa in the vicinity of that loop. The current loops generate a 

secondary electromagnetic field that is proportional to the value of the current 

flowing within the loop. A fraction of the induced electromagnetic field from the 

loops is intercepted by the receiver coil (Rx), and the signal is amplified and 

formed into an output voltage which is linearly related to ECa. (Robinson et al., 

2004; Corwin and Lesch 2005a; Abdu et al., 2007) 

 

 

Figure 1-9 Basic principle of operation of EMI meter (Robinson et al., 2004) 
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ECa of a soil profile can be used as an indirect indicator for a number of soil 

properties. O’Leary et al. (2003) used an EMI sensor for identifying subsoil 

properties. They concluded that since electrical conductivity is well correlated 

with high soil water content, EMI technology coupled with accurate GPS 

equipment could provide economic opportunities to map out areas of a farm that 

are affected by subsoil compaction. A study by Rahman (2011) revealed that 

ECa, which was related to different soil physical properties such as clay 

content, moisture content, bulk density and salinity can be conveniently used to 

determine soil variability. 

Krajco (2007) investigated using EMI techniques as a cost effective method for 

the assessment of soil compaction, greatly enhancing the process of soil 

compaction management. However, because of the EMI sensors sensitivities to 

other key soil properties as previously discussed he concluded that EMI as one 

tool in isolation is not sufficient to map soil compaction, although it can offer a 

possible rapid measurement for soil variability (Kuang et al., 2012). In a similar 

investigation Al-Gaadi (2012) concluded that whilst ECa measurements could 

provide a potential for an effective and efficient means of soil compaction 

assessment, high correlations were only observed between soil compaction and 

ECa values when the soil moisture content was below 6.94%. At a higher value 

of 8.0%, low correlations were observed leading him to recommend 

measurements at low soil moisture content (less than 7% in the case of sand). 

Abdu et al. (2007) observed that the EMI sensors are most sensitive at the 

surface and the sensitivity decreases rapidly with depth. Dabbas and Tabbagh 

(2003) noted that soil profiles are seldom homogeneous and that ECa values 

measured at the surface represent the same apparent physical characteristics 

of a homogenous medium therefore many different profiles may produce similar 

measurements of ECa. Therefore the potential of combining the two methods 

e.g., penetration resistance and EMI with a proper data fusion approach should 

be investigated, as to overcome some of the shortcomings of the two methods if 

they are implemented individually to maps soil compaction horizontally 

throughout the soil profile. 
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1.10 On-line measurement systems of soil compaction 

Tillage tool draught has often been used to predict and map the spatial variation 

of soil compaction. Hayhoe at al. (2002) proposed a method of measuring 

mouldboard plough draught as a surrogate variable for crop limiting properties 

such as soil compaction. However, Mouazen and Ramon (2003) noted that it is 

useless to consider draught as a direct indicator of soil compaction whilst 

ignoring the main important variables such as dry bulk density, moisture content 

and depth. Therefore it is not recommended to use draught as a measure of soil 

compaction with on-line mechanical sensors (Quarishi, 2013). 

As an alternative method, Mouazen and Ramon (2002) carried out a hybrid 

finite element model - multiple linear regression (FEM-MLR) simulation to derive 

a model to predict bulk density as a function of draught, moisture content and 

depth. They established a linear relationship between draught and moisture 

content and a nonlinear relationship between draught and bulk density, and 

draught and depth. The resulting equation (Eq.1-1) can be used to predict dry 

bulk density if the data on the subsoiler draught, moisture content and depth are 

provided simultaneously. Mouazen et al. (2009) have updated the original 

equation to correct further for moisture content and clay content as follows: 

3
. - .
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.

+
= ×

2D 21 36 MC 73 9313d
BD 1.240 - 0 592MC -0.000792clay)

1 6734
 

1-1 

 

 

 where D is subsoiler draught [kN], MC is gravimetric moisture content [kg 

kg-1], d is cutting depth [m] and BD is bulk density [Mg m-3]. 

The limiting factor of this approach is that the combined measurements are only 

relevant to the specific depth (e.g. top layer of the soil down to 15 cm) of the 

instrumented tine making its application limited in a site specific tillage context 

to topsoil variable tillage. However the method does demonstrate the potential 

for VDT through the soil profile for eliminating hardpan or plough pan. 

%����) 
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1.11 Assessment of the state of compaction 

The literature highlights multiple methods for locating and measuring 

compaction. However, these methods as a measure of soil quality with respect 

to crop production are unsatisfactory since they lead to crop response curves 

and optimum values that are different for different soils.  

Bulk density values are frequently used as an indicator of soil compaction as it 

is possible to predict the bulk density value at which root growth and yield are 

limited. Several researchers have reported a parabolic relationship between 

bulk density and yield with the maximum value dependant on soil texture, crop 

and climate (Kaufmann et al., 2008; Pabin et al., Czyz, 2004). A generalised 

relationship on how changes in bulk density influences crop yield is given in 

Figure (1-10). 

 

Figure 1-10 Generalised relationship between plant yield and the deviation to the 

optimum bulk density, after Kaufmann (2008) 

 

However, in a review of methods for assessing the state of compaction, 

Kaufmann (2008) noted that both the optimum bulk density and yield limiting 

bulk density values decrease simultaneously with clay and silt content. This is 

because compacted soil prevents root development due to the soil pores being 

%
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smaller than the diameter of the growing roots (Daddow and Warrington, 1983). 

Thus, the sensitivity of bulk density value to the clay fraction renders bulk 

density a poor indicator of root growth and yield because climatic conditions and 

soil moisture content will have a large influence on the bulk density value at the 

time of the measurement. To overcome this limitation, the calculation of packing 

density (PD) using eq. (1-2) allows for the transformation of bulk density values 

into a clay independent indicator by adding a correction term given as the 

product of clay content with the slope of the regression lines (Kaufmann, 2008) 

PD = BD + 0.009 CC 1-2 

where PD is packing density, BD is bulk density (g/cm3) and 0.009 CC is 

the correction term given as a product of clay content with the slope of the 

regression lines (Renger 1970). 

Implementation of packing density as an indicator of the state of compaction 

requires a table of mean values classifying the lower and upper ranges of 

optimum and limiting values for crop growth (Table 1-1). 

Table 1-1 Packing density classifications for crop growth (Kaufmann 2008) 

PD value (t/m3) Crop growth condition 

< 1.40 Below optimum range 

1.40-1.55 Lower optimum range 

1.55-1.70 Upper optimum range 

1.70-1.82 Lower limiting range 

> 1.82 Upper limiting range 

1.12 Tillage Systems 

Tillage is the mechanical disturbance of soil with the intent of reducing strength 

and bulk density thereby alleviating compaction. Normal tillage operations do 

not disturb soil deeper than approximately 20-30 cm and in the case of no-till 

crop production; there is generally no disturbance. When compaction occurs 

below the normal depth of tillage, deep tillage or subsoiling is required. 



 

30 

 

The concept of precision tillage was described by Carter and Tavernetti (1968) 

where the tillage depth was precisely specified to reach and disturb a 

compacted layer. However, as discussed above there is a great amount of 

variability in the depth and thickness of hardpan layers because different soils 

vary in their bearing capacity to support given loads without suffering 

compaction damage. This ability is very dependent upon the more stable 

properties of soil type and the packing arrangement of soil particles and 

aggregates (Spoor et al., 2005). Moreover, in some areas of the field, 

compaction doesn’t exist at all (Clark, 1999; Raper et al., 2001).  

Precision deep tillage is attractive from the stand point of eliminating 

unnecessary effort, thus reducing energy consumed.  Raper et al. (2005b) 

performed an experiment to investigate the benefits of subsoiling at different 

depths. The results showed slightly higher savings with a 59% and 35% 

decrease in draught with the 25 cm and 35 cm depths, respectively, compared 

to the uniform depth tillage at 45 cm. Reductions in power requirements 

reached 52% with the 25 cm depth compared to deep tillage and 26% less 

power required at the 35 cm tillage depth. Estimations of fuel savings ranged 

from 43% with the 25 cm depth and 27% less fuel for the 35 cm tillage depth. 

Gorucu et al. (2001) researched variable depth tillage based on geo-referenced 

soil compaction using data from a cone penetrometer, electrical conductivity 

and yield maps to assess soil variability of the field. The field was divided into 

four management zones according to soil electrical conductivity and 

penetrometer data. According to predicted tillage depths, 75% of the field could 

be tilled shallower than the conventional tillage depth. Each zone was subjected 

to five replications of three treatments; no tillage, uniform depth tillage and 

variable tillage. Variable depth tillage was carried out at 25 cm, 33 cm and 38 

cm.  Deep tillage was performed at a depth of 41cm. A tractor was implemented 

with a data acquisition system that collected fuel consumption, engine speed, 

ground speed, wheel slip and draught forces. Results indicated a 42% energy 

savings and a 28% fuel savings with variable depth tillage compared to constant 

depth tillage. 
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2 Research aim and objectives 

2.1 Research gaps 

Agricultural soils are susceptible to soil compaction which restricts root growth 

and plant development. Compaction also increases the soil bulk density and soil 

strength which increases the cost of remediation through tillage. 

Soil textures containing fine soil particles and a higher portion of soil pores are 

assumed to compact more easily. Therefore clayey soils can be compacted 

more easily than sandy soils (Krajco 2007). Recognising and mapping these 

variations within field using direct and indirect sensors has been demonstrated 

to be an acceptable method of implementing site specific tillage. However, the 

limitations of this approach are twofold. Firstly, using sensors in isolation means 

that their operating constraints are always factored into the tillage plan. 

Secondly, the readings are of physical soil parameters e.g. soil resistance and 

ECa, which don’t translate well across varying soil types and moisture content, 

unlike a relative compaction approach which can indicate an optimum growing 

environment across different soils. Furthermore, existing on-line soil sensors to 

measure bulk density are useful for mapping topsoil soil compaction, while no 

information about soil compaction profile can be obtained. 

This research will propose a method of the fusing multi sensor data to delineate 

management zones using relative compaction (e.g. packing density), as a 

trigger for whether to apply tillage or not. 
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2.2 Research aim 

To develop a new approach and measurement system of soil compaction 

through the soil profile based on a multi-sensor and data fusion approach. The 

final output will be a 2-D packing density maps for each of the eight soil layers 

used as input for variable depth tillage. 

 

2.3 Research objectives 

1. To collect geo-referenced data on soil penetration resistance, ECa 

and bulk density and moisture content using an electromagnetic 

induction (EMI) sensor, hydraulic cone penetrometer and a Kopecky 

ring, respectively.  

2. To fuse the multi-soil data, using geo-statistical methods to delineate 

by layer management zones for site specific tillage.  

3. To establish models to derive bulk density as a function of PR, ECa 

and MC using multivariate statistical methods. 

4. To calculate the mean and maximum packing density of each 

management zone through different soil layers thereby determining 

the depth of tillage site specifically. 

5. To develop a 2-D packing density map for each soil layer to be used 

as input for variable depth tillage. 
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3 Materials and Methods 

3.1 Experimental site 

A 2.43 ha arable site near Bourne, South Lincolnshire, England (520 44’ N, 00 

19’ W) was selected (Figure 3-1). 

 

Figure 3-1 Site location of the field experiment 

 

Located on the edge of the clay fens, the organic clay site (Table 3-1) is 

described as being part of the Badsey 2 Association, relatively stone-free loam 

material overlying sands and gravels between 30 and 80 cm (Soil Survey of 

England and Wales). 

 

Table 3-1 Soil textural assessment from the experimental site 

Sand % w/w Silt % w/w Clay % w/w O.M. % w/w 

31.75 35.25 33 9.6 

 

Wheat, potatoes and sugar beet are the main crops of cultivation, which is 

typical for the area. At the time of the experiment the site was fallow and had 

not been cultivated. To conduct the experiment a 90 x 270 m, area was divided 

into 243, 10 x 10 m grid squares. After identifying the experimental site, field 
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measurements were carried out successively by EMI sensor to measure ECa, a 

mobile penetrometer to measure soil penetration resistance and a Kopecky ring 

kit to measure bulk density and moisture content, as described below. 

3.2 Apparent electrical conductivity (ECa) survey 

The ECa data collection was obtained with a mobilised DUALEM-1S sensor 

(Dualem, Inc., Milton, ON, Canada) working on the principle of electromagnetic 

induction. The DUALEM-1S instrument maintains a spacing of 1 m between the 

transmitting coil at one end of the instrument and the receiver coils at the other. 

Although no infield calibration is required as the working parameters are pre-set 

by Dualem Inc. during manufacture, the sensor automatically compensates for 

temperature during operation. An analogue output is provided to allow data to 

be recorded on a data logger or computer.  Two working depths are measured 

simultaneously by the instrument. This was achieved by the geometry of the 

transmitting and receiving coils (Figure 3-2). 

 

Figure 3-2 Schematic diagram of the DUALEM 1S transmitting (Tx) and receiving 

(Rx) coil orientation, enabling simultaneous measurements of two soil depths 

The vertical coil (HCP) provides an effective measurement depth of 

approximately 1.2 m. The horizontal coil (PRP) provides an effective 

measurement depth of 0.75 m. The ECa measurements from the DUALEM 

sensor are averaged over a lateral area approximately equal to the 

measurement of depth.  
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To mobilise the DUALEM-1S sensor the unit is mounted on a 3 m long trolley 

(Figure. 3-3). Manufactured from a composite frame the trolley is supported at 

the rear by two pneumatic tyres, which was pulled by a quad bike. Use of a 

composite material is necessary because the DUALEM-1S will respond strongly 

in the presence of metallic object within ~1 m, which is avoided by the 

composite material used.  

 

Figure 3-3 Composite field trolley for the DUALEM sensor (SOYL, 2015) 

The length of the trolley is also an important consideration as this extends the 

distance between the sensor and prime mover eliminating the effects of engine 

noise from the quad bike on the instrument readings. Using this configuration 

the instrument is suspended 20 cm above the ground surface during data 

collection. Analogue ECa data from the DUALEM 1S was read into a differential 

global positioning system (DGPS) data logger (NOMAD, Trimble, USA) 

mounted in front of the quad bike operator using Star Pal GPS Mapping 

software (Star Pal, CO, USA). The DGPS data were integrated with the 

DUALEM 1S data to provide the coordinates of each measurement point. Data 

were collected on 10 m transects spaced evenly over the study area (Figure 3-

4). Data was recorded at a 1 second interval, corresponding to a measurement 

every 2–3 m along the measurement transects. In total 2569 ECa 

measurements were recorded at each ECa depth, namely 0-40 cm and 0 – 120 

cm. 
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Figure 3-4 Simulation of an on-the-go sensor platform was achieved by ensuring 

the DUALEM 1S and the Amity soil penetrometer followed the same transects 

3.3 Soil penetration resistance 

3.3.1 Penetrometer survey 

Spatial and with depth soil resistance data was collected every 10m along each 

transect followed during the ECa measurement. The Amity mobile penetrometer 

(Amity Technology, ND, USA) used was a self-contained, trailer mounted 

penetrometer designed to be pulled along by a quad bike (Figure 3-5). An on 

board power unit and hydraulic cylinder are used to insert the penetrometer 

measurement probe to a maximum depth of approximately 50 cm. Actual 

insertion depth relative to the ground surface may vary by several cm due to 

uneven ground. Maximum insertion force is limited to approximately 1 kN, or 5 

MPa to prevent overloading the mechanical components. 

 

Figure 3-5 Mobilised Amity penetrometer in work 
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Insertion depth is detected by a proximity switch that senses a slotted bar 

attached vertically to the sensing probe. Data collection is triggered every 1.8 

cm as the slotted bar moves past the proximity switch. Insertion force is 

measured by a pressure transducer mounted in the hydraulic circuit. The 

insertion force is reported as cone index (CI), or the insertion force per unit cone 

base area. Data are location-tagged by a DGPS and read on a mobile computer 

(NOMAD, Trimble, USA) using Amity Compaction Mapping Software.  

 

3.3.2 Amity penetrometer calibration 

To translate the insertion force (measured as hydraulic pressure) into cone 

index the Amity penetrometer requires a multiplication factor (MF) to be 

calculated and entered into the compaction mapping software. As it was not 

safe or practical to physically measure the force exerted by the cone, an 

investigation to determine the MF was carried out at the soil bin facility at 

Cranfield University using a Eijkelkamp Penetrologger (Giesbeek, Holland)  

(Figure. 3-6) 

 

Figure 3-6 Eijkelkamp Penetrologger 
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The Eijkelkamp penetrometer is able to record measurements up to a depth of 

0.8m with a 10mm depth resolution. During the penetration, soil depth is 

measured by an internal ultrasonic sensor using the depth reference plate. All 

the logged data is saved in the internal memory of the penetrologger.  

 

Figure 3-7 Amity penetrometer during calibration at the Cranfield soil bin 

The soil bin was prepared prior to the investigation by splitting the soil bin into 

two zones of equal density using the soil compactor. The first was 1.4 kg/cm3 

and the second was 1.6 kg/cm3. These densities were confirmed from random 

samples taken from the soil bin using the Kopecky ring method. A benchmark 

soil resistance data set was created using the calibrated Eijkelkamp instrument 

by logging ten penetrations, 30 cm apart along the soil pit. The Amity instrument 

(Figure 3-7) was then operated at alternate locations to those taken with the 

Eijkelkamp instrument. 
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This procedure was repeated in the denser soil, previously prepared in the 

second half of the soil bin. The resulting values of penetration resistance as a 

function of depth from both data sets were averaged to determine a single 

mean value for each instrument. These single values were then combined to 

determine a multiplication factor for the Amity instrument, explained as follows. 

(Eq. 3-1) 

(Eijkelkamp mean value)/ (Amity mean value) = Multiplication factor.  3-1 

3.4 Collection of soil samples 

It was not economic to take soil samples from each of the 243 penetrometer 

sample points. Therefore the number of samples and their location was 

determined from management zones derived from the ECa data collected by 

the DUALEM sensor (Figure 3-8). To develop the management zones a data 

set was created by averaging and squaring the two depth ECa data, thus 

ensuring that all of the sensor data was included, and each zone had a wide 

value range because of the squaring. This new data was then interpolated with 

an inverse distance weighted algorithm in SURFER 10 (Golden Software, CO, 

USA). Using a GPS device (NOMAD, Trimble, USA), pre-loaded with the 

management zones, four sample sites were randomly selected within each of 

the four ECa2 ranges for BD and MC. To minimise the cost of the particle size 

distribution test for clay content analysis, three samples were taken randomly 

from management zones using a wider ECa2 range (Table 3-2).  
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Figure 3-8 Soil sample location for bulk density (BD), moisture content (MC) and 

clay content (CC) 

 

 

Table 3-2 Summary table of ECa2 values used to create the sample zones 

Sample Classification ECa
2 

Range Sample # 

BD & MC       480 – 630 12, 14, 15, 16 

 631 – 780 1, 6, 11, 12 

 781 – 930 7, 8, 9, 10 

 930 - 1080 2, 3, 4, 5 

Clay content  480 – 680 3 

 681 – 880 2 

 881 – 1040 1 

 

 

ECa2 contours 

BD & MC 

CC 

ms/m
2
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3.4.1 Samples for moisture content and bulk density 

To collect the samples for bulk density and soil moisture by depth, a Kopecky 

ring method was used. For each sample a 5 cm deep ring was hammered into 

the ground collecting 100 cc of soil per sample. In total 8 x 5 cm undisturbed 

soil samples were taken sequentially down the profile. The resultant soil was 

sealed in a polythene bag, to prevent weight loss by evaporation, and labelled 

with GPS location and profile position. 

3.4.2 Samples for clay content 

At each clay content sample location, a soil pit (50 cm x 50 cm x 50 cm) was 

manually excavated using a spade. From one side of each of the three soil pits, 

4 x 10 cm samples of soil were carefully removed sequentially down the profile 

using a trowel, after which they were placed into a plastic bag labelled with GPS 

location and profile position. 

3.5 Laboratory experiments 

Overall 140 soil samples were collected from the experimental site (128 

samples for BD, MC and 12 samples for CC) and analysed in the laboratory 

(APPENDIX A). The methods used for the measurements are described below. 

3.5.1 Moisture content analysis 

Moisture content of the soil was determined by drying the soil samples in an 

oven at 105℃ for a minimum of 24 hours (BS 7755, 1994). The moisture 

content measurement was deduced by calculating the difference between the 

mass of the wet samples and the samples after drying. 

3.5.2 Bulk density analysis 

Bulk density of the soil was determined by subtracting the dry weight values 

from the moisture content analysis and dividing them by the volume (100 cm3) 

of the soil core. (Eq.3-2) 

Bulk density = (Dry weight of bulk sample (g))/(volume of soil core (cm3)) 3-2 
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3.5.3 Particle size distribution (PSD) analysis 

Soil texture was determined using a sieve and sedimentation method according 

to BS 7755 section 5.4 (BSI, 1998). This method has four successive 

processes, each of which further separates the soil particles.   

1. Organic matter removal 

2. Dispersal and wet sieving 

3. Dry sieving the sand fraction 

4. Determination of silt and clay by pipette extraction 

Having reduced the soil sample to individual particles their distribution is 

calculated using the following equations 

 

D=d/20 3-3 

F=S+[(Z-D)* 20] 3-4 

%sand = (mass of particles of sand fraction)/F* 100 3-5 

% 0.002 to 0.063mm = ((Z-C)*20)/F* 100 3-6 

% < 0.002mm = ((C-D)*20)/F* 100 3-7 

 

Where, D = Dispersant factor 

F factor = (mass all sand sample) + (mass of all silt sample – D) x 20 

d = oven dry mass of sodium hexametaphosphate solution (g) 

Z = mass of 0.002 – 0.063mm pipetted sample (silt + clay) (g) 

C= mass of < 0.002mm pipetted sample (clay) (g) 
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3.5.4 Soil texture classification 

The textural class of a soil was defined on the relative proportions of sand, silt 

and clay. The UK uses a system of classification developed by the former soil 

survey of England and Wales, which is different from others in use around the 

world such as the United States Department of Agriculture (USDA.) The particle 

size classes are based on particle size grades of the British Standards Institute 

(BSI). (Table 3-3)  

Table 3-3 Particle size classes based on particle size grades of the British 

Standards Institute 

Particle Class Particle subclass Particle size (mm) 

Clay  <0.002 

Silt  0.002-0.06 

Sand Fine 0.06-2.0 

Sand Fine 0.06-0.2 

 Medium  0.2-0.6 

 Coarse 0.6-2.0 

To determine the soil textural classification the calculated percentages of sand, 

silt and clay were plotted on a UK soil texture classification triangle. 

 

3.6 Data processing, mapping and tillage zone delineation. 

3.6.1 Penetration resistance data 

The Amity penetrometer records 22 soil resistance measurements throughout 

the soil profile, the depth interval between each sample is 1.8 cm. To fit these 

22 measurements into eight, equal depth soil layers the data to be modified by 

averaging values of neighbouring points within the soil profile. The allocation of 

each measurement is defined in Table 3-12. 
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Table 3-4 Allocation of penetration resistance measurements to experimental 

depth layers 

Measurement  1,2,3 4,5,6 7,8 9,10,11 12,13,14 15,16 17,18,19 20,21,22 

Soil layer 5 cm 10 cm 15 cm 20 cm 25 cm 30 cm 35 cm 40 cm 

 

A further benefit of combining adjacent penetration resistance measurements is 

data smoothing. Domsch (2006) had noted that by calculating the means of 

consecutive 50 mm depth layers within penetrometer data, irregularities were 

largely removed and the character of the function became obvious. The 

penetration resistance measurements for each layer were then interpolated 

using the inverse distance weighting algorithm to develop maps for each of the 

eight soil layer using SURFER 10 (Golden Software, CO, USA) 

3.6.2 EMI data 

The ECa data was not manipulated because the ECa survey track precisely 

followed the transect centre line of the penetrometer survey ensuring that the 

same soil profile was measured. To aid with interpretation of the experiment 

results and to determine the location of clay content samples the ECa shallow 

and ECa deep data were visualised by IDW interpolation using SURFER 10 

(Golden Software, CO, USA) 

3.6.3 Bulk Density and Moisture content data 

Using the IDW interpolation method the 16 x 8 bulk density and moisture 

content samples were interpolated by layer and plotted as contour maps using 

SURFER 10 (Golden Software, CO, USA).  
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3.6.4 Clay content data 

To extend the clay content results across the experimental site, each grid node 

located within the ECa2 zones defined in Table 3-2 was allocated with the clay 

content sample result taken from that zone (Figure 3-9). 

 

Figure 3-9 Classification key of the extrapolated clay content analysis at the 10 

cm layer 

 

To create the by depth clay content data for each of the eight soil layers the four 

10 cm samples were extended into 5 cm layers (Table 3-5) 

 

Table 3-5 Allocation of by depth clay content results to experimental soil layers 

Sample Depth  10 cm 20 cm 30 cm 40 cm 

Allocated Depth 5 cm 10 cm 15 cm 20 cm 25 cm 30 cm 35 cm 40 cm 
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3.6.5 Data fusion by raster analysis 

As an initial step towards data fusion, data for each measured soil property was 

IDW interpolated and then transformed into a common 10 m raster using 

Manifold GIS (Manifold Software Ltd, Wanchai, HK). The raster squares of the 

soil property layers were then converted into a grid of common points by 

spatially joining the mid-point of each raster square. The output from this 

process was a 10m grid of point values which would allow the application of the 

k-means clustering algorithm. Halcro (2013) and Khosla et al., (2008) used this 

method to delineate management zones from a range of soil properties, 

measured at different resolutions. The 10 m grid in this work provided a 

practical balance between characterising the spatial variation and being able to 

control a VDT cultivator in the field. 

3.6.6 Management zone delineation 

To achieve the research objective of creating a site specific tillage plan it was 

necessary to create management zones by identifying sub regions within the 

field which have internally similar characteristics. This was achieved by applying 

the k-means clustering to the ECa, penetration resistance, bulk density and 

moisture content measurements of each depth layer. The k-means clustering 

process transforms the measurements into normalised numerical values 

associated with each variable in the analysis. As an iterative process the 

normalised values were grouped and re grouped into classes until the within 

group variation is minimised and the between group variation is maximised 

(Taylor et al. 2003). A feature of k-means clustering, which is of benefit to 

precision farming applications, is the option to preselect the total number of 

clusters prior to processing, thereby managing the size and number of the 

clusters. (Taylor et al. 2003). For this work three clusters were selected 

because of the relatively small size of the experimental site. The cluster 

analysis was performed using STATISTICA 12 (Statsoft. Inc. OK, USA).  
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3.6.7 Cluster Analysis 

Graphs of normalised continuous means of each soil depth were produced 

using STATISTICA 10 (StatSoft Inc., USA). The graphs were examined to 

understand the characteristics of each cluster. The differences in mean levels of 

individual soil properties defined the cluster characteristics for each depth, 

which would then be used to delineate management zones. 

3.6.8 Multi linear regression analysis (MLR) 

The real time calculation of bulk density as opposed to the time consuming 

laboratory methods would be an important development for VDT, enabling the 

state on soil compaction to be determined in real time. This can be obtained by 

means of a penetrometer equipped with multi-sensors, which was developed at 

Cranfield University (Quraishi and Mouazen, 2013). This multi-sensor platform 

consists of a load cell to measure penetration resistance and a visible and near 

infrared spectroscopy sensor to measure clay content and moisture content 

(Figure 3-10).  

 

Figure 3-10. A prototype bulk density sensor (PBDS) with built-in load cell, 

GPS, and vis-NIR spectrophotometer. This sensor was validated to predict 

topsoil bulk density in three fields in Silsoe farm in Bedfordshire the UK (After: 

Quraishi and Mouazen, 2013).  
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Using this instrumented penetrometer to measure penetration resistance and 

moisture content and a commercially available EMI sensor to measure ECa, the 

key factors affecting bulk density, namely ECa, penetration resistance and 

moisture content could be measured and used to predict bulk density using an 

empirical model to be developed with multi-linear regression (MLR) analysis. 

Therefore, a MLR analysis was carried out with bulk density being the 

dependent parameter and ECa, penetration resistance and moisture content 

are the independent parameters as follows: 

BD (g/cm3) = f(ECa, PR and MC)  3-8 

 

3.6.9  The MLR analysis was carried out using STATISTICA 12 

(Statsoft, USA) for each of the eight soil layers. Packing 

Density (PD) 

Bulk density measurements are sensitive to changes in soil texture making it 

unsuitable as a measure of compaction for VDT where soil texture is expected 

to change significantly in a short distance across the field and through the soil 

profile. Overcoming this limitation is therefore important and can be achieved by 

adopting the packing density of the soil instead of the bulk density. By taking 

account of the clay content and  transforming the bulk density value into a clay 

independent indicator by adding a correction term given as the product of clay 

content with the slope of the regression lines, the packing density can be 

derived (Kaufmann 2008). Taking the interpolated by layer bulk density and the 

assigned clay content values from the data, the mean packing density for each 

cluster was calculated using (eq. 3-9)   

Packing density = BD + (0.009 x CC) 3-9 

where PD is packing density, bulk density is bulk density (g/cm3) and 

0.009 CC is the correction term given as a product of clay content clay content 

with the slope of the regression lines (Renger 1970). 
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The need for tillage and more precisely variable depth tillage was decided 

based on the effect of packing density values on crop growth (Table 3-6). As 

can be observed the need for tillage can start from any packing density values 

in the upper optimum range (1.55-1.70 t/m3), but will be definitely needed for 

any packing density value larger than 1.70 t/m3. This was the guideline adopted 

in this work to calculate the need for variable depth tillage. 

Table 3-6 Packing density range for crop growth (Kaufmann 2008) 

PD value (t/m3) Crop growth condition 

< 1.40 Below optimum range 

1.40-1.55 Lower optimum range 

1.55-1.70 Upper optimum range 

1.70-1.82 Lower limiting range 

> 1.82 Upper limiting range 

 

3.6.10 A holistic approach 

Figure (3-11) describes the holistic approach for the derivation of variable depth 

tillage recommendation maps. After a management zone for a soil layer is 

derived, average bulk density and clay content are calculated per cluster and 

substituted into equation (3-9) to calculate the packing density per cluster, 

hence the need for tillage or not can be established based on the packing 

density classes of described above  (Table 3-6). However, for future 

application, a modelling approach to derive bulk density and packing density in 

real time is needed. This should be combined with multi-sensor and data fusion 

approach. The established per layer models of Equation 3-8 will be utilised to 

calculate bulk density based on input data on ECa obtained with an EMI sensor 

and moisture content and penetration resistance data obtained with the multi-

sensor platform (Figure 3-10). By substituting the calculated values of bulk 

density and measured values of clay content with the multi-sensor platform (e.g. 

NIR penetrometer sensor), into Equation 3-9, packing density can be 
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calculated. Finally, the decision on variable depth tillage is obtained by 

comparing the calculated packing density values with those in Table 3-6. When 

any packing density value at a point is larger than 1.7 t/m3, this should be 

considered as critical to crop growth and yield and tillage should be 

implemented.  
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3.7 Assessment of tillage cost 

To calculate the potential financial benefit of VDT a test was performed to 

calculate the total cost of tillage at a universal depth. A four wheel drive CLAAS 

Arion 630 cis agricultural tractor was the prime mover for this experiment. A Tim 

Howard, three legged, 2.7 m wide subsoiler (Figure 3-11) was used as the 

tillage implement. The data acquisition system for the experiment was the 

CLAAS Cebis terminal fitted as standard equipment to the tractor. Cebis 

combines signals from the linkage load cells, ground speed radar and the 

engine with implement width to calculate total and spot work rate and fuel 

usage. The parameters for the test were a universal tillage depth of 40 cm, with 

the tractor operated at a commercially acceptable speed of 7 kph and 1700 rpm 

engine speed. Tillage depth describes the measure of distance from the point 

tip of the cultivator in the soil to the soil surface. The depth of the implement 

was controlled by the packer roller behind the tines. The depth was measured 

by inserting a measurement probe into the ground and hydraulically adjusting 

the position of the roller until the correct depth was achieved. 

 

 

Figure 3-11 Tim Howard three legged subsoiler being operated during the tillage 

cost assessment
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4 Results and Discussion 

4.1 Soil Characteristics 

The planned start date of the experiment was the beginning of March 2014. 

This had to be postponed for three weeks due to 211mm of rain falling since the 

beginning of January in that year, waterlogging part of the site, making physical 

measurement and vehicular access impossible. During the postponement it was 

necessary to monitor field moisture content to ensure that the planned 

penetrometer values would be taken at field capacity and therefore would not 

be adversely affected by soil moisture. 

4.1.1 Particle size distribution (PSD) 

To determine the soil texture horizontally and with depth a PSD analysis was 

carried out with soil from three locations comprising four 10 cm samples taken 

sequentially down through the soil profile. (Figure 4-1) 

 

Figure 4-1 Sample location for the particle size distribution analysis 
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The PSD results presented in Table 4-1 and Figure 4-2 indicate a 

predominately clay soil which changes to a clay loam as the sand fraction 

increases. At and below 40 cm the soil organic matter content declines 

significantly and the sand fraction increases. This is typical of the area and has 

a significant impact on the productivity of the site. In dry years, moisture in the 

free draining soil quickly becomes exhausted and if it isn’t replenished severely 

limits the crop yield potential. Therefore cultivating only the areas of the field 

where the soil structure is poor will ensure that the naturally occurring capillary 

channels within the clay layer are not destroyed, allowing good root penetration 

and moisture utilisation within the soil profile. The notable rise in the sand 

fraction within the third sample group has the effect of moving the 40 cm sample 

from clay into clay loam.  At the 40 cm depth, the sand and gravel horizon 

becomes more evident from the significant reduction in organic matter values 

across all the samples. 
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Table 4-1 Clay content results from the particle size distribution analysis by 

sample location and depth interval 

Sample 

location 

Sample 

depth (cm) 

Sand %  Silt %  Clay %  Organic 

Matter 

(LOI) %  

1 10 20 38 42 13.5 

 20 20 44 36 11.7 

 30 19 42 39 11.4 

 40 19 43 38 8.5 

2 10 22 38 40 14.2 

 20 21 40 39 14 

 30 22 37 41 13.9 

 40 20 46 34 8.1 

3 10 28 36 36 12.2 

 20 29 36 35 11.7 

 30 31 32 37 10.9 

 40 39 37 24 3.6 

 

 

 

Figure 4-2 Soil texture classification according to the UK Soil Classification 

Scheme 

Location 1  

Location 2 

Location 3 
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4.1.2 Bulk density and moisture content analysis 

The bulk density results from the laboratory analysis are shown in APPENDIX 

A. Boxplot analysis of the bulk density by depth has been displayed in Figure 

(4-3). The general trend of bulk density is to that it increases with depth. This 

can be attributed to the root crop rotation previously practiced in this field where 

soil preparation would involve deep tillage, loosening the soil profile, making it 

very susceptible to compaction.  During the root harvest the vertical forces 

exerted by heavy agricultural machinery compact the deep subsoil. Individual 

distributions are all relatively even with the exception of the 30 cm layer. At this 

depth the large interquartile range indicates a transient layer of less dense to 

more dense soil at 25 to 30 cm. In terms of range, which can be inferred as 

spatial variation, the 20 and 35 cm depths are the most significant. At 20 cm the 

bulk density value ranges from 0.85 to 1.45 mg/m3 indicating that there are 

areas at that depth that are not compacted (0.85 mg/m3) and those that are 

relatively compacted (1.45 mg/m3). The layer at 20 cm is also typically the 

maximum depth at which most surface cultivations are carried out therefore this 

range could be indicative of an implement induce compaction layer. The 35 cm 

on the other hand is immediately above the sand and gravel horizon at 40 cm, 

which is likely to have had an effect on the bulk density values.  
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Figure 4-3 Bulk density analysis by depth (cm). The measurement range is 

illustrated by the plot whiskers. The interquartile range, mean and distribution 

are represented by the coloured box. n=243 
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4.1.3 Moisture content analysis 

The individual moisture content results from the laboratory analysis are shown 

in APPENDIX A. The general trend of the moisture content, shown by the 

boxplot analysis in Figure (4-4), is that moisture content decreases with depth. 

Individual distributions are mainly even with the exception of the 30 cm depth 

where the large interquartile range illustrates a wide range of moisture content 

values. The respective inter quartile ranges (IQR) at 20 and 25 cm are the 

smallest of the sample, indicating there is very little variation of moisture at that 

depth. This information taken in conjunction with the results found from the bulk 

density could be further evidence of a plough pan at 200 mm where that the 

natural soil pores have been damaged preventing the movement of water 

through the profile. 

 

 

Figure 4-4 Moisture content analysis by depth (cm). The measurement range is 

illustrated by the plot whiskers. The interquartile range, mean and distribution 

are represented by the coloured box. n=243 
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4.1.4 Penetration resistance  

Soil penetration resistance measurements were completed in 243 locations 

using the 10x10 m sampling grid. At each sample point 22 individual soil 

resistance measurements were recorded at 1.8 cm intervals. These 

measurements were then modified to 8x5 cm depths, to coincide with the 

previously recorded bulk density and moisture content measurements, by 

averaging recorded values immediately adjacent to a 5 cm interval.  

 

Figure 4-5 Penetration resistance (PR) analysis by depth (cm). The measurement 

range is illustrated by the plot whiskers. The interquartile range, mean and 

distribution are represented by the coloured box. n=243 

Figure (4-5) shows the variability of the penetration resistance between 

individual layers.  The underlying trend of the data is for the penetration 

resistance to increase with depth which is in line with other research (Domsch 

et al. 2006; Chamen, 2011). The whiskers on the box plot show the range of 

values increasing from 5 cm to 20 cm which illustrates large penetration 

resistance variability within this region of the soil profile, but then the range 

becomes much smaller, almost stable, at 25 and 35 cm suggesting a tillage 

induced compacted layer where the repeated use of cultivation equipment 

pulled by heavy machinery has formed a dense layer immediately below the 

plough pan e.g. > 35 cm. However, the trend of variation of bulk density with 

depth does not match that of bulk density confirming the penetration resistance 
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measurement to be of less use to indicate soil compaction, since penetration 

resistance is simultaneously affected by moisture content, bulk density, organic 

matter content and soil texture (Kuang et al., 2013). This is the reason why this 

project attempts to establish a new approach to quantify and map soil 

compaction through the soil profile. 

The Spearman correlation test of the penetration resistance data (Table 4-2) 

demonstrates that the soil layers were significantly and positively correlated at 

the 0.01 level. Adjoining layers show the closest relationship, however as the 

distance between the layers increased the correlation decreased. The closest 

agreement was found between 25 and 30 cm (R = 0.68). On the other hand the 

correlation between the 35 and 40 cm was the weakest (R= 0.34). This was 

probably caused by the distinct change of soil texture at that level. 

 

 

Table 4-2 Spearman correlation coefficients between the cone index data series 

of the soil layers. Significant values are shown in red. 

Depth 

(cm) 

5 10 15 20 25 30 35 40 

5         

10 0.44        

15 0.26 0.66       

20 0.18 0.42 0.67      

25 0.17 0.27 0.35 0.59     

30 0.22 0.25 0.30 0.44 0.68    

35 0.08 0.11 0.16 0.28 0.30 0.43   

40 0.15 0.15 0.19 0.20 0.18 0.15 0.34  
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4.1.5 Apparent electrical conductivity 

Soil ECa varied across the site depending not only on soil texture and moisture 

content, but bulk density and perhaps organic matter content. Table (4-3) shows 

the measured ECa (mS/m) values at two depths. The narrow range of the 

measured data at both depths is indicative of a consistent soil texture and is in 

agreement with the PSD analysis previously discussed. 

Table 4-3 Descriptive statistics of the Electrical Conductivity survey 

  Shallow ECa (mS/m) Deep ECa (mS/m) 

Minimum 10.98 33.50 

Maximum 19.46 46.23 

Mean 15.32 40.13 

Range 8.48 12.73 

 

Figure (4-6) illustrates the ECa spatial variation across the site with ECa values 

reducing from west to east, which indicates the increasing sand fraction and 

reducing clay fraction within the soil across that direction. This effect was not 

surprising because the influence of soil texture on the measured ECa values 

has been highlighted in previous research (Corwin and Lesch, 2005) where, soil 

with higher clay contents are expected to result in a higher measured value 

compared to soils with a higher content of sand fraction, due to the increased 

grain size of the sand. However it should also be noted that the absolute ECa 

values cannot be used for successful quantitative analysis of texture as they are 

simultaneously affected by soil texture, compaction, moisture content and 

organic matter (Sudduth et al., 2005; Hezarjaribi and Sourell, 2007; Kuang et 

al., 2011).  
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Figure 4-6 Spatial variation of apparent Electrical Conductivity (ECa) at 0 – 40 cm 

and 0 – 120 cm depths.  
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In addition to the above mentioned influence of soil texture, the ECa readings 

collected by the DUALEM 1S are also affected by bulk density. In a study 

identifying compaction using EMI techniques, Krajco (2007) found that the ECa 

values increased in the areas of the field which had been regularly trafficked by 

agricultural machinery. To test this hypothesis the Spearman correlation test 

was applied to both ECa measurements and the mean bulk density values of 

individual soil layers, with results shown in Table (4-4). 

 

Table 4-4 Spearman correlation coefficients between the bulk density (BD) 

values and the electrical conductivity (ECa) by depth. 

BD 

cm 

ECa 

 0 – 40 cm 

ECa 

0 – 120 cm 

5 -0.09 -0.02 

10 -0.27 -0.25 

15 0.12 0.15 

20 0.20 0.28 

25 0.01 0.05 

30 0.01 0.12 

35 0.30 0.36 

40 -0.46 -0.47 

 

It was found that although the r2 values were universally low the ECa deep 

values correlated more consistently with a significance of p<.0500 than the ECa 

shallow values. This was surprising as the two depths of measurements 

available from the DUALEM 1S are 0 – 40 cm and 0 – 120 cm where it stands 

to reason that the shallow values would be more applicable to a multi-sensor 

data fusion (MSDF) approach. Therefore, it can be concluded that it not 

possible to correlate ECa with bulk density, and there are no robust correlations 

could be reported so far. Also, EMI is very limited to map soil variability through 

depth, and only two depths can be scanned compared to the 8 soil layers 

considered in the current project. Again this is the reason why a new approach 

to quantify and map soil compaction through the soil profile is needed. 
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4.2 Variable depth tillage management zones 

4.2.1 Data processing 

Multivariate k-means clustering was used for the creation of per layer 

management zones for the eight soil layers (Table 4-5). The selected variables 

were ECa at 40 cm (ECa 40) and 120 cm, (ECa 120), penetration resistance 

(PR), bulk density (BD) and moisture content (MC) with depth. Analysis 

parameters were set to maximise the initial Euclidean distance of the cluster 

separation whilst the cluster number was limited to three in order to minimise 

the amount of management zones created. 

For analysis the normalised mean of each physical soil property was plotted at 

each depth (soil layer) (Figure 4-7, a-h). A consistent feature of all the analysis 

is the high ECa value of cluster 2 and the low ECa value of cluster 3. The co-

variables for these clusters also follow convention where a low penetrometer 

measurement is a function of a high moisture value and vice versa irrespective 

of the bulk density value. This is in line with findings of others where low soil 

resistance to penetration or soil cutting associated with high moisture content 

and vice versa (e.g. Mouazen et al., 2002). Cluster 1, on the other hand, has no 

consistency of ECa values being both high and low whilst the respective co-

variables have no discernible pattern. The 20 cm depth is unique within the 

analysis as penetration resistance, bulk density and moisture content values of 

all three clusters converge irrespective of ECa value. This is indicative of a 

compacted layer and concurs with the soil physical property analysis discussed 

earlier. 

 

Regarding soil compaction indicated as bulk density, cluster 1 seems to have 

the highest bulk density in the top soil layers down to 30 cm depth. Cluster 3 

was the second cluster as associated with the highest bulk density, which 

became of the largest bulk density in the soil layer between 30 and 35 cm, 

whereas cluster 3 has the highest bulk density for the soil layer of 35-40 cm. 
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Table 4-5 Descriptive statistics of k-means clustering for eight soil layers. Where 

ECa 40 and ECa 120 are ECa measurements at 40 cm and 120 cm, PR is 

penetration resistance, BD is bulk density and MC is moisture content. 

Depth Variable Units Mean Minimum Maximum Std. Dev. 

0-5 cm ECa 40 mS/m 15.32 10.98 19.46 2.03 

 ECa 120 mS/m 40.13 33.50 46.23 3.00 

 PR MPa 0.42 -0.07 2.14 0.33 

 BD g/cm
3
 1.03 0.88 1.19 0.05 

 MC g/g 41.08 34.60 49.19 2.73 

5-10 cm ECa 40 mS/m 15.32 10.98 19.46 2.03 

 ECa 120 mS/m 40.13 33.50 46.23 3.00 

 PR MPa 1.16 0.09 3.50 0.67 

 BD g/cm
3
 1.11 1.01 1.30 0.04 

 MC g/g 38.95 20.15 53.19 4.05 

10-15 cm ECa 40 mS/m 15.32 10.98 19.46 2.03 

 ECa 120 mS/m 40.13 33.50 46.23 3.00 

 PR MPa 1.79 0.45 4.39 0.64 

 BD g/cm
3
 1.10 1.00 1.24 0.03 

 MC g/g 35.81 31.17 40.39 1.94 

15-20 cm ECa 40 mS/m 15.32 10.98 19.46 2.03 

 ECa 120 mS/m 40.13 33.50 46.23 3.00 

 PR MPa 2.14 1.04 6.17 0.55 

 BD g/cm
3
 1.08 0.92 1.46 0.07 

 MC g/g 36.57 28.28 44.27 1.85 

20-25 cm ECa 40 mS/m 15.32 10.98 19.46 2.03 

 ECa 120 mS/m 40.13 33.50 46.23 3.00 

 PR MPa 2.18 0.99 3.54 0.49 

 BD g/cm
3
 1.14 0.94 1.29 0.06 

 MC g/g 38.21 32.09 50.31 2.42 

25-30 cm ECa 40 mS/m 15.32 10.98 19.46 2.03 

 ECa 120 mS/m 40.13 33.50 46.23 3.00 

 PR MPa 2.19 0.43 3.91 0.51 

 BD g/cm
3
 1.24 1.01 1.46 0.09 

 MC g/g 36.78 20.25 70.59 7.31 

30-35 cm ECa 40 mS/m 15.32 10.98 19.46 2.03 

 ECa 120 mS/m 40.13 33.50 46.23 3.00 

 PR MPa 2.38 1.19 5.70 0.61 

 BD g/cm
3
 1.29 1.03 1.72 0.10 

 MC g/g 30.48 16.60 40.88 4.34 

35-40 cm ECa 40 mS/m 15.32 10.98 19.46 2.03 

 ECa 120 mS/m 40.13 33.50 46.23 3.00 

 PR MPa 2.70 0.00 6.81 0.91 

 BD g/cm
3
 1.31 1.07 1.67 0.10 

 MC g/g 30.78 19.23 52.09 4.85 
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4.2.2 Management Zone (MZ) maps by cluster analysis 

The newly delineated clusters were plotted for the 8 individual soil layers using 

a Nearest Neighbour interpolation (Figure 4-8, a-h). The clustering process 

affords an a priori selection of cluster number which was set to three for this 

experiment. Using only three clusters, the pattern of variation is very distinct. 

Underlying trends of soil type are evident. Cluster 1 on the eastern side of the 

site, has an increased sand fraction when compared to the higher clay content 

soil on the western side which visually compares very well with the ECa results 

(Figure 4-6). Further evidence that these clusters process were closely related 

to soil texture can be drawn from box plot analysis that confirmed high bulk 

density values resulted in high penetrometer values thus indicating a natural 

clustering parameter and in line with what was expected. Cluster 3 

demonstrated the most spatial variation across all depths. In the 0-5 cm and 5-

10 cm there was a distinct change in cluster location from the small triangular 

area at the eastern extent 0-5 cm manifesting itself in a more general way at 5-

10 cm. This was caused by the reducing bulk density values between a shallow 

layer of surface compaction and the looser soil just below. Cluster 3 has the 

most significant change in spatial extent occurring at 20 cm which was a result 

of the close alignment of normalised means of penetration resistance, bulk 

density and moisture content variables (Figure 4-7). Initially the map looked like 

a layer of compaction but this was discounted by the low bulk density means. A 

possible reason behind the spatial extent is the wide range of bulk density and 

penetration resistance values (Figures 4-3, 4-5) indicated a transient layer 

between the regularly cultivated surface and the less frequently cultivated 

subsoil. Below the 20 cm layer the clusters are spatially more stable, adding 

further evidence that 20 cm is a transient layer. 
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4.3 Average cluster packing density, moisture content, bulk 

density and clay content 

The mean values for packing density, moisture content, and bulk density are 

shown along with the layer clay content in Table 4-6. There are no descriptive 

statistics for the clay content because of the limited data set collected therefore 

the clay content value used for the packing density calculation has been 

reported. From this it can be seen that the clay content range is very narrow in 

the top 30 cm, averaging 38% in comparison to 32% in the lowest 10 cm. This 

variation is caused by the distinct horizon at 30-40 cm where the clay 

percentage reduces by approximately 10%. With this narrow textural range the 

main effect of the packing density calculation is coming from the bulk density 

value, which as the bulk density increases with depth the packing density is 

reflected accordingly. One of the reasons Kaufmann (2008) stated as a benefit 

of packing density over bulk density for soil compaction identification was the 

greater range between the yield limiting and non-yield limiting areas of the field, 

simplifying identification. With such a narrow clay range this effect is less 

evident in this experiment. Cluster 3 at 20 cm has highest range of packing 

density values which extends from 1.25 to 1.8 with a mean value of 1.36. This 

suggests that the distribution is skewed towards the lower values indicating the 

majority of this cluster is not yield limiting. This observation backs up the earlier 

cluster analysis discussion where it was considered that the 20 cm layer is a 

transient layer between densities as opposed to a compacted layer. The mean 

moisture content values reduce with depth falling from 41.97% at 5 cm   to 

26.2% at 40 cm. On closer analysis however the most noticeable change in soil 

moisture occurs at the 25-30 cm mark where there is a drop of 12% in cluster 2. 

This drier soil is most in the heaviest textured part of the field is indicative of a 

denser layer. 
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4.4 Bulk Density prediction with multiple linear regression 

To establish algorithms to predict bulk density as a function of penetration 

resistance, ECa at 40 cm and moisture content, multiple linear regressions were 

performed for each depth layer and the results obtained from the MLR analysis 

is presented in Table 4-7. The MLR analysis was carried out with a confidence 

level of 95%. 

Table 4-7 Summary statistics of MLR analysis performed for the eight soil layers  

 Depth Variables Units t-value p-value F-test R
2
 

5 cm Intercept  45.04 0.00 96.5 0.54 

 ECa 40 mS/m 3.35 0.00   

 PR MPa -1.27 0.21   

 MC kg/kg  0.00   

10 cm Depth      

 Intercept  80.07 0.00 118.91 0.59 

 ECa 40 mS/m 2.54 0.01   

 PR MPa -1.09 0.28   

 MC kg/kg -17.66 0.00   

15 cm Intercept  44.02 0.00 18.49 0.17 

 ECa 40 mS/m 4.76 0.00   

 PR MPa 1.94 0.05   

 MC kg/kg -7.01 0.00   

20 cm Intercept  24.56 0.00 69.63 0.45 

 ECa 40 mS/m 4.73 0.00   

 PR MPa 2.62 0.01   

 MC kg/kg -13.30 0.00   

25 cm Intercept  19.16 0.00 8.92 0.09 

 ECa 40 mS/m -0.65 0.52   

 PR MPa 2.17 0.03   

 MC kg/kg -4.54 0.00   

30 cm Intercept  53.15 0.00 198.95 0.71 

 ECa 40 mS/m -3.79 0.00   

 PR MPa 1.74 0.08   

 MC kg/kg -24.39 0.00   

35 cm Intercept  24.28 0.00 172.76 0.68 

 ECa 40 mS/m 6.81 0.00   

 PR MPa 2.79 0.01   

 MC kg/kg -21.30 0.00   

40 cm Intercept  53.96 0.00 140.73 0.63 

 ECa 40 mS/m -2.45 0.02   

 PR MPa 0.46 0.65   

 MC kg/kg -16.81 0.00   
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The statistical analysis shows that the ECas and moisture content variables 

were found to be significant in most cases, particularly moisture content. The 

penetration resistance variable on the other hand was only found to be 

significant at the 15-20 cm and 30-35 cm soil layers, due to the low t-value and 

high p-value. The highest coefficient of multiple determination (R2) of 0.71 was 

observed at the 25-30 cm layer, which is probably due to the lack of regular 

tillage disturbance at this depth leaving the soil in a relatively uniform state of 

compaction. The 5 and 10 cm layer, which have been subjected to regular 

uniform tillage, had smaller R2 values (0.54 and 0.59 respectively) than the 

deeper layers found at and beyond 30 cm. These results are further evidence of 

the root crop rotation, historically practiced in this field, which was discussed 

early. The weakest R2 values (0.18 and 0.09) were found at 15 cm and 25 cm 

demonstrating negligible correlation. However it is their location within the 

profile, immediately before a compacted layer, which makes these values 

interesting. Domsch et al. (2006) also noticed a weak correlation where a 

loosened soil layer met a compacted layer. He suggested that the data 

recorded by the penetrometer at these transitional layers were more strongly 

affected by random fluctuations thereby adversely affecting the result. The 

author believes the same reason could apply in the current work.  
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The following models were derived from the MLR analysis. 

 

5 cm BD = 1.339 + 0.154ECa40 – 0.6PR – 0.77MC 4-1 

10 cm BD = 1.399 + 0.119ECa40 – 0.05PR – 0.82MC 4-2 

15 cm BD = 1.246 + 0.310ECa40 + 0.114PR – 0.46MC 4-3 

20 cm BD = 1.839 + 0.225ECa40 + 0.125PR – 0.63MC 4-4 

25 cm BD = 1.391 – 0.04ECa40 + 0.134PR – 0.28MC 4-5 

           30 cm BD = 1.686 – 0.13ECa40 + 0.061PR – 0.86MC 4-6 

35 cm BD = 1.656 + 0.207ECa40 + 0.093PR – 0.78MC 4-7 

40 cm BD = 1.847 – 0.11ECa40 + 0.18PR – 0.74MC 4-8 

 

Where BD is bulk density Mg m-3, ECas is electrical conductivity (shallow)         

mS/m-2, PR is penetration resistance in MPa, MC is moisture content in kg kg-1.  

Having high R2 values for six multiple linear functions out of eight is 

encouraging to recommend them in the future for the prediction of bulk density 

as a function of ECas, penetration resistance, and moisture content. This would 

require input data about penetration resistance and moisture content measured 

with the multi-sensor kit shown in Figure. (3-10) (Quraishi and Mouazen, 2013), 

consisting of a penetrometer and a NIR sensor in addition to input data on ECas 

measured with a commercial EMI (e.g. DUALEM 1S, SOYL, UK). However, the 

multivariate models for the 15 cm and 25 cm layers have to be improved, by 

using nonlinear methods e.g. multiple nonlinear regression, artificial neural 

network and alternative test sites.  
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4.5 Derivation of packing density 

The literature highlighted that packing density is a better parameter to indicate 

soil compaction than bulk density because it transforms the bulk density value 

into a clay independent indicator by adding a correction term given as the 

product of clay content with the slope of the regression lines (Kaufmann 2008). 

Using the equation developed by Renger (1970), the packing density values for 

the site were calculated. 

For this work and according to the packing density classes in Table (3-4), 

values of packing density ≥ 1.7 t/m3 were deemed to be yield and root growth 

limiting and tillage should be carried out. Results show the overall packing 

density range across the soil profile extends from 1.20 to 2.02 (Table 4-8). 

However, this range can be further sub-divided between the top 25 cm mean 

packing density of 1.45 - 1.53 t/m3 and the lower 30 cm mean packing density 

range of 1.49 – 1.69 t/m3. The reason for this stepped increase in packing 

density between the these two observed layers can be attributed to historical 

tillage practices where ploughing for root crops would often extend down to 25 

cm, regularly disturbing the upper soil and potentially compacting the deeper 

sub soil with large vertical and shear forces. 

Typically if a grower had identified a compacted layer like this he would look to 

remediate it with homogeneous deep tillage, which is an expensive and time 

consuming operation (Mouazen and Neményi, 1999). However with this 

approach of packing density cluster analysis it is possible to identify areas 

below 30 cm that do not require deep tillage offering the potential to reduce 

tillage depth saving money and resources. Examining the maximum packing 

density calculated per cluster in Table (4-8) reveals that values exceeding 1.6 

t/m3 already appear on the top layer of 5-10 cm deep, indicating the presence of 

surface compaction, and suggesting a gentle surface tillage to be considered 

down to 10 cm in the entire field. After this layer another layer but with critical 

values on crop growth can be observed at 15-20 cm layer in cluster 1 & 3, 

suggesting tillage of these two clusters only, whereas no tillage is needed for 
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cluster 2. Going further down in the profile, one can observe the presence of 

hard pan at cluster 1 and 2 at 30 cm layer, and that expand into cluster 2 at 35 

cm layer, where the highest packing density of 2.02 t/m3 is observed. This may 

suggest the need for subsoiling down to 35 cm in cluster 2 in particular. At 

depth of 40 cm another compacted layer can be observed in the entire field with 

the three clusters. 

 

Table 4-8 Descriptive statistics of the packing density (PD) by cluster and for 

individual layers.  

Depth Cluster PD Mean PD Min PD Max PD Std D 

5 cm 1 1.43 1.35 1.53 0.05 

 2 1.39 1.24 1.49 0.05 

 3 1.31 1.20 1.39 0.04 

10 cm 1 1.47 1.37 1.63 0.05 

 2 1.46 1.46 1.60 0.03 

 3 1.45 1.36 1.66 0.05 

15 cm 1 1.44 1.39 1.60 0.05 

 2 1.43 1.32 1.52 0.03 

 3 1.40 1.34 1.47 0.03 

20 cm 1 1.42 1.23 1.71 0.07 

 2 1.43 1.30 1.63 0.06 

 3 1.36 1.25 1.81 0.08 

25 cm 1 1.53 1.44 1.66 0.05 

 2 1.50 1.29 1.62 0.06 

 3 1.45 1.31 1.54 0.05 

30 cm 1 1.69 1.56 1.79 0.06 

 2 1.61 1.43 1.81 0.07 

 3 1.49 1.35 1.58 0.05 

35 cm 1 1.49 1.42 1.64 0.03 

 2 1.64 1.41 2.02 0.11 

 3 1.42 1.25 1.65 0.10 

40 cm 1 1.57 1.47 1.73 0.07 

 2 1.58 1.32 1.89 0.08 

 3 1.61 1.43 1.97 0.11 

      

Green values indicates packing density values ≥ 1.6 (tillage may be required) and red values 

indicate packing density ≥ 1.7, where tillage should be carried out. Values highlighted in yellow 

indicate the final depths of tillage used for the VDT plan. 
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4.6 Variable depth tillage (VDT) plan  

A VDT plan scaled in cm depth was developed using the area and depth of the 

yield limiting properties derived from the data found in Table 4-8. Cultivation 

depth was calculated as the depth of the largest maximum packing density 

value per cluster of each grid node + 3 cm. (The additional 3 cm was to ensure 

that the cultivator tine was sufficiently deep as to fully remove the compacted 

layer). The 40 cm depth layer was excluded from the tillage plan because of the 

distinctly different nature of the soil at that depth. Using the new the new depth 

attributes the data was interpolated using a nearest neighbour method to create 

a VDT plan (Figure 4-9). 

 

 

Figure 4-9 Variable depth tillage plan illustrating the spatial variation of 

cultivation depth, calculation based on the mean packing density values 

From a visual assessment cluster 1 requires deep tillage down to 33 cm, cluster 

2 requires deep tillage to 38 cm and cluster 3 requires no deep tillage, because 

at 23 cm the soil would be cultivated when the field is ploughed as part of the 

farms normal cultivation practice.  On further analysis the depth zones within 

the VDT plan have a very close resemblance to the EMI scan results in Figure. 

(4-6). The deepest cultivation is required in the areas with the highest ECa 
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values and vice versa. This is contrary to other studies where a negative 

correlation between recommended tillage depth and the soil ECa was found 

(Keskin et al 2011). In that study the soil was classified as Dothan sandy loam 

where the maximum ECa value was recorded at 7 mS/m2 in comparison to the 

46 mS/m2 of the clay loam measured for this work. A possible reason for this 

contradiction could be that the current work takes into account all affecting 

factors to estimate the packing density, being the real parameter representing 

the soil compaction. This may also indicate the correct concept used in the 

current work and that the multi-sensor and data fusion approach is the way 

forward for optimising the variable depth tillage. 

4.7 Predicted cost benefits 

It is understood that as tillage depth increases, the cultivator tines contact more 

area, disturbing a larger volume of soil causing an increase in draught 

requirement in response to the soil property (Kichler 2008; Mouazen and 

Ramon, 2002). Therefore, any reduction in tillage depth which doesn’t have an 

impact on crop growth and consequently yield will have a cost benefit.  To run a 

simple cost-benefit analysis, from the VDT plan shown in Figure (4-9), it was 

possible to calculate the working area of each management zone (Table 4-9). 

Additionally, to explore the scope of the cost benefit to VDT, hypothetical 

working areas of two fields are also included in Table 4-9. Simulation one 

represents a situation where 66% of the field requires shallow tillage and 

simulation two represents a field where 66% requires deep tillage. 

Table 4-9 Calculated working areas of experimental site and hypothetical 

working areas from simulated sites for cost analysis comparison. 

Depth cm Experimental 

Site 

Simulation 

One 

Simulation 

Two 

No tillage req. 0.53 0.00 0.00 

25 0.00 1.61 0.00 

33 0.38 0.41 0.41 

38 1.52 0.41 0.41 

45 0.00 0.00 1.61 

Total ha 2.43 2.43 2.43 
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An attempt was made to calculate the cultivation cost per depth at the 

experiment site using the variable depth tillage system described previously 

(Figure 3-12). Unfortunately due to a technical issue with the tractor’s telemetry 

these values were not reliable. Therefore, as a solution, values of a similar 

experiment by Keskin et al. (2011) were found in the literature and were 

included in this analysis. Keskin et al. (2011) compared constant depth tillage 

(CT) with variable depth tillage (VDT), where the subsoiler was set slightly 

below the root impeding layer at 25 cm, 33 cm, 38, cm and 45 cm. Using a 

randomised complete block design with five replications (five plots) an 

instrumented tractor was used to obtain the energy and fuel consumption for 

both the VDT and CT treatments, as shown in Table (4-10). 

Table 4-10 Summary table of fuel consumption comparing Variable-Depth Tillage 

(VDT) and Conventional Tillage (CT) (After Keskin et al., (2011) 

 

Tillage 

system 

Tillage 

depth (cm) 

Field size (ha) Fuel 

consumption (L) 

VDT 25 0.202 2.95 

 33 0.202 3.13 

 38 0.202 3.27 

 45 0.202 3.46 

 Total 0.808 12.81 

CT 45 0.404 9.71 

 45 0.404 9.64 

 Total 0.808 19.35 

 Total savings with VDT vs. CT 34% 

 

Fortuitously the three cultivation depths calculated using the MSDF approach 

(23 cm, 33 cm, 38 cm,) all but match those of Keskin et al. (23 cm, 33 cm, 38 

cm, 45 cm). So for cost analysis purposes the areas of the experimental site 

management zones were transposed into the summary table with the fuel 

consumption figures recalculated pro rata (Table 4-11), along with values from 

the simulated fields. 
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Table 4-11 A comparison of fuel consumption figures between variable-depth 

tillage (VDT) and conventional tillage (CT) per management zone (MZ) area. 

Tillage system Tillage depth 

(cm) 

Management zone 

area  (ha) 

Est. Fuel 

consumption 

l/ha by depth 

Calculated fuel 

consumption (l/ha) 

Conventional No tillage req. 0.00 0.00 0.00 

deep tillage  45 2.43 17.30 59.00 

      Total 2.43 ------ 59.00 

    

Experiment  No tillage req. 0.53 0.00 0.00 

Results 25 0.00 14.75 0.00 

 33 0.38 15.65 5.90 

 38 1.52 16.35 24.90 

 Total 2.43 ------ 30.80 

    

     Simulation 1  No tillage req. 0.00 0.00 0.00 

66% shallow 25 1.61 14.75 23.70 

VDT 33 0.41 15.65 6.40 

 38 0.41 16.35 6.70 

 45 0.00 17.30 0.00 

 Total 2.43 ------- 36.90 

    

Simulation 2  No tillage req. 0.00 0.00 0.00 

66% deep  25 0.00 14.75 0.00 

VDT 33 0.41 15.65 6.40 

 38 0.41 16.35 6.70 

 45 1.61 17.30 27.90 

 Total 2.43 ------- 41.00 
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Table 4-12 A summary table of the percentage fuel saving benefits for variable 

depth tillage (VDT) over conventional deep tillage (CT). 

Tillage system Calculated fuel 

consumption (l/ha) 

Percentage fuel benefit 

of VDT over CT 

Experiment  30.80 48% 

Results - VDT   

   

Simulation 1  36.90 38% 

66% shallow   

VDT   

   

Simulation 2  41.00 31% 

66% deep    

VDT   

 

Even though the areas from the experimental MZ’s are different from Keskin’s 

et al. (2011) work, the percentage fuel saving shown in table 4-12 by 

implementing VDT over CT was found to be 48%. This exceeds the 

performance of Keskin et al. (2011), whose study found a 33% fuel saving, but 

is in line with Fulton et al. (1996) who reported a 50% fuel saving. In other work 

Raper et al. (2007) reported a 27% fuel saving in a medium depth experiment 

(35 cm) compared to uniform deep subsoiling at 45 cm respectively which is 

comparable with the hypothetical results from simulation 2 (Table 4-12).  

This analysis confirms that the ultimate benefit of variable depth tillage is 

dependent on the factors which make up the tillage operation such as soil type, 

previous cropping, implement design and depth; however it is clear from this 

and other research that VDT has a potential economic benefit to the farmer 

between 27% and 50%. 

In addition to the direct economic benefit, environmental benefits are clear and 

may have more impact on the society as compared to the economic benefit. 

This is because when energy consumption is reduced with variable depth tillage 

the greenhouse gas (GHG) emission is also reduced.  
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The proposed development of a multi-sensor and data fusion approach to map 

the spatial and in depth variation in soil compaction will be a valuable tool to 

Natural England to support their two schemes, enhancing soil protection from 

runoff and soil erosion. It can also support the England Catchment Sensitive 

Farming Initiative in making a difference to local water quality by eliminating soil 

compaction and enhancing rainfall infiltration in a targeted manner. The 

proposed tillage technology will assist SOYL (the sponsor of this thesis) to build 

on the research being already carried out to minimise compaction by adopting 

variable depth tillage. Finally, farmers would profit through increased crop yields 

by correctly remediating soil compaction, reduce their cost of production by 

eliminating inappropriate tillage and maintain the nutrient status of their fields by 

reducing soil run-off and erosion. 
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5 Conclusions 

In this thesis the assessment of soil compaction, indicated as packing density 

was successful carried out for eight separate soil layers based on a multi-

sensor data fusion approach. Measured values of soil penetration resistance 

(PR), apparent electrical conductivity (ECa), clay content (CC), bulk density 

(BD) and soil moisture content (MC) were fused by means of k-means 

clustering to delineate per layer management zone maps. A multiple linear 

regression (MLR) analysis was adopted to develop models that could predict 

BD as a function of penetration resistance, ECa40 and moisture content. The 

decision to cultivate or not to a certain depth was derived by calculating the 

packing density of each delineated zone. From the results of this research the 

following conclusions can be made: 

1. The multi-sensor data-fusion approach can be used successfully to 

provide key information sufficient to derive a soils state of compactness 

as an indicator of whether to cultivate or not to a certain depth. 

 

2. K-means multivariate clustering enabled the affecting soil physical soil 

parameters on soil compaction to be fused together to delineate 

management zones suitable for variable depth tillage. The user can also 

control the size and number of management zones thus reconciling the 

practical field management implications. 

 

3. Bulk density models can be derived from physical soil parameters using 

MLR analysis. The prediction in compact soils was good (r2 = 0.71) 

whereas the prediction of bulk density in transient layers between the 

loose and compact soils were very poor (r2 = 0.09-0.17). 

 

4. Because packing density is dependent on soil texture (e.g. per cent clay), 

it is a more suitable indicator of soil compaction than bulk density for 

variable depth tillage. 
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5. Fuel savings of approximately 35% could be achieved by using the 

MSDF approach to variable depth tillage over the uniform constant depth 

tillage. 

 

6 Future Work 

• Implement the concept on a broader scale than one field. 

• Run cost-benefit analysis at larger scale using real data collected with 

the variable depth tillage system of SOYL. 

• Further work on multivariate modelling is needed to improve the models 

to predict bulk density by using non-linear multivariate methods e.g. non-

linear multiple regression, artificial neural network, support vector 

machine etc. 
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Appendix A - Bulk density and moisture content results 

 

I.D. Dry 

Tin # 

Mass 

of Tin 

Mass of 

tin + 

moist 

sample 

Wet Wt Tin + oven 

dry 

sample g 

Dry 

Wt 

MC % Bulk 

Density 

1.1 SP40 46.18 185.33 139.15 141.52 95.34 45.95 0.97 

1.2 SP43 46.32 173.44 127.12 138.3 91.98 38.20 0.94 

1.3 SP56 46.1 194.63 148.53 152.68 106.58 39.36 1.09 

1.4 70B 45.94 201.18 155.24 156.61 110.67 40.27 1.13 

1.5 16B 45.92 212.81 166.89 164.94 119.02 40.22 1.21 

1.6 SP17 46.75 221.56 174.81 178.05 131.3 33.14 1.34 

1.7 56B 46.04 218.55 172.51 175.71 129.67 33.04 1.32 

1.8 38B 46.03 229.01 182.98 193.04 147.01 24.47 1.50 

2.1 SP90 46.02 207.43 161.41 164.54 118.52 36.19 1.21 

2.2 37B 46.04 221.59 175.55 179.76 133.72 31.28 1.36 

2.3 13B 49.34 212.72 163.38 174.3 124.96 30.75 1.27 

2.4 43 46.35 243.95 188.6 195.67 149.32 26.31 1.52 

2.5 1584 49.37 220.97 171.6 177.48 128.11 33.95 1.30 

2.6 123B 46.94 229.23 182.29 182.13 135.19 34.84 1.38 

2.7 SP14 46.59 206.08 159.49 163.2 116.61 36.77 1.19 

2.8 Sp73 46.28 211.92 165.64 170.5 124.22 33.34 1.27 

3.1 1627 46.08 184.83 138.75 138.68 92.6 49.84 0.94 

3.2 21f 45.68 192.47 146.79 147.12 101.44 44.71 1.03 

3.3 1661 49.28 194.67 145.39 152.64 103.36 40.66 1.05 

3.4 NH6 45.86 201.73 155.87 158.2 112.34 38.75 1.14 

3.5 628 45.83 211.92 166.09 168.15 122.32 35.78 1.25 

3.6 4b 46.26 215.64 169.38 171.2 124.94 35.57 1.27 

3.7 40 45.97 229.08 183.11 180.26 134.29 36.35 1.37 

3.8 126b 46.65 199.33 152.68 157.9 111.25 37.24 1.13 

4.1 sp80 46.23 193.61 147.38 153.24 107.01 37.73 1.09 

4.2 17 46.03 198.56 152.53 144.52 98.49 54.87 1.00 

4.3 sp74 46.62 191.15 144.53 154.04 107.42 34.55 1.09 

4.4 1564 46.7 190.06 143.36 153.6 106.9 34.11 1.09 

4.5 SP84 46.21 203.85 157.64 154.83 108.62 45.13 1.11 

4.6 73b 46.5 209.36 162.86 172.91 126.41 28.83 1.29 

4.7 354 46.32 201.55 155.23 173.7 127.38 21.86 1.30 

4.8 833 46.16 192.51 146.35 156.16 110 33.05 1.12 

5.1 513 46.31 196.45 150.14 152.81 106.5 40.98 1.08 

5.2 1515 45.68 202.03 156.35 156.53 110.85 41.05 1.13 

5.3 1653 49.69 203.48 153.79 161.66 111.97 37.35 1.14 

5.4 SP16 45.94 196.73 150.79 156.63 110.69 36.23 1.13 
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5.5 SP10 46.63 203.88 157.25 160.6 113.97 37.97 1.16 

5.6 1510 46.35 204.29 157.94 167.8 121.45 30.05 1.24 

5.7 TIN6 45.93 225.24 179.31 194.88 148.95 20.38 1.52 

5.8 151b 45.7 241.99 196.29 171 125.3 56.66 1.28 

6.1 51B 45.73 202.78 157.05 157.88 112.15 40.04 1.14 

6.2 28 46.69 195.27 148.58 174.3 127.61 16.43 1.30 

6.3 99B 46.07 194 147.93 157.65 111.58 32.58 1.14 

6.4 SP84 46.55 190.79 144.24 154.83 108.28 33.21 1.10 

6.5 76b 50.12 210.92 160.8 170.56 120.44 33.51 1.23 

6.6 132b 45.97 227.08 181.11 191.74 145.77 24.24 1.48 

6.7 SP11 46.49 247.48 200.99 222.25 175.76 14.35 1.79 

6.8 JU18 45.87 246.37 200.5 217.33 171.46 16.94 1.75 

7.1 45B 45.9 179.18 133.28 146.3 100.4 32.75 1.02 

7.2 101B 46.93 201.73 154.8 157.59 110.66 39.89 1.13 

7.3 80B 45.14 191.97 146.83 148.96 103.82 41.43 1.06 

7.4 Sp36 46.27 172.31 126.04 137.74 91.47 37.79 0.93 

7.5 1537 49.25 169.52 120.27 135.88 86.63 38.83 0.88 

7.6 539 46.22 193.74 147.52 151.5 105.28 40.12 1.07 

7.7 338 49.24 210.54 161.3 166.78 117.54 37.23 1.20 

7.8 Tin1

1 

45.61 184.5 138.89 144.52 98.91 40.42 1.01 

8.1 739 45.63 181.1 135.47 142.32 96.69 40.11 0.98 

8.2 63b 46.64 199.71 153.07 148.6 101.96 50.13 1.04 

8.3 30 45.97 188.4 142.43 152.11 106.14 34.19 1.08 

8.4 95 46.89 187.81 140.92 150.92 104.03 35.46 1.06 

8.5 Tin3

3 

46.19 199.26 153.07 158.06 111.87 36.83 1.14 

8.6 ORD

6 

45.67 195.79 150.12 154.4 108.73 38.07 1.11 

8.7 A6 45.63 189.46 143.83 149.87 104.24 37.98 1.06 

8.8 tin16 46.32 197.11 150.79 156.7 110.38 36.61 1.12 

9.1 Sp14 46.16 192.49 146.33 147.22 101.06 44.80 1.03 

9.2 876 45.66 200.45 154.79 155.12 109.46 41.41 1.12 

9.3 20b 46.57 182.45 135.88 143.18 96.61 40.65 0.98 

9.4 7 46.68 168.33 121.65 134.59 87.91 38.38 0.90 

9.5 34b 45.99 182.23 136.24 144.2 98.21 38.72 1.00 

9.6 27 46.49 208.29 161.8 158.8 112.31 44.07 1.14 

9.7 50B 46.35 187.98 141.63 151.43 105.08 34.78 1.07 

9.8 1697 49.99 218.28 168.29 189.5 139.51 20.63 1.42 

10.1 127B 46.57 169.43 122.86 128.4 81.83 50.14 0.83 

10.2 SP14 46.31 202.38 156.07 154.87 108.56 43.76 1.11 

10.3 57B 46.76 203.09 156.33 157.88 111.12 40.69 1.13 

10.4 17b 46.72 190.04 143.32 144.52 97.8 46.54 1.00 

10.5 Sp18 45.79 182.04 136.25 144.79 99 37.63 1.01 
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10.6 15 46.88 202.58 155.7 147.94 101.06 54.07 1.03 

10.7 23 46.2 200.74 154.54 158.12 111.92 38.08 1.14 

10.8 1027 46.45 199.83 153.38 160.06 113.61 35.01 1.16 

11.1 578 46.9 170.62 123.72 131.54 84.64 46.17 0.86 

11.2 1006 45.84 185.99 140.15 147.94 102.1 37.27 1.04 

11.3 SP18 45.89 180.81 134.92 146.17 100.28 34.54 1.02 

11.4 86b 46.65 174.21 127.56 138.31 91.66 39.17 0.93 

11.5 65b 46.47 190 143.53 148.6 102.13 40.54 1.04 

11.6 46a 45.79 197.67 151.88 149.87 104.08 45.93 1.06 

11.7 Sp15 45.71 186.16 140.45 144.67 98.96 41.93 1.01 

11.8 133B 46.72 203.71 156.99 164.71 117.99 33.05 1.20 

12.1 141B 46.52 174.12 127.6 137.3 90.78 40.56 0.92 

12.2 SP17 45.34 186.61 141.27 146.2 100.86 40.07 1.03 

12.3 91B 46.54 183.85 137.31 151.41 104.87 30.93 1.07 

12.4 33 46.61 179.26 132.65 142.01 95.4 39.05 0.97 

12.5 SP15 46.4 197.12 150.72 153.27 106.87 41.03 1.09 

12.6 Sp59 46.01 192.96 146.95 151.6 105.59 39.17 1.08 

12.7 SP15 46.35 191.81 145.46 149.44 103.09 41.10 1.05 

12.8 NH1

1 

46.78 212.27 165.49 176.97 130.19 27.11 1.33 

13.1 83b 46.64 209.51 162.87 167.57 120.93 34.68 1.23 

13.2 265 46.52 200.16 153.64 160.86 114.34 34.37 1.16 

13.3 16 46.51 197.72 151.21 157.9 111.39 35.75 1.13 

13.4 2 46.49 195.52 149.03 155.32 108.83 36.94 1.11 

13.5 SP70 46.8 208.01 161.21 170.94 124.14 29.86 1.26 

13.6 652 45.91 215.63 169.72 191.75 145.84 16.37 1.49 

13.7 5 46.09 198.86 152.77 176.31 130.22 17.32 1.33 

13.8 8 46.02 204.2 158.18 167.72 121.7 29.98 1.24 

14.1 SP11 46.34 197.77 151.43 160.21 113.87 32.98 1.16 

14.2 135B 46.13 201.6 155.47 164.71 118.58 31.11 1.21 

14.3 SP17 45.91 191.06 145.15 157.4 111.49 30.19 1.14 

14.4 SP14 46.15 194.72 148.57 161.43 115.28 28.88 1.17 

14.5 1184 49.05 218.03 168.98 158.8 109.75 53.97 1.12 

14.6 87b 49.19 230.87 181.68 200.84 151.65 19.80 1.54 

14.7 643 46.19 212.76 166.57 174.21 128.02 30.11 1.30 

14.8 78B 46.06 229.35 183.29 200.71 154.65 18.52 1.58 

15.1 SP13 46.37 176.46 130.09 137.66 91.29 42.50 0.93 

15.2 SP11 46.52 197.62 151.1 157.11 110.59 36.63 1.13 

15.3 SP13 45.68 185.97 140.29 149.57 103.89 35.04 1.06 

15.4 38 46.07 181.49 135.42 143.67 97.6 38.75 0.99 

15.5 SP16 45.51 203.26 157.75 161.22 115.71 36.33 1.18 

15.6 SP78 46.25 213.53 167.28 140.5 94.25 77.49 0.96 

15.7 335 46.35 212.49 166.14 170.68 124.33 33.63 1.27 
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15.8 284 46.88 243.65 187.77 206.6 159.72 17.56 1.63 

16.1 668 46.33 197.66 151.33 156.64 110.31 37.19 1.12 

16.2 36 46.42 190.55 144.13 153.37 106.95 34.76 1.09 

16.3 2 46.39 190.95 144.56 155.67 109.28 32.28 1.11 

16.4 154 46.67 186.67 140 150.16 103.49 35.28 1.05 

16.5 1646 46.65 207.1 160.45 169.2 122.55 30.93 1.25 

16.6 888 46.4 215.11 168.71 180.03 133.63 26.25 1.36 

16.7 SP10 46.59 215.05 168.46 187.77 141.18 19.32 1.44 

16.8 SP16 46.22 206.9 160.68 166.07 119.85 34.07 1.22 
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Appendix B - Summary table of terms 

 

Term Definition Measurement 
method 

Unit 

Bulk density The mass of dry soil per unit 
of bulk volume, including the 
air space.  

Kopecky ring 

Proctor test 

g/cm3 

Cone Index The force per unit basal area 
required to push a cone 
penetrometer through a 
specified increment of soil 

Soil Penetrometer MPa 

Draught The force require to pull an 
implement 

Octagonal ring 
transducer 

Linear load cell 

kN 

Electrical 
conductivity 

The capacity of a substance 
to conduct or transmit 
electrical current 

 Siemens 
/metre 

Electrical 
Magnetic 
Induction 
(EMI) 

A proximal sensing method 
which measures apparent 
electrical conductivity 

EMI sensor milli-
Siemens 
/metre 

Packing 
density 

Allows for the transformation 
of bulk density into a clay 
independent indicator 

Mathematical 
calculation 

t/m3 

Particle 
density 

The mass per unit volume of 
the soil particles 

 g/cm3 

Pore size 
distribution 

The volume of various sizes 
of pores in a soil 

Laboratory analysis % of bulk 
volume 

Porosity The volume percentage of the 
total soil bulk not occupied by 
solid particles 

Direct 
measurement, 
Optical methods 

% 

Soil 
compaction 

The process by which the soil 
particles are rearranged to 
decrease void space and 
bring them into closer contact 
with one another. 

Direct and Indirect 
methods. Refer to 
page 21. 

 

Various 
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Soil 
consistency 

The state of soil – whether it 
is solid, plastic or liquid. 

Atterberg Limit test 
as a measure of the 
critical water content 
of fine grained soil. 

 

Soil strength A transient property related to 
the soils solid phase cohesion 
and adhesion. 

Mohr-Coulomb  

Soil structure The combination or 
arrangement of primary soil 
particles into secondary 
particles, units or peds. These 
secondary units may be , but 
usually are not arranged in 
the profile in such a manner 
as to give a distinctive 
characteristic pattern. 

Visual assessment  

Soil texture The relative proportions of the 
various soil separates in a 
soil. 

Hand texturing, 
Particle size 
distribution 

 

 


