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Recently large electrocaloric effects (ECE) (ΔT = 12 K and ΔS = 8 JK-1kg-1 at 776 kVcm-1) in

antiferroelectric sol-gel PbZr0.95Ti0.05O3 thin film and (ΔT = 12.6 K and ΔS = 60 JK-1kg-1 at

2090 kVcm-1) in ferroelectric polymer P(VDF-TrFE)55/45 thin film were observed near their

ferroelectric Curie temperatures 495 K and 353 K, respectively. Here authors demonstrate a

giant EC effect (ΔT = 45.3 K and ΔS = 46.9 JK-1kg-1 at 598 kVcm-1) in relaxor ferroelectric

Pb0.8Ba0.2ZrO3 (PBZ) thin film fabricated on Pt(111)/TiOx/SiO2/Si substrate by a sol-gel

method, in which nano-scaled antiferroelectric (AFE) and ferroelectric (FE) phases coexist, at

room temperature (290 K) rather than at its Curie temperature (408 K). The giant ECE in such

a system is attributed to the coexistence of AFE and FE phases and field-induced nano-scaled

AFE to FE phase transition. The giant ECE of PBZ thin film makes it a promising material for

the application in cooling systems near room temperature.

1. Introduction

ECE is a change in temperature (ΔT) in a polarable material by virtue of the change in entropy

(ΔS) upon the application or withdraw of an electric field under adiabatic conditions.[1-3]

Simulation results[4] indicate that cooling devices based on large ECE can have much higher
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coefficient of performance (COP) (> 60% of Carnot efficient) than those (< 20% of Carnot

efficient) of mechanical vapor compression cycle cooling devices such as refrigerator and air-

conditioner, which generate strong greenhouse gases during their operations. The bottle neck

for development of ECE cooling technologies in the past is that only small ΔT and ΔS can be

induced in bulk materials such as only ΔT = 2.5 K and ΔS = 0.2 JK-1kg-1 at 750 V in

Pb0.99Nb0.02(Zr0.75Sn0.20Ti0.05)O3 ceramics[5] because of the restriction of breakdown fields (~

50 kVcm-1).

Recently, by resorting to a thin-film geometry, giant ECE (ΔT = 12 K and ΔS = 8 JK-1kg-1

at 776 kVcm-1) in the antiferroelectric PbZr0.95Ti0.05O3 (PZT) was observed by Mischenko et

al.[1] near antiferroelectric to paraelectric phase transition temperature (Tc = 500 K). This has

triggered a new wave of interest in the search of new ECE materials, which results in

significant progress in this field and raises hopes for successful development of ECE solid-

state cooling units. For example, Saranaya et al. [6] reported a bigger ECE temperature change

(ΔT = 31 K) at 413 K and 747 kVcm-1 in Pb(Mg1/3Nb2/3)0.65Ti0.35O3 thin films deposited by 

PLD. Lu et al. also reported a 40 K temperature change at 318 K and 1200 kVcm-1 in

(Pb0.88La0.08)(Zr0.65Ti0.35)O3 relaxor thin films (S.G. Lu, B.Rožič, Q. M. Zhang, Z. Kutnijak, X. 

Li, E. Furman, L. J. Gorny, M. Lin, B. Malič, M. Kosec, R. Blinc and R. Pirc, Appl. Phys. 

Lett., 2010, 97, 162904). But the application of cooling devices needs maximum EC effect at

or near room temperature. In view of this, Neese et al.[3] reported a ECE temperature change

(ΔT) of ~ 12.6 K at 2090 kVcm-1 in ferroelectric polymer P(VDF-TrFE)55/45 thin film, near

room temperature (353 K).

Usually, a large ECE is often considered to occur around the Curie temperature (TC) of

ferroelectrics[1] where the polarization (P) changes with temperature. Through the first-

principles-based simulation, Ponomareva[7] et al. predicted that ferroelectrics with multiple

transitions can exhibit giant ECE under large electric fields and with the coexistence of both
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positive and negative ECE in one material. Moreover, the origin of negative ECE can be

traced to the  noncollinearity  between  the  electric  field  and  the polarization, which could 

induce new ways to enhance the electrocaloric efficiency.  

In this work, we report a giant ECE (ΔT = 45.3 K and ΔS = 46.9 JK-1kg-1 at 598 kVcm-1)

in a nano-scaled orthorhombic antiferroelectric phase and rhombohedral ferroelectric phase

coexisted relaxor Pb0.8Ba0.2ZrO3 thin film prepared by a sol-gel method at room temperature

(290 K) away from its Curie temperature (408 K). A new mechanism was introduced to

interpret the dramatic ECE.

2. Results and discussions

2.1. Structure

XRD patterns of PBZ thin films fabricated on Pt(111)/TiOx/SiO2/Si substrate by a sol-gel

method were illustrated in Fig.1(a). Pure and well crystallized perovskite phase PBZ film was

achieved after annealed at 750 °C for 30 min. Superlattice reflections with indices (130) and

(112) indicate the existence of orthorhombic antiferroelectric phase[8] in the PBZ thin film.

Refined lattice parameters for the orthorhombic antiferroelectric (OAFE) phase are determined

to be aO = 5.83612 Å, bO = 11.72206 Å and cO = 8.31065 Å by using the software JADE. In

addition to the OAFE phase, a rhombohedral ferroelectric (RFE) phase with lattice parameters

aR = 4.12267 Å and αR = 90.9541 ° can also be detected. The surface micrograph (inset of

Fig.1(a)) of PBZ thin film displays a typical rosette structure,[9] which is formed by the lead

loss during the heat-treatment process[10,11] and consists of round lighted-colored regions

(rosettes) and the dark region between the rosettes. Inside and in between the rosettes,

subgrains with average size of 20 nm can also be clearly observed.

To further study the morphology and microstructure of PBZ thin film in details, the TEM

characterization was carried out. Numerous dispersed nanocrystals corresponding to those

subgrains in the SEM were observed again in the TEM bright field image (Fig.1(b)). In the
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inside of some nanocrystals, lamellar nanodomains with about 2 nm wide (see the blue solid

circles) and lamellar nanodomains with about 1 nm wide (see the red dot circles) are clearly

visible. The latter can be attributed to be the antiferroelectric domains for 1 nm wide close to

its cell parameters, which is consistent with the report by Viehland[12] in PZT. Inset of Fig. 1

(b) shows the selected area electron diffraction (SAED) pattern of PBZ thin film. For

simplicity, the lattice indices for SAED were labeled as the pseudo cubic structure rather than

the orthorhombic or rhombohedral structure. Circular rings correspond to the (111), (220),

and (311) plane reflections (from inside to outside), respectively. The discontinuity of

diffraction rings indirectly revealed the nanocrystalline characteristics of PBZ thin film.[13] It

is well known that the polarization vector for the RFE phase is <111>,[14] and the rotation

between neighboring domains depends on the cell angle α. For PZT,[14] the rhombohedral

angle α is 91°, and the possible types of domain can be calculated as 109°, 71°, and 180°. The 

orientation of permissible uncharged walls is {110} for 109°, {001} for 71° and the plane

parellel to the polarization vector is 180° domain. According to the refined α value (90.9541°) 

of the RFE phase and the feature of the SAED pattern of PBZ thin film, lamellar nanodomains

with about 2 nm wide probably is due to the exisitence of 180° ferroelectric domains, which

needs to be further confirmed by piezoresponse force microscopy (PFM).

Figure 1. (a) XRD patterns and SEM surface image (inset) of the PBZ thin film; (b) TEM

image and SAED pattern (inset).

2.2. Dielectric properties

Temperature dependences of dielectric permittivity (ε) and dielectric loss (tan δ) at

different frequencies are shown in Fig 2.(a). Although the dielectric permittivity is higher (εm

~ 1200) compared with that found in PZT-based compositions, it is rather lower than the

sintered bulk PBZ ceramics with the same composition (εm ~ 12000).[15,16] This difference can

be attributed to small grain size in thin film compared with similar bulk ceramics and due to
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substrate constraint.[17-21] Likewise, the maximum dielectric permittivity is observed at 408 K

(Tm), rather than at 425 K reported in PBZ bulk material.[15,16] The relaxation observed by the

frequency dependence of the dielectric permittivity indicates the existence of defects (small

thickness of the film, clamping by the substrate and low annealing temperature), which may

contribute to decreasing of permittivity and the shift in Tm comparing with bulk ceramics.

Moreover, the AFE-FE transition cannot be detected in the whole temperature range, which is

similar to the phenomenon in PZT thin film.[1]

In order to evaluate the ECE in the PBZ thin film, P-E loops at 100 Hz were measured at a

5 K interval in the temperature range between 283 K and 418 K. Representative plots of P-E

loops are shown in Fig. 2(b) and (c). The temperature dependence of the polarization (P(T)) at

selected electric field values, established from the upper branches of the P-E hysteresis loops

in E > 0, is presented in the insets of Fig. 2(b) and (c). The solid lines in the inset of Fig. 2(b)

and (c) represent cubic-spline interpolation of raw data.

Leakage currents (I(t)) measured in the maximum field employed (598 kVcm-1) (Fig. 2(d))

were investigated at room temperature 293 K and near the Curie temperature 403 K,

respectively. The observed transients persist up to 1000 ms, even beyond which no

breakdown occurs after repetitive testing. By contrast, beyond 200 ms breakdown occurs in

the PZT thin film.[1] It can be seen that 1.7 nA is an upper bound for the steady-state leakage

current. This value yields negligible Joule heating (<10-3 K) and does not affect P(E) because

currents of hundreds of μA are required to switch the measured polarizations at 100 Hz.  

Figure 2. (a) ε(T) and tan δ(T) of PBZ thin film; (b) and (c) P-E loops at selected

temperatures, the inset is P(T) at selected electric field values; (d) leakage current I(t).

2.3. Electrocaloric effect

Reversible adiabatic changes in temperature (ΔT) and entropy (ΔS) for a material of density

(ρ) with heat capacity (C) are given[1-3,22,23] by
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assuming the Maxwell relation ETP )/(  = TES )/(  . Values of ETP )/(  were obtained

from four-order polynomial fits to the cubic-spline interpolation of raw P(T) data extracted

from the upper branches of P-E loops in E > 0 (see the inset of Fig. 2(b) and (c)). In the

temperature range of interest, the heat capacity (C = 330 JK-1kg-1) remains constant for Zr-

rich lead-based thin film, and the peak associated with the transition is < 10% of the

background.[1] Assuming a constant value of C despite an ~ 50% peak[1] resulted in excellent

agreement with direct ECE measurements of ΔT in bulk Pb0.99Nb0.02(Zr0.75Sn0.20Ti0.05)0.98O3.

Therefore, C = 330 JK-1kg-1 can be taken as the heat capacity value of PBZ thin film. The

theoretical density ρ of PBZ thin film with the pseudocubic structure can be determined to be

7.7 gcm-3 by using the software JADE. Using Eq. (1) and Eq. (2), ΔT and ΔS at selected

electric fields are presented in Fig. 3(a) and (b) and in the insets of Fig. 3(a) and (b),

respectively. Peak ΔT = 45.3 °C at 598 kVcm-1 was obtained at 290 K (see Fig. 3(a)), as well

as peak ΔS = 46.9 JK-1kg-1 (see inset of Fig.3(a)).

For comparison, Table 1 lists the ECE characteristics of PBZ, PbZr0.95Ti0.05O3,
[1] P(VDF-

TrFE)55/45,[2,3] PbSc0.5Ta0.5O3,
[24] PMN-PT90/10,[23] and Pb(Mg1/3Nb2/3)0.65Ti0.35O3 thin

films.
[6] Obviously, the ΔT, ΔT/ΔE and ΔT·ΔS of PBZ thin film are the biggest among all of

them, except the ΔS (60 JK-1kg-1 for P(VDF-TrFE)55/45). The large ΔT·ΔS value (2125 Jkg-1)

of PBZ thin film at room temperature means large refrigerant capacity (RC), which is

particularly required in cooling systems. Moreover, peak ΔT = 45.3 K at 598 kVcm-1,

represents a peak energy change C·ΔT = 14.95 kJkg-1, and the corresponding hysteresis loss

taken near the peak (TECE = 293 K) was about 5.5% of the energy change. Hysteresis losses

have the potential to reduce the peak ECE temperature change by only 2.5 K. Hysteresis
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losses may be reduced[25] by (i) reducing the measurement frequency, (ii) introducing

chemical substituents, and (iii) modifying microstructures.

Twin-peak ECE with maximum ΔT < 5 °C (Fig. 3(b)) and ΔS < 4.5 JK-1kg-1 (inset of Fig.

3(b)) were observed. Such twin-peak ECE also have been reported in several perovskite

relaxors.[26-29] The appearance of the twin peak can be explained with the field-induced polar

nanodomain formation and alignment of these polar species.[30] The low-temperature peak and

the high-temperature peak of the twin peaks correspond to the depolarization temperature

(Tdp) and the Curie temperature,[31,32] respectively.

In order to elucidate the giant ECE in PBZ thin film, the pyroelectric coefficients

ETP )/(  at selected electric fields are plotted in Fig. 3(c) and (d). It is clear from Fig. 3(c)

that with the increase of the electric field, the ETP )/(  around the temperature of the peak

first increases and reaches a maximum at 210 kVcm-1, and then decreases. Likewise, in Fig.

3(d), the ETP )/(  near and between the temperature of the twin-peak first increases and

reaches a maximum at 100 kVcm-1, and then decreases.

To get an insight into this phenomenon, P-E loops under different electric fields and the

dc electric field dependence of the permittivity (ε(E)) were investigated at 293 K and 403 K.

Double P-E loops were visible at 293 K when the electric field is lower than 210 kVcm-1, as

shown in the inset of Fig. 3(c), indicating that an electric field induced AFE-FE phase

transition takes place.[33,34] Typical ferroelectric P-E loops were obtained when the electric

field is higher than 210 kVcm-1, as shown in Fig. 2(b). In contrast, only ferroelectric P-E

loops can be obtained at 403 K under all electric fields, as shown in the inset of Fig. 3(d). A

peak in the curve of ε(E) (inset of Fig. 3(c) ) was observed at 293 K, which further revealed

the existence of the electric field induced AFE-FE phase transition.[33,34] No peak can be

detected in the curve of ε(E) (inset of Fig. 3(d) ) at 403 K. From the above analysis, it can be

inferred that the giant EC at room temperature for PBZ thin film may be caused by the electric
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field-induced AFE-FE phase transition, which could induce new ways to enhance the

electrocaloric efficiency by virtue of the  noncollinearity  between  the  electric  field  and  the 

polarization.[7] It is well known that for second order phase transition or higher order phase

transition, the entropy change ΔS is normally smaller than first order phase transition. Bhadra

et al.[8] carried out a high temperature X-ray study of structure phase transitions in Pb1-

xBaxZrO3 powders and confirmed the first order nature of the AO to FR transition. The AO to

FR transition is similar to the austensite (A) to martensite (M) transition[8] in some alloys, and

large ΔS can be caused during the transition. Previous work[31,32] pointed out that latent heat

(or ΔS) from the field-induced phase transition can significantly contribute to the ECE below

the depolarization temperature Tdp. Therefore, the giant ECE at room temperature for PBZ

thin film can be attributed to the contribution of the electric field induced AO to FR transition.

However, the transition of AFE to FE phases may not be the only reason responsible for the

large ECE in PBZ system. Orientation of nanoregions existed in the thin film under electric

field may also contribute to this giant ECE because a large entropy change from totally

random nanoregions to ordered nanoregions occurs. The effect of orientation of nanoregions

induced by electric field on ECE is under investigation.

Moreover, the latest work of Zhang. et al.[35] showed that large ECE can be obtained in

materials with an invariant critical point (ICP), where multiphase coexistance and large

entropy change ΔS can be obtained during the phase transition. As a relaxor with the structure

of nano-scaled OAF phase and RF phase coexisted, the PBZ thin film with giant ECE at room

temperature can be assumed as a material with a ICP. For this, further theoretical research is

needed to be done.

Figure 3. (a) and (b) ΔT of PBZ film at selected electric fields, the inset is ΔS ; (c) and (d)

ETP )/(  of PBZ film at selected electric fields, the inset is P-E loop and ε(E) measured at

293 K and 403 K.
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Table 1. Electrocaloric characteristics of thin films. 

3. Conclusions

Giant ECE (ΔT = 45.3 K and ΔS = 46.9 JK-1kg-1 at 598 kVcm-1) at room temperature (290 K)

rather than at the Curie temperature (408 K) was obtained in the antiferroelectric and

ferroelectric phases coexisted relaxor Pb0.8Ba0.2ZrO3 thin film fabricated on

Pt(111)/TiOx/SiO2/Si substrate by sol-gel method. Field-induced nano-scaled antiferroelectric

to ferroelectric phase transition played a key role in the dramatic EC effect. The PBZ thin film

can be used as a promising material for applications in cooling systems near room

temperature.

4. Experimental procedure

Fabrication: Pb80Ba20ZrO3 (PBZ) thin film was fabricated by a sol-gel method.

Pb(OAc)2·3H2O and Ba(OAc)2 were dissolved in glacial acetic and deionized water. In order

to compensate the Pb loss during sintering, 20% excess Pb was added. Separately,

acetylacetone was added to a mixture of Zr(OnPr)4 and 2-methoxyethanol and the resulting

solution was stirred at room temperature for 30 min. The Pb/Ba and Zr solutions were mixed

and stirred at room temperature for 2 h. The final concentration of the synthesized PBZ sol

was 0.3M. After aging the sol for 24 h. PBZ sols were passed through a 0.2 μm filter for spin 

coating at 4000 rpm for 30 s onto Pt(111)/TiOx/SiO2/Si(100) substrates that were rinsed with

acetone and 1-propanol. Each layer was pyrolized at 350 °C for 3 min and then heated at

550 °C for 5 min on hotplates. After the deposition of 8 layers, the film was annealed in a

tube furnace at 750 °C for 30 min in air. The final thickness of the film was about 320 nm.

150×150 μm2 top electrodes of Cr/Au were deposited by thermal evaporation.

Characterization: The PBZ film structure was monitored by X-ray diffraction (XRD; Bruker-

AXS D5005, Siemens, Munich, Germany) on a diffractometer, using Cu Kα radiation 

(=1.5406Å). The surface morphology of the film was examined by scanning electron
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microscope (SEM; FEI XL30 SFEG, Philips, Edihoven, The Netherlands). The microstructure

of the film was studied by transmission electron microscopy (TEM; CM20, Philips, Edihoven,

The Netherlands). Dielectric permittivity measurements were carried out using an impedance

analyzer (Wayne-Kerr Electronics, UK) at V = 100 mV. Electric dependences of polarization

hysteresis (P-E) loop and leakage current (I-E) were obtained by means of a ferroelectric

tester (RT66A, Radiant Technologies Inc., Albuquerque, NM, USA). Temperature was

controlled with the aid of a Peltier element.
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Figure 1. (a) XRD patterns and SEM surface image (inset) of the PBZ thin film; (b) TEM

image and SAED pattern (inset).
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Figure 2. (a) ε(T) and tan δ(T) of PBZ thin film; (b) and (c) P-E loops at selected

temperatures, the inset is P(T) at selected electric field values ; (d) leakage current I(t).
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Figure 3. (a) and (b) ΔT of PBZ film at selected electric fields, the inset is ΔS ; (c) and (d)

ETP )/(  of PBZ film at selected electric fields, the inset is P-E loop and ε(E) measured at

293 K and 403 K.

Table 1. Electrocaloric characteristics of thin films. 

Material T
(°C)

ΔT
(°C)

ΔE
(kVcm-

1)

ΔT/ΔE
(K cmkV-1)

ΔS
(JK-1kg-1)

ΔT·ΔS
( Jkg-1)

Pb80Ba20ZrO3 17 45.3 598 0.076 46.9 2125
PbZr0.95Ti0.05O3

[1] 222 12 776 0.015 8 96
P(VDF-TrFE)55/45[2,3] 80 12.6 2090 0.006 60 756
PbSc0.5Ta0.5O3

[20] 68 6.2 774 0.008 6.3 39
PMN-PT90/10[19] 75 5 895 0.006 5.6 28
(Pb0.88La0.08)(Zr0.65Ti0.35)O3

[7]* 45 40 1250 0.032 41.5 1660
Pb(Mg1/3Nb2/3)0.65Ti0.35O3

[6] 140 31 747 0.041 32 992

* Direct temperature reading.
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Giant ECE (ΔT = 45.3 K and ΔS = 46.9 JK-1kg-1 at 598 kVcm-1) at room temperature (290 K)

rather than at the Curie temperature (408 K) can be obtained in the antiferroelectric and

ferroelectric phases coexisted relaxor Pb0.8Ba0.2ZrO3 thin film, which makes PBZ a promising

material for applications in cooling systems near room temperature.
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