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Abstract

In this study, we demonstrate that partial least-squares regression analysis with full cross-validation of spectral reflectance data estimates the amount of polycyclic aromatic hydrocarbons in petroleum-contaminated tropical

rainforest soils. We applied the approach to 137 field-moist intact soil samples collected from three oil spill sites in Ogoniland in the Niger Delta province (5.317°N, 6.467°E), Nigeria. We used sequential ultrasonic solvent

extraction–gas chromatography as the reference chemical method. We took soil diffuse reflectance spectra with a mobile fibre-optic visible and near-infrared spectrophotometer (350–2500 nm). Independent validation of combined

data from studied sites showed reasonable prediction precision (root-mean-square error of prediction = 1.16–1.95 mg kg−1, ratio of prediction deviation = 1.86–3.12, and validation r2 = 0.77–0.89). This suggests that the

methodology may be useful for rapid assessment of the spatial variability of polycyclic aromatic hydrocarbons in petroleum-contaminated soils in the Niger Delta to inform risk assessment and remediation.

This approach may be used to collect large spatial data at reduced cost and time to assess the variability of polycyclic aromatic hydrocarbons in petroleum release sites.
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1 Introduction

Rapid measurement of polycyclic aromatic hydrocarbons (PAHs) in soils can reduce the costs associated with their management, and the likely impacts of future pollution incidents through early identification. For effective

management of PAHs in the environment, knowledge of their concentration and compositional distribution in the environment is vital. The information is essential to be able to identify the origin or source of the PAH (Hites and Gschwend,

1982; Okoro and Ikolo, 2007; Yunker and MacDonald, 1995) for risk-based assessment and remediation purposes (Askari and Pollard, 2005). In the analysis of petroleum-contaminated soils for PAH, gas chromatography–mass spectrometry

(GC–MS) is mostly preferred because of their relative selectivity and sensitivity (Brassington et al., 2010; Wang and Fingas, 1995). Nevertheless, GC–MS method is relatively expensive, involves time-consuming sample preparation

protocols, and relies on the use of noxious extraction solvents (Okparanma and Mouazen, 2013a). This has prompted increased research activity recently by scientists to evolve simpler, faster, and cost-effective methods of measuring PAH

in contaminated soils to complement the conventional methods.

Among these innovative methods are techniques based on vibrational spectroscopy, particularly those employing diffuse reflectance sample interfaces. These techniques include Fourier transform infrared (FTIR) spectroscopy and

visible and near-infrared (VIS–NIR) spectroscopy. Diffuse reflectance in the IR spectrum came to limelight in 1976, and became known as diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy (Willey, 1976). Before its advent in

the IR spectrum, diffuse reflectance has been commonly available in the visible and NIR spectrum (Willey, 1976). Early applications of DRIFT have been widely reported (e.g., Fuller and Griffiths, 1978). Both DRIFT and VIS–NIR are very

much similar in many ramifications, but maybe more importantly are the differences between the two of them. Both techniques are now available in portable devices that can be deployed for in-field measurements without sample preparation.

In terms of capital equipment cost, the prices of their latest portable models are comparable. The commercially available DRIFT (portable) system developed by Forrester et al. (2011), the 4100 ExoScan FTIR (Agilent Technologies, CA,

USA), currently costs $61 301 while the latest portable model of VIS–NIR analyser, the LabSpec 5000 (Analytical Spectral Devices, Inc., CO, USA), costs $61 078 (Okparanma and Mouazen, 2013a). The former system predicted TPH with
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root-mean-square error of 903 mg kg−1 in cross-validation for TPH ranging from 0 to 11 000 mg kg−1 (Forrester, 2010). On the other hand, VIS–NIR spectroscopy has been successfully used for on-line (tractor-mounted) measurement of soil

properties (e.g., Mouazen et al., 2007a; Kuang and Mouazen, 2013), which opens the possibility for on-line measurement of PAHs using the technology. So far, no reports about the use of DRIFT for on-line measurement can be found in the

literature.

In VIS–NIR spectroscopy (350–2500 nm), energy absorption by hydrocarbon derivatives is due to overtones and combinations of fundamental vibrational C–H stretching modes of saturated CH2 and terminal CH3, or aromatic C–H

(ArCH) functional groups (Aske et al., 2001). The difficulty in interpreting VIS–NIR spectra because of broad and overlapping bands (Stenberg, 2010), to a large extent has been overcome by the use of advanced chemometrics and data-

processing techniques (Pasquini, 2003). In the analysis of spectroscopic data, multivariate calibration generally solves the problem of interference from compounds closely related to the analyte thereby eliminating the need for selectivity

(Naes et al., 2002). VIS–NIR spectroscopy has been used in conjunction with various multivariate analytical techniques to predict TPH in contaminated soils (Chakraborty et al., 2010, 2012; Forrester et al., 2010; Graham, 1998; Malley et al.,

1999; Schwartz et al., 2012). However, studies on the application of the methodology to predict PAH in contaminated soils are few in literature (e.g., Bray et al., 2010; Okparanma and Mouazen, 2013b). High false positive rates were reported

for PAH prediction by Bray et al. (2010), which underscore the need for further research on the application of the approach. On the other hand, models reported by Okparanma and Mouazen (2013b) for PAH prediction appear to be local

models. This limits extrapolation of the models to studied soil types. Moreover, none of these two studies considered contaminated tropical rainforest soils in their applications. Therefore, to set up a VIS–NIR-based methodology to model

VIS–NIR spectra for broader environmental application, it is essential to expand the approach to cover a wider range of soil types and environmental conditions.

The objective of this study was to evaluate the performance of VIS–NIR-based methodology in the prediction of PAH in contaminated tropical rainforest soils. To do this we used sequential ultrasonic solvent extraction–gas

chromatography (SUSE–GC) as the benchmark method. Sites investigated in this study are in the tropical rainforests of the oil-rich Niger Delta province in Nigeria. To the best of our knowledge this study is the first attempt to adopt VIS–NIR

spectroscopy for the determination of hydrocarbons in contaminated arable lands in Nigeria.

2 Materials and methods

2.1 Brief description of the study area

Available geological data for the study area show that Ogoniland is located within the Niger Delta basin with soils that are broadly classified as tropical rainforest soils, which occur in the southern part of Nigeria (SPDC, 2006). Niger Delta province

covers a total land area of 70 000 km2 (Niger Delta Environmental Survey, 1995). According to the United States Department of Agriculture (USDA) soil taxonomic order, soils in the Niger Delta belong to the Oxisols. In this study, soils were collected from within

the shallow geology (top-soils) of Ogoniland, which consists of sandy clay (UNEP, 2011). Typical ranges of soil nutrients concentrations at all soil depths reported for similar ecosystems in the Niger Delta show that nitrate-nitrogen range from 0.01

to –1.96 mg kg−1, phosphorous range from 0.21 to –6.92 mg kg−1, sulphate range from 0.20 to –10.91 mg kg−1 and soil pH range from 5.2 to –6.4 (SPDC, 2006). Total organic carbon range from 3.63 to –4.11 % (Tanee and Albert, 2011).

2.2 Sample collection

In this study, we collected soil samples from three oil spill sites located at Baraboo (4.652°N, 7.249°E), Bomu 1 (4.662°N, 7.277°E), and Bomu 2 (4.662°N, 7.249°E) all in K-Dere, Ogoniland in the Niger Delta province of Nigeria (Fig. 1). By directed

sampling method, we collected soil samples from the top 15-cm depth in plastic containers and preserved them in a cooler containing ice blocks until shipment. We adopted directed sampling method because of the need to cover as much of the visible hot-

spots in the contaminated sites as possible. Sample management was done according to the standards of the Nigerian Government's Department of Petroleum Resources (2002). We carried out both reference SUSE–GC analysis and VIS–NIR optical

scanning of soil samples in the Environmental Analytical Facility of Cranfield University, United Kingdom.

 Online view  Print view
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2.3 Reference chemical analysis of PAHs

We used SUSE–GC method to determine the concentrations of PAH compounds in the soil samples as described by Risdon et al. (2008). But, in place of acetone we used dichloromethane (Rathburn Chemicals Ltd., Walderburn, UK). Analysis of

PAHs was carried with a 6890N Network GC system coupled to a 5973 Network mass selective detector (Agilent Technologies Inc., USA) operated at 70 eV in positive ion mode. Each PAH compound was quantified by the internal standard method. In this

study, we adopted the same limit of quantitation (LOQ) of 0.02 mg kg−1 routinely used by laboratories in Nigeria for PAH quantitation in Nigerian soils because our soil samples were collected from Nigeria. LOQ is the lowest concentration at which an analyte

can be reliably detected (Mitra, 2003). Consequently, concentrations less than the LOQ were removed from the total PAH computation as they were considered unreliable. A priori 5-level calibration was carried out with a calibration solution mix. The calibration

solution mix was made up with EPA 525 PAH Mix-A standard solution (Sigma–-Aldrich Co. Ltd., Dorset, UK), surrogate standard solution mix, and solution mix of deuterated PAHs as internal standards. Deuterated PAHs used were Naphthalene-d8,

Anthracene-d10, Chrysene-d12, and Perylene-d12 while surrogates used were 2-Fluorobiphenyl and o-Terphenyl (Sigma–-Aldrich Co. Ltd., Dorset, UK). Matrix spikes, duplicates, solvent and method blanks were also analysed as quality control samples.

2.4 Accuracy, precision, and experimental uncertainty of reference PAH analytical method

Accuracy of the reference SUSE–GC chemical method was evaluated from the percent recovery of the surrogate spiked into the sample prior to extraction according to equation (1).

Where, theoretical concentration is equal to the concentration of the surrogate standard spiked into the sample. PAH final concentrations were bias-corrected since percent spike recoveries were between 0 and 100 as recommended in literature

(Patnaik, 1997). Biases in measured concentrations of 2- and 3-ring PAHs were corrected with the percent recovery of 2-Fluorobiphenyl while the percent recovery of o-Terphenyl was used to correct for biases in measured concentrations of 4-, 5-, and 6-ring

PAHs. Individual PAH concentrations were then summed up to get total PAH. Since several replicate analyses of samples were not possible in this study, reproducibility (precision) of the analytical method was determined by estimating the relative percent

difference of duplicate analyses of one sample in each batch of samples as recommended in literature (Patnaik, 1997). Relative percent difference was deduced by means of equation (2).

Where a1 and a2 are the PAH concentrations in the first and second duplicate sample, respectively. For each batch of samples, experimental uncertainty was estimated using confidence interval at 95 % level of confidence for duplicate analyses of one

randomly chosen sample. The confidence interval was deduced by the well-known expression in equation (3).

Where,   = the sample mean, t = Student's t for a desired level of confidence, s = the sample standard deviation, and n = the number of measurements. Then, percent error (absolute) in the current measurement was checked against PAH results

obtained from a commercial laboratory in Nigeria. To do this, we ran duplicate analyses of the same sample from Baraboo site that was previously analysed in the commercial laboratory. Percent error was then computed by means of equation (4).

Where, T = “known” PAH value from commercial laboratory, and E = measured mean PAH value from current study.

2.5 Optical measurement of soil samples

We took diffuse reflectance spectra from the soil samples with a mobile fibre-optic LabSpec2500® VIS–NIR spectrophotometer (350–2500 nm) coupled to a high-intensity probe (Analytical Spectral Devices Inc., CO, USA). The spectrophotometer has

one Si array (350–1000 nm) and two Peltier-cooled InGaAs detectors (1000–1800 nm and 1800–2500 nm). Spectral sampling interval of the instrument was 1 nm across the entire spectral range. However, the spectral resolution was 3 nm at 700 nm and

10 nm at 1400 and 2100 nm. The high-intensity probe has a built-in light source made of a quartz-halogen bulb of 2 727 °C. The light source and detection fibres are assembled in the high-intensity probe enclosing a 35-degree angle. Before use, and after

every 30 min minutes, the instrument was optimised by white-referencing with a white Spectralon disc of almost 100 % reflectance. Reflectance spectra were taken from each soil sample, tightly packed and levelled out in a cuvette, at three different positions,

Fig. 1 Sampling locations: (a) Nigeria, (b) Rivers State in the Niger Delta province, and (c) Gokana Local Government Authority in Ogoniland (Datum and Projection: GCS WGS 1984. Shape files source: ESRI®, CA, USA).

(1)

(2)

(3)

(4)
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120° apart. Each sample was scanned three times at each position and averaged before spectral pre-processing and multivariate analysis.

2.6 Spectral pre-processing

The pre-processing of soil spectra was carried out with the Unscrambler® X (CAMO Software AS, Oslo, Norway). Noisy portions at the extremes of the spectrum (i.e., from 350 to –449 nm and 2451–2500 nm) were removed due to low instrument

sensitivity at these wavelengths. Spectral truncation was followed by smoothing (by averaging successive 5-nm wavelengths), leaving a total of 401 wavelengths in the working range of 452–2450 nm. Then spectral transformation was carried out by

successive combination of maximum normalization and Savitzky–Golay first derivative of polynomial order of two and two smoothing points. Normalization helps to bring all data to approximately the same scale or to get a more even distribution of the

variances and the average values. First derivative removes additive baseline shifts in the data and smoothing reduces the impact of noise. These measures were aimed at reducing spurious peaks that do not hold physical or chemical information (Aske et al.,

2001; Naes et al., 2002).

2.7 Partial least-squares (PLS) regression analysis

Before calibration, spectral reflectance (R) was transformed to the logarithm of the relative intensity (1/R), or absorption (Naes et al., 2002). The PLS regression analysis combines both the independent variables (reference values of PAH) and the

dependent variables (wavelengths) using them as regression generators for the independent variables (Maleki et al., 2007). Detailed information about the PLS can be found in Martens and Naes (1989). We used PLS regression analysis with full cross-

validation to relate the variation in a single-component variable (e.g., PAH) to the variation in a multi-component variable (e.g., wavelength) by means of Unscrambler® X. The optimal number of latent factors for future predictions was determined on the basis of

the number of factors with the smallest total residual validation Y-variance or highest total explained validation Y-variance (CAMO Software, 2012). Site-specific calibration models were developed with VIS–NIR spectral data and reference SUSE–GC chemical

data for each site. Also, a generalised model was developed for all three sites with the entire dataset. To develop the generalised model, 78 % of the samples were used for cross-validation (calibration) while the remaining 22 % were used for validation

(prediction). The ratio of calibration/validation samples was chosen to ensure an equal representation of samples in the validation set by randomly choosing ten samples from each site.

2.8 Statistical evaluation of model performance

Criteria used to evaluate the quality of the models were based on the root-mean-square error (RMSE) of cross-validation and prediction (equations (5) and (6), respectively), ratio of prediction deviation (RPD) (equation (8)), and corresponding

coefficient of determination (r2) (Williams and Sobering, 1986). Model performance classification system adopted was based on the following criteria: very poor model predictions if RPD < 1.0; poor if 1.0 ≤ RPD < 1.4; fair if 1.4 ≤ RPD < 1.8; good if

1.8 ≤ RPD < 2.0; very good if 2.0 ≤ RPD < 2.5; and excellent if RPD > 2.5 (Viscarra Rossel et al., 2006a).

Where   estimate for yi based on the calibration equation with i deleted;   predicted and measured reference values respectively; E(.) = statistical expectation (average) over the population of future samples; N = number

of samples in the set; and SD = standard deviation of the measured reference values.

2.9 Outlier detection techniques

During model calibration, a priori outlier detection techniques were adopted to remove influential X- and Y-outliers. The influence of sample outliers was ascertained using the influence plot (Fig. 2). This was done by plotting the residual X- and Y-

variances against leverages. Samples with a high leverage and high residual X- or Y-variance were considered as potential outliers (CAMO Software, 2012). Then the projected influence plots were used to confirm those samples with high residuals.

Nonetheless, before such samples were treated as outliers, they were studied in more details by marking them one-by-one and plotting the X–Y relation outliers for several model factors to observe their influence on the shape of the X–Y relationship, as

(5)

(6)

(7)

(8)
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recommended in literature (CAMO Software, 2012).

3 Results and discussion

3.1 Accuracy, precision and level of uncertainty in reference SUSE–GC analysis of PAH

Table 1 shows the statistical results of the chemical SUSE–GC analysis showing the sum of individual PAHs quantified for each site. The high spatial variability of the compounds within and among sites is clearly demonstrated in the table. It is

important that the sum of a PAH fraction in the entire sample set (Table 1) is differentiated from the sum of the entire PAH fraction in a sample (Data not shown due to the number of samples involved). The latter is the total PAH in a sample used for model

development. In this study, total PAH concentration is the sum of the 13 individual PAH concentrations in a sample. The 13 PAHs in Table 1 were the relevant compounds contained in the PAH standard solution used for prior instrument calibration. The

concentrations of the lower boiling 2- to 4-ring PAHs (i.e., acenaphthylene to chrysene) were higher than the higher boiling 5- to 6-ring PAHs. The difficulty in quantitation increased with boiling point. The lower boiling PAHs eluted the column before the higher

boing PAHs because of their shorter retention times. Overall, Bomu 2 appeared to be the most contaminated site with the highest mean total PAH (5.39 mg kg−1) compared to either Baraboo site (3.38 mg kg−1) or Bomu 1 (4.47 mg kg−1). These values can also

be confirmed from Table 1 by adding the respective mean values.

Table 1 Statistics of the chemical analysis result showing the sum of individual polycyclic aromatic hydrocarbons (PAHs) quantified for each site by reference sequential ultrasonic solvent extraction–gas chromatography (SUSE–GC).

PAH LOQ (mg kg−1) Baraboo Bomu 1 Bomu 2

N Min. (mg kg−1) Max. (mg kg−1) Mean (mg kg−1) Range
(mg kg−1)

N. Min. (mg kg−1) Max. (mg kg−1) Mean (mg kg−1) Range
(mg kg−1)

N Min. (mg kg−1) Max. (mg kg−1) Mean (mg kg−1) Range
(mg kg−1)

Acenaphthylene 0.02 43 0.07 3.06 0.83 2.98 58 0.02 2.40 0.46 2.38 36 <0.02 8.53 1.41 8.53

Fig. 2 Detection of outliers after partial least-squares regression analysis. A potential sample outlier, marked in circle, detected among samples from Baraboo site in Ogoniland, Niger Delta province of Nigeria is shown as an example.
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Fluorene 0.02 43 <0.02 4.80 0.73 4.80 58 <0.02 2.70 0.45 2.70 36 <0.02 6.25 0.88 6.25

Phenanthrene 0.02 43 <0.02 3.64 0.47 3.64 58 0.02 3.15 0.81 3.13 36 <0.02 6.86 0.76 6.86

Anthracene 0.02 43 <0.02 4.22 0.41 4.22 58 <0.02 2.57 0.36 2.57 36 <0.02 6.86 0.75 6.86

Pyrene 0.02 43 <0.02 1.03 0.30 1.03 58 <0.02 2.83 0.56 2.83 36 <0.02 1.73 0.52 1.73

Benz[a]anthracene 0.02 43 <0.02 0.88 0.18 0.88 58 <0.02 2.61 0.39 2.61 36 <0.02 1.01 0.15 1.01

Chrysene 0.02 43 <0.02 1.17 0.18 1.17 58 <0.02 1.07 0.22 1.07 36 <0.02 0.55 0.09 0.55

Benz[b]fluoranthene 0.02 43 <0.02 0.15 0.03 0.15 58 <0.02 1.33 0.23 1.33 36 <0.02 0.18 0.04 0.18

Benzo[k]fluoranthene 0.02 43 <0.02 0.15 0.03 0.15 58 <0.02 1.23 0.19 1.23 36 <0.02 0.18 0.04 0.18

Benzo[a]pyrene 0.02 43 <0.02 0.73 0.17 0.73 58 <0.02 1.80 0.14 1.80 36 <0.02 9.36 0.68 9.36

Indeno[1,2,3-cd]pyrene 0.02 43 <0.02 0.22 0.02 0.22 58 <0.02 1.48 0.23 1.48 36 <0.02 0.82 0.06 0.82

Dibenzo[a,h]anthracene 0.02 43 <0.02 0.15 0.03 0.15 58 <0.02 1.82 0.22 1.82 36 <0.02 <0.02 – –

Benzo[g,h,i]perylene 0.02 43 <0.02 0.22 0.02 0.22 58 <0.02 1.48 0.22 1.48 36 <0.02 0.33 0.02 0.33

LOQ, Limit of quantitation. It is the lowest concentration at which an analyte can be reliably detected (Mitra, 2003).

N, Number of samples.

PAH, Polycyclic aromatic hydrocarbons.

Percent recoveries of spiked surrogates for the three sites, as shown in Table 2, are within the acceptable range of 40–120 % (USEPA, 1999), which is typical of a reasonably accurate PAH extraction procedure.

Table 2 Accuracy of the reference sequential ultrasonic solvent extraction–gas chromatography (SUSE–GC) method used in the chemical analysis of polycyclic aromatic hydrocarbons (PAH) in topsoils from petroleum-contaminated sites in Ogoniland, Niger Delta province of Nigeria.

Sampling site No. of samples Spiked (mg kg−1) Measured (mg kg−1)a % Recovery of spiked surrogates

2-Fluorobiphenyl o-Terphenyl

Baraboo 43 2.50 1.36 1.33 53–54

Bomu 1 58 2.50 1.94 1.63 65–78

Bomu 2 36 2.50 1.19 1.40 48–56

a Mean concentrations of the spiked surrogates.

Table 3 shows the reproducibility and experimental uncertainty for 95 % confidence interval (n = 2) of the reference PAH measurement procedure. The relative percent difference for duplicate samples for all sites is less than 20 %, suggesting that the

reference SUSE–GC method was within precision standards (Mayer, A. S. [2008] – Lecture Note, GE3850: Geohydrology, Department of Civil and Environmental Engineering, Michigan Technology University, MI.). The rather large confidence intervals in

Table 3 are attributed to the fewer number of measurements (n = 2). It is known that the confidence interval reduces with number of measurements as the sample mean approaches the true population mean (Harris, 2010). Nevertheless, the estimated

confidence interval suggests with 95 % confidence that the true mean PAH value from the duplicate measurements would lie within the estimated range.

Table 3 Experimental uncertainty and precision of reference sequential ultrasonic solvent extraction–gas chromatography (SUSE–GC) method used for analysis of polycyclic aromatic hydrocarbon (PAH) in topsoils from petroleum-contaminated sites in Ogoniland, Niger Delta of Nigeria. Test

sample was randomly chosen for each site.

Sampling site First duplicate (mg kg−1) Second duplicate (mg kg−1) Relative percent difference (%) Confidence interval

Mean ± uncertaintya (mg kg−1)

Baraboo 3.67 3.22 13 3.45 ± 2.86

Bomu 1 4.49 3.88 14 4.18 ± 3.84

Bomu 2 2.89 2.66 8 2.78 ± 1.42
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a Experimental uncertainty for 95 % confidence interval for duplicate measurements.

Inter-laboratory differences in reported PAH values are shown in Table 4. For the test soil sample, Table 4 shows that mean PAH value obtained in this study is comparable to PAH result from the commercial laboratory in Nigeria. This implies that the

current PAH measurement by Cranfield University's operating procedures described above is in agreement with those of the commercial laboratory. The margin of error may be attributed to differences in operating procedures used in both laboratories

(Table 4). Moreover, inter-laboratory differences in reported values of an analyte in chemical analysis are a common occurrence (Risdon et al., 2008).

Table 4 Inter-laboratory differences in reported PAH values and selected rubrics in operating procedures for test soil sample from petroleum-contaminated site in Baraboo in Ogoniland, Niger Delta of Nigeria.

Analyte and selected rubrics This study Commercial laboratory

PAH (mg kg−1) 3.45 ± 2.86 2.73a

Percent error (%)b 26 –

Quantitation method Internal standard External standard

Extraction method Sequential ultrasonic solvent extraction Sonication water bath (5-hour sonication)

Extracting solvent(s) Dichloromethane and hexane (1:1) n-Pentane

Surrogate standard(s) 2-Fluorobiphenyl and o-Terphenyl 1-Chlorooctadecane

a Uncertainty was not reported.

b Commercial laboratory PAH result was taken as the “known” value.

3.2 The PAH partial least-squares regression models

Table 5 summarises the statistical results of the PLS models. The cross-validation models for pre-processed spectra used smaller number of latent variables than raw spectra. Similarly, cross-validation models developed by pre-processed spectra

had better quality than raw reflectance models. Overall, the quality of the cross-validation models is classified as ranging from very good to excellent on the basis of RPD values. Fig. 3 shows the linear relationship between reference SUSE–GC-measured and

VIS–NIR-predicted PAH data for pre-processed spectra of entire dataset. Only three sample outliers were removed from the cross-validation datasets while none was removed from the independent validation set. On the basis of RPD values, the model quality

is classified as excellent prediction. The quality of the model demonstrates the possibility of using VIS–NIR spectroscopy for quantitative determinations (Viscarra Rossel et al., 2006a). Moreover, as shown in Table 5 the similarity between cross-validation and

validation standard deviations indicates that the prediction models are not skewed. These results are comparable with RPD values of 1.7 and 2.5 reported by previous researchers for TPH prediction in field-moist soils by PLS regression analysis (Chakraborty

et al., 2010, 2012).

Table 5 Statistical results of partial least-squares (PLS) site-specific calibration and general prediction models for polycyclic aromatic hydrocarbons (PAH) in petroleum-contaminated tropical rainforest soils from Ogoniland in the Niger Delta province of Nigeria developed by visible and near-

infrared (VIS–NIR) spectroscopy.

Sampling site No. of samples Reflectance spectra Combined pre-processing spectraa

r2 RMSE (mg kg−1) SD RPD LV r2 RMSE (mg kg−1) SD RPD LV

Cross-validation set

Baraboo 43 0.78 0.82 1.81 2.20 8 0.84 0.64 1.81 2.81 6

Bomu 1 58 0.76 1.41 2.95 2.09 11 0.83 1.22 2.95 2.41 3

Bomu 2 36 0.77 1.98 4.08 2.07 5 0.83 1.42 4.08 2.87 7

General 107 0.69 1.61 3.05 1.81 11 0.82 1.30 3.05 2.34 8

Validation set

General 30 0.77 1.95 3.63 1.86 11 0.89 1.16 3.63 3.12 8

LV, Latent variable.
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RMSE, Root-mean-square error.

RPD, Ratio of prediction deviation.

SD, Standard deviation.

a Combination of maximum normalisation, and first derivative and smoothing by Savitzky–Golay.

3.3 Spectral reflectance of petroleum-contaminated tropical rainforest soils

Fig. 4 shows mean VIS–NIR spectral reflectance curves of field-moist tropical rainforest soils consisting of sandy clay from three oil spill sites in Ogoniland, Niger Delta, Nigeria. Generally, soil spectral reflectance decreased with increasing mean PAH

concentration particularly in the NIR region (700–2500 nm). There was however, a slight shift in this trend for Baraboo and Bomu 1 reflectance curves in the visible range (452–700 nm). This is attributed to soil colour-associated changes in the visible range

brought about when water and/or oil (e.g., diesel) is added to soil (Mouazen et al., 2005; Okparanma and Mouazen, 2013b). In the reflectance curves for the contaminated sites, spectral absorption minima of hydrocarbon-based oil were observed around 1647,

1712, and 1752 nm in the first overtone region of the NIR band (Fig. 4). The absorption around 1647 nm is attributed to C–H stretching modes of ArCH linked to PAH. Absorptions around 1712 and 1752 nm are attributed to C–H stretching modes of terminal

CH3 and saturated CH2 groups linked to TPH, both present in the contaminating hydrocarbon-based oil (Forrester et al., 2010; Osborne et al., 1993; Workman and Weyer, 2008). These features are practically absent in the uncontaminated reflectance curve as

shown by the number of reflectance shoulders that appeared in the reflectance curves between 1452 and 1952 nm (Fig. 4).

Fig. 3 Scatter plots of chemically measured vs. predicted values of polycyclic aromatic hydrocarbons (PAH). These were developed by partial least-squares (PLS) regression analysis with pre-processed spectra of 137 soil samples from petroleum-contaminated tropical rainforest soils collected

from Ogoniland, Niger Delta, Nigeria.
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One reflectance shoulder appeared around 1830 nm (point a) in the uncontaminated reflectance curve while four appeared around 1630, 1675, 1737, and 1830 nm (point b, c, d, and e, respectively) in the contaminated reflectance curves (Fig. 4). A

reflectance shoulder appears between two absorption wavelengths of colour, water and/or hydrocarbon (Mouazen et al., 2007b; Okparanma and Mouazen, 2013b). The reflectance shoulder at 1830 nm is attributed to water absorption in the first overtone band

around 1950 nm (Stenberg, 2010) and hydrocarbon absorption in the first overtone band around 1712 nm (Osborne et al., 1993; Workman and Weyer, 2008). The shoulder at 1630 nm is attributed to water absorption in the second overtone region around

1450 nm (Mouazen et al., 2007b) and hydrocarbon absorption in the first overtone band around 1647 nm (Workman and Weyer, 2008). The shoulder at 1675 nm is attributed to hydrocarbon absorptions in the first overtone band around 1647 and 1712 nm

(Workman and Weyer, 2008). The shoulder at 1737 nm is attributed to hydrocarbon absorptions in the first overtone band around 1712 and 1752 nm (Workman and Weyer, 2008). Therefore, the hydrocarbon absorption bands around 1647 and 1712 nm

differentiate the uncontaminated from contaminated reflectance curves (Fig. 4).

3.4 Regression coefficients

Regression coefficients in PLS regression analysis provide a summary of all predictors and a given response. The plot of regression coefficients is used to identify important wavelengths for the prediction of relevant soil properties. Fig. 5 shows bar

plots of regression coefficients versus wavelength derived after PLS regression analysis using raw VIS–NIR spectral data and reference SUSE–GC chemical data for each site. In the bar plots, the absolute value of the regression coefficients indicate the

relative importance of the wavelength on the basis of explained X-variance in the model. In Fig. 5, negative coefficients around 1712 and 1752 nm show a positive link to absorptions due to vibrational C–H stretching modes of terminal CH3 and saturated CH2

functional chemical groups linked to TPH. But positive coefficients around 1647 nm are consistent with absorptions due to vibrational C–H stretching modes of ArCH functional groups linked to PAH. These results agree with absorption bands observed in the

reflectance curves (see Fig. 4). Over the modelling wavelength range of 452–2450 nm, the bar plots show that intensities of regression coefficients vary in magnitude for each site. Nonetheless, the positions of important wavelengths are largely similar (Fig. 5)

even though the samples are from different sites. This shows a similarity in soil property among the three sites. We observed larger regression coefficients in Fig. 5b and c than in Fig. 5a. The intensity of regression coefficients for Baraboo site was the least

(Fig. 5a), and samples from Baraboo site showed the least level of contamination among the three sites as well (see Fig. 4). This may be explained by the fact that the mechanism of PAH prediction is attributed to co-variation of PAH with other soil properties

that have direct spectral responses in the NIR spectral range, particularly water, clay minerals and organic carbon (Okparanma and Mouazen, 2013c). This observation was also typified in Fig. 5 by the sizes of coefficients around 950, 1450, 1950, 2200, 2212,

and 2300 nm. Absorptions around 950, 1450 and 1950 nm in the NIR band are due to O–H stretching modes of water in the O–H sH second and first overtones, and combinations band respectively (Whalley and Stafford, 1992). Absorption features linked to

metal-OH bend plus O–H stretch combinations around 2200 and 2300 nm are characteristic of clay minerals (Clark et al., 1990; Viscarra Rossel et al., 2006b). Absorption features attributed to long-chain C–H + C–H and C–H + C–C stretch combinations

Fig. 4 Mean VIS–NIR spectral reflectance curves of petroleum-contaminated tropical rainforest soils from three oil spill sites in Ogoniland in the Niger Delta province of Nigeria. Values in the legend are average PAH concentrations. Point a, b, c, d, and e are reflectance shoulders.
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around 2150 nm and 2212 nm are unique to soil organic matter (Forrester et al., 2010).

4 Conclusions

In this study, results show that soil diffuse reflectance decreased with increasing PAH concentration. Positive regression coefficients around 1647 nm show a link to PAH. Additionally, the quality of generalized PLS models for PAH

predictions ranged from good to excellent (validation r2 = 0.77–0.89, RMSEP = 1.16–1.95 mg kg−1, and RPD = 1.86–3.12). This demonstrates the possibility of using VIS–NIR spectroscopy and PLS regression analysis for rapid quantitative

determination of PAH in petroleum-contaminated tropical rainforest soils in the Niger Delta province of Nigeria. However, it should be pointed out that the extrapolation of the model is limited to the three sites investigated in this study namely

Baraboo, Bomu 1, and Bomu 2 in Ogoniland, Niger Delta region of Nigeria. To set up a model based on VIS–NIR spectroscopy for general application in the Niger Delta province of Nigeria, we recommend the use of larger dataset covering

both the concentration range and all the other sources of variability in oil spill sites in the Niger Delta region.
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• We model NIR diffuse reflectance spectra for PAH prediction in contaminated soils.

• Soil diffuse reflectance decreases with increasing PAH concentration.

• Mechanism of prediction relies on co-variation of PAH with other soil properties.

• Positions of important wavelengths are largely similar for studied sites.

• Positive regression coefficients around 1647 nm show a link to PAH.
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