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Abstract

Residual stresses develop in the sol-gel-derived ferroelectric thin films during the

transformation of the metalorganic gel to the metal oxide upon thermal treatment and due to

the thermal and elastic mismatch between the Pb(Zrx,Ti1-x)O3 (PZT) film and the substrate

materials during cooling. In this study, residual stresses were determined using the wafer

curvature method after the deposition of multilayer PZT film on platinized (100) silicon

wafers. A multilayer model for stress analysis was used to calculate the residual stress in PZT

films of three different compositions, x=0.4, x=0.52 and x=0.6. Orientation dependent

residual stresses were found in compositions containing the tetragonal phase, with x=0.4 and

x=0.52. Depending on the fraction of (100) orientated domains low compressive or low

tensile stress was found in Pb(Zr0.4Ti0.6)O3 (PZT 40/60). Higher residual stress was found in

PZT films consisting of only rhombohedral crystallographic structure (PZT 60/40) while the

residual stress in PZT films with morphotropic boundary composition (PZT 52/48) was

significantly dependent on the film orientation and the phase composition and could range

from 17 MPa to 90 MPa. The effect of the film orientation on residual stress was found to be

a function of the anisotropic thermal expansion coefficient of PZT. The contribution of the

thermal and elastic properties of materials to the total wafer curvature was investigated and

discussed. Finally, the residual stress results calculated with the four layers model were

compared to the results calculated using the Stoney equation.
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1. Introduction

Among the available ferroelectric materials, lead zirconate titanate Pb(ZrxTi1-x)O3 (PZT), is

the most popular due to its superior dielectric, piezoelectric properties, and good thermal

stability [1]. The applications of PZT films in microelectromechanical systems (MEMS)

devices exploiting the piezoelectric effect open up new possibilities in on-chip

implementation [2-4].

The demand of the residual stress characterization arises from the requirement of

stress-free MEMS structures since the residual film stress can cause the device bending, as

shown by Zhang et al [5]. The effects of residual stresses on the properties of thin films have

been widely studied, for example, the effects of the residual stress on the ferroelectric and

piezoelectric properties [6-8]; the effects of strain on the crystallographic orientation of the

film when passing through the transition temperature [9-10]; the effects of applied stress on

the ferroelectric properties [11-14] and the effect of stress on the phase shift at the

morphotropic phase boundary compositions [15].

The residual stress characterization of Chemical Solution Deposition (CSD) derived

PZT thick films was a subject of many investigations, first reported for CSD derived thick

films by Yi and Sayer [16]. The intrinsic stress develops in CSD films during heat treatment

as a result of solvent evaporation and leads to the shrinkage of the film. The pyrochlore-to-

perovskite transformation was associated with large stress [17] that accounts for the major

fraction of the residual stress, around 100 MPa. Ong and Payne [18] investigated the stress

during processing of single and multilayer films and showed that the values of residual stress

in films at different PZT thickness were between 120 and 140 MPa. However, in their work

PZT was deposited on silicon rather than on platinum. Spierings et al [19] reported on the

development of residual stress in the sol-gel deposited PZT 50/50 films and argued that the

nature of stress in PZT is due to thermal expansion mismatch between PZT and the bottom (or
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the top) electrode which could be explained in more detail if the anisotropic thermal

expansion of PZT is considered. The stress relaxation mechanism of the domain formation at

the phase transition was first reported by Roitburd [20] which was further developed by Speck

and Pompe [21-22] and Pertsev [23] for epitaxial thin films by calculating the

thermodynamically stable domain configuration dependent on the thermal strain difference

between the film and the substrate. Roitburd and Kosenko [24] reported also on the

orientation dependence of the elastic energy during phase formation which can be applied to

the pyrochlore-perovskite transformation.

A detailed stress analysis in sputter deposited PZT films can be found in work of

Bruchhaus et al [25-27]. Bruchhaus et al illuminated the stress development in the bottom

electrode (Pt/TiO2) and investigated the stress development during the pyrochlore-perovskite

transformation in PZT films of various compositions.

The research activities regarding the residual stress characterization in PZT films and

the influence of the stress on the electrical properties rapidly increased in last few years.

Although much work has focused on residual stress in CSD PZT films [28-29], the

understanding of the stress development that leads to residual stress is intermittent,

particularly in the transition of the wet films to the crystallization. Further, to identify and

design a stress-free device structure, it is important to identify the contribution of all layers to

the total stress.

The purpose of this study is to shed light on the stress development during the whole

processing of PZT film formation, from as-deposited wet film to its crystallization at high

temperature and thereafter to cooling down to the room temperature. It addresses the main

stages at which the major stress can be developed or relaxed in CSD derived films. For this

reason a non-conventional approach to stress calculation in thin films was adopted. This

approach includes the stress calculation with a multilayer model where thermal and elastic

properties of each layer are considered, the wafer curvature calculation modeling and
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comparative, or where otherwise not possible, stress calculation using the Stoney equation.

Such analysis allowed identifying and separating the processes in the substrate and the PZT

films which affect the residual stress in the PZT films.

2. Experimental

2.1 Prior to any film processing the blank wafer displacement of all samples was measured

using the Veeco Dektak Surface Profilometer. For some preliminary characterization of the

wafer curvature the wafer displacement was measured in several equidistant and parallel lines

across the wafer surface. The starting point for each scan was set along one line parallel to the

primary flat of the wafer. Then the same wafer was rotated for 90° and the same kind of

displacement measurement was performed in the direction perpendicular to the first set of

scans. The scan length was always higher than 50% of the total diameter of the wafer.

2.2 The sol precursor preparation and film processing were reported in detail in [17]. Here,

only a brief description will be given. Three different sol compositions were used: PZT 40/60,

PZT 52/48 and PZT 60/40. The single layer thickness was 200 nm for all films. Thicker films

(referred to as multilayer films) were fabricated by repeated spin-coating. All films were

processed at four distinct temperatures, 100°C, 300°C, 460°C and 550°C (or 630°C for the

PZT 60/40 films). The PbO sol was made by dissolving Lead-2-ethylhexanoate in ethanol.

The PZT films were deposited on platinized silicon substrates. A Pt/Ti bilayer (100nm/8nm)

was sputter deposited onto all substrates. Three different sizes of the silicon (100) substrates

were employed: 2", 3" and 4" wafers. 2" silicon wafers were thermally oxidized to grow a 600

nm thick SiO2 diffusion barrier layer. All other silicon wafers were commercially supplied

with a 450 nm thick SiO2 layer. In two samples only a native oxide layer was employed. Ten

different samples were fabricated for the stress analysis. Their details are summarized in Tab.

I.
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2.3 For the residual stress characterization a wafer curvature measurements were performed

always along the same line across the wafer using a self designed and constructed jig to assure

the accuracy of the measurement. The wafer curvature was always measured on a blank wafer

before platinum deposition, after platinum deposition, after platinum annealing, and after each

PZT layer was completely crystallized.

2.4 For four experiments the wafer deflection was measured after heating the sample on a

hotplate at given temperatures, in the temperature range between 100 ºC and 550 ºC. Each

sample was heated e.g. at 100°C for 1 minute and cooled down to room temperature followed

by a wafer deflection measurement. The temperature of a hotplate was increased for 25°C and

the same cycle of heating the sample for 1 minute, cooling it down to room sample and

measuring the wafer curvature was performed until the last heating temperature (550°C) was

reached. Two experiments were performed on bare platinized silicon substrates; one substrate

having an 8 nm thin Ti adhesion layer with following dimensions: Pt/Ti/SiO2/Si

(100nm/8nm/~10nm/525micron) and the other substrate was identical expect for the Ti layer

which was not deposited. For the two other experiments a single layer of PZT 40/60 (200nm)

was coated on the Pt/Ti/Si substrate, with the difference that one substrate was pre-annealed at

550°C for 30 minutes and the other was not.

2.5 The orientation of each film was determined by the standard θ–2θ X-ray diffraction 

(XRD) method on a Siemens D5005 diffractometer using CuKα radiation and a Goebel 

mirror. The peaks were deconvoluted and the integral intensities were determined for all

detected peaks. The peak intensities were normalized according to [30] and compared with

the powder diffraction files from the PCPDF database. The crystallite size was determined

using the Scherrer equation:






coscB
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where  is crystallite size, k is a parameter between 0.8 and 1, c is full width at half peak

maxima.

3. Stress analysis methods

3.1 Model for composite structures

A model derived by Townsend et al [31] was employed to calculate and analyze the curvature

evolution and the residual stress from the curvature measurements in multilayer PZT films.

This model was derived for composite structures and takes into account different mechanical

and thermal expansion properties of each layer in composite structure. The details are given in

Ref. [31], and here only the used equations are reproduced.

Based on the strength of materials approach the stress in each layer can be calculated

using the following equation:
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whereby Ei, i and ti are the biaxial elastic modulus, the thermal expansion coefficient and the

thickness of the layer i, respectively; di,0 the length or diameter of the layer I before the

temperature change T; the position of the neutral plane, K the composite curvature and z

the distance from the bottom of the composite structure to the top surface of the layer i. As

stated in Ref. [31] it is required for all layers of the composite structure to have equal length at

the point before the temperature changes. Whether such condition of the composite structure

in PZT films exists or not will be discussed in the following sections.
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Furthermore, this stress analysis approach allows curvature calculation by requesting a

zero net moment and thus results in the following equation
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For details of the Eq. (3) please see the Ref. [31].

A residual stress model was designed to allow stress calculations in four layers, in particular

for the following structure Si/SiO2/Pt/PZT. The calculation of the stress in the silicon oxide

layer was neglected if the silicon oxide was thinner than 50 nm. All required parameters for

the calculations such as layer thickness and wafer length were measured except for the

thermal expansion coefficients (TEC) and elastic moduli which were taken from diverse

sources from the literature. The TECs for investigated PZT compositions were calculated

using the thermal expansion data given in Ref. [32-34] for PZT 70/30, PZT 50/50 and PZT

48/52 respectively. The non-linear thermal expansion for silicon, platinum and silicon oxide

were taken from Ref. [35]. The TECs of all individual layers as used in the calculations are

shown in Fig. 1 and their average values are summarized in Tab. II.

The wafer curvature was calculated for every displacement measurement and in

discrete points along the scan profile using
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where y' was a polynomial function of 6th order applied to the curvature profile. y'

and y" were first and second derivates of the function y.

3.2 Stoney equation

For some particular experiments it was not possible to calculate the stress via the model

introduced in 3.1 since the thermal or elastic properties are not known e.g. of the wet PZT

layer or where a non-elastic deformation was found, such as in platinum layer immediately

after deposition. In this case the more common Stoney equation was applied
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where Kpre, Kpost is the wafer curvature before and after the film, respectively; E,  and ts the

elastic modulus, Poison’s ratio, the thickness of the substrate respectively, and tf the film

thickness. In addition, the residual stress results obtained with the Eq. (2) were compared

against the stress results calculated with the Stoney equation.

4. Results and discussion

4.1 Preliminary characterizations

The residual stress characterization based on the curvature measurement has been recently

debated whether the film stress is isotropic and uniform as it is required when using e.g. the

Stoney equation [39] for stress calculation [40-43]. To calculate the residual stress from the

wafer curvature measurements it is required to characterize the uniformity of the wafer
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curvature since both approaches to stress calculation, the Stoney equation and the Eq. (2), are

based on the linear and uniform beam deformation. Thus, strong deviations of curvature

across the wafer surface can result in large differences in the stress values. To clarify the

shape of the wafer bending due to film stress the curvature measurements were performed

according to Section 2.1. Fig. 2 shows the results of the normalized curvature of such scan for

a 2" wafer after subtraction of the bare silicon wafer curvature. A cup-shape of the wafer was

observed and it showed a fairly radial bending of the platinized silicon wafer after 1m thick

PZT film was deposited. The cup-shape was related to the anisotropic bending of the wafer

indicating a non-uniform curvature. An area of the largest curvature was found slightly off the

centre of the wafer, most likely as a result of the shift of the centre of gravity due to the

primary and secondary flats on the wafer. However, the wafer deformation was much smaller

compared to wafer thickness allowing the calculation of stress by Eq. (2) or Stoney equation.

Thus, the residual stress analysis was restricted only to the area of the maximum curvature

where maximum stress was found.

A similar experiment but on a 4" platinised silicon wafer was also conducted. After 1 m

thick PZT film was deposited, the wafer bending showed a saddle-shape (Fig. 3), indicating

much more pronounced anisotropic bending of the substrate. Thus, strong variation of the

curvature was found which makes the stress characterization more complicated when using

the 4" wafer. Again, the stress calculation was limited to the central area of the wafer where

the wafer curvature is fairly uniform. Nevertheless higher curvature and high stress can occur

at some areas close to the edges of the wafer where the film cracking was sometimes observed

when PZT was deposited onto a 4 " silicon wafer.

4.2 Stress in the bottom electrode
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To characterize the stress in the platinum bottom electrode the wafer curvature was measured

before and after platinum deposition, and after substrate annealing at 550°C for up to 30

minutes. The results are depicted in Fig. 4. It was found that the as-deposited platinum layer is

under compressive stress and the stress changed from compressive to tensile if platinum was

annealed at 550ºC for around 5 min. Such results were reported earlier by several authors [44-

45] where Pt(111) was sputter deposited at room temperature. Once the tensile stress was

established in the platinum layer it did not change if the substrate was repeatedly annealed at

the same temperature. Simultaneously, a platinum crystallite size increase was observed if

platinum was annealed (Fig. 4). After the first 15 minutes of the annealing a crystallite size

increase from 12 nm in average to around 100 nm was observed. After annealing for another

15 minutes a smaller grain size was observed, around 80 nm, suggesting a recrystallization of

platinum, most likely driven by the defect density and compressive stress of the as-deposited

platinum nanostructure as reported by [46-47]. There was no noticeable crystallite size change

upon further annealing at the same temperature. Thus, and alongside with the stress

measurements after repeatedly annealing, it can be concluded that the platinum layer reaches

a stable microstructure after the platinum recrystallization. This result is consistent to the

results reported earlier by [48]. The calculation of stress with the Stoney equation and Eq. (2)

yielded similar result, around 870 MPa, suggesting that the stress at the room temperature

after annealing is entirely due to thermal expansion mismatch between Pt and Si.

Furthermore, there seems to be a relationship between the processes in the titanium layer,

which is usually introduced as the adhesion layer between SiO2 and Pt, and the stress

relaxation (Fig. 5) as reported by [25]. The experimental details for Fig. 5 are given in Section

2.3 and 2.4 and the stress was calculated using the Stoney equation. The substrate including

the Ti adhesion layer showed higher compressive stress after sputter deposition than the

substrate without the Ti layer. Upon sub sequentially annealing the substrates the Pt only
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coated substrate showed a gradual change of stress from compressive to tensile while the

Pt/Ti showed an abrupt change of stress at around 425°C from compressive to tensile. Such

abrupt change of stress in about the same temperature range was reported by Bruchhaus at el

[25] while oxidizing the Ti layer to TiO2. Thus, the stress change in the bottom electrode

during annealing has two contributions and can be associated with a Ti oxidation on one hand

and with the platinum grain growth and recrystallization on the other hand.

4.3 Stress development during processing of the PZT film

The stress development in a 200 nm PZT 40/60 film on a pre-annealed and on an as-deposited

substrate is depicted in Fig. 6. The details of the process characterization in the film are

reported elsewhere [17]. The residual stress was calculated using the Stoney equation taking

the wafer curvature of platinum as a reference whereby the PZT film thickness measurement

was performed prior to every wafer curvature measurement with the same piece of equipment.

The details of thickness reduction during processing are given in Ref. [49]. One (Pt/Ti)/Si

substrate was annealed for 30 min at 550 ºC before a PZT layer was spin-coated and is

referred to as the pre-annealed substrate. The graph from Fig. 5 on the stress evolution in

annealed Pt is included for comparison.

Several stages during PZT processing can induce or relax strain. The first stage in the

CSD processing is the stage of the solvents evaporation associated with large thickness

shrinkage of the PZT film, usually at below 300 ºC. However, only after the PZT film was

treated at above 200°C the tensile stress was forming in the PZT film. Based on the earlier

findings reported in [49] a strong thickness shrinkage of the films was observed especially in

the temperature range between 100°C and 200°C and further on, it was much larger than the

lateral shrinkage. While the wet film can shrink to half of its thickness due to solvent

evaporation there seems to be very little in-plane shrinkage probably as the film is constrained
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to the substrate. A one millimeter broad rim can be usually observed on a 2" wafer around the

edge. Above 300°C and up to 450°C the tensile stress was gradually increasing while the

carbon and residual organics were removed from the film.

The next stage in the film processing related to stress generation is the pyrochlore

formation, around 450 ºC to 500 ºC. The pyrochlore phase has much larger TEC than silicon

or perovskite PZT [11] and hence would induce large compressive strain while formed, as

shown by Ref. [50]. However, in the same temperature range the oxidation of Ti to TiO2 from

the substrate takes place, as mentioned in the previous section, and is superimposed with the

stress stemming from the pyrochlore formation. This situation can be clearly observed in Fig.

6, where large tensile stress in a PZT film on as-deposited substrate was found but only a

small stress increase in a film that was deposited on a pre-annealed substrate and where the

underlying Ti layer was already oxidized.

Above 500°C and thus in the next processing stage the stress in PZT films was not

increasing. Here, the persovkite phase nuclei formation and crystallization take place and

there are also a few possibilities of stress relaxation. The first one is related to the lattice

match to the bottom layer. In case of the first deposited layer on Pt/Si there might form an

intermetallic phase Pt3Pb [51] that reduces the lattice mismatch between PZT and Pt.

Alongside to the perovskite formation there is a change of TECs. This is the second strain-

related step in the perovskite formation. The perovskite phase has a TEC between 9x10-6 K-1

and 11x10-6 K-1 (depending on the PZT composition) and thus larger than Pt or silicon.

Therefore, if the film is under tensile stress at this point, some of the tensile stresses can be

compensated due to large thermal expansion. The third possibility of stress relaxation is the

domain formation when passing the phase transition temperature during cooling and will be

discussed in more details in the following section.

In general, a much higher and somewhat unrealistic stress was found in the PZT film

that was spin coated on as-deposited platinum substrate. This is the result of the processes in
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the platinum bottom electrode that add up to the total PZT stress and can be easily mistaken

for PZT stress if the substrate was not pre-annealed. The large final tensile stress in the film

deposited on the pre-annealed substrate is due to incomplete crystallization as some

pyrochlore was detected in the XRD (not shown here).

The residual stress in a multilayer PZT 40/60 film deposition after each thermal

processing step is depicted in Fig. 7, after the platinum bottom electrode was sufficiently

annealed. Five layers were deposited and the stress was calculated with the Stoney Equation.

It can be observed that tensile stress up to several hundred MPa can build up in each layer,

with the maximum stress during the pyrochlore formation, if the film is cooled down before

the PZT film was completely crystallized. After the film was fully crystallized, after the

thermal treatment at 550° C, the residual stress decreased to -103 MPa for one PZT layer.

With further layer deposition and full crystallization the residual stress decreased to around -

20 MPa suggesting some stress relaxation with thickness increase.

4.4 Wafer curvature modeling

Before any stress calculation the wafer curvature was calculated using the Eq. (3) for each

sample and compared to the experimental results. The values from Tab. 2 were used for

calculation except that the TEC of PZT had to be reduced in order to find a reasonable fit for

the experimental data. The reason for this will be discussed in the next section. A four layer

model was used for calculation consisting of Si/SiO2/Pt/PZT after the initial wafer curvature

of bare SiO2/Si wafer was subtracted in case the curvature was not measured after platinum

annealing. It was found that the wafer curvature due to PZT film multilayer deposition was

linear with increasing number of PZT layers. A curvature fit for three different samples (Films

1-3) is depicted in Fig. 8 after the initial bare silicon wafer curvature and Pt/Ti curvature after

annealing was subtracted. The difference between the samples lies in the pre-annealing
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conditions of the Pt/Ti layer, all other processing conditions such as layer thickness, PZT

composition (PZT 40/60) and Pt and PZT deposition conditions were identical for all samples.

First sample was annealed at 550°C and the results of the stress before and after annealing

were introduced earlier in Fig. 4. The second sample (Film 2) had a Pt balance layer in such

way that the Pt/Ti layer of same thickness was deposited on the front and back of the wafer to

cancel out the stress from the platinum electrode. After the deposition of platinum to back and

front of the wafer the sample was annealed in the same way as Film 1, Fig. 9. The third

sample was identical to Film 1 but was annealed at 700° (instead of 550°) for the same

amount of time, whereby no degradation of the bottom electrode was observed. The highest

temperature for thermal treatment of PZT was 550° for all samples.

The linear regression was performed for all three samples. The calculation of the

curvature for each sample was then compared to the linear regression curve of the

experimental data. The least square linear regression (r2) for samples one and two was 0.83

and 0.96 whereby strong deviation from the linear behavior was observed for sample three

(r2=0.42). This deviation for the latter sample means that this sample is most likely not

suitable for the curvature calculation using the Eq. (3) and the reason might be some stress

relaxation of the bottom electrode. The Pt stress in this sample was stable after annealing at

700°C but as the PZT film was crystallized at lower temperature it is likely that the bottom

electrode was under tensile stress at 550°C. This in turn could be a driving force for stress

relaxation of Pt/Ti until the strain equilibrium of the bottom electrode to silicon substrate was

reached at 550°C. This change of stress contributes towards the total wafer curvature and is

superimposed to the stress stemming from the PZT layer.

This can be explained if the stress in the bottom electrode is considered in more detail.

It was concluded in the previous section that the platinum stress and microstructure was stable

once the platinum was annealed for a sufficient amount of time. This stable tensile stress state

in platinum at room temperature suggests that the stress in platinum, initially due to defects
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and deposition stress, must have been minimized during annealing and eventually it is only a

result of the thermal stress between Pt and Si as mentioned in the previous section. This, in

turn, suggests that platinum and silicon must have similar planar dimensions at the annealing

temperature and must be nearly strain-free. Since the Pt recrystallization is driven by strain

and defect energy aiming to reduce the amount of strain and minimize the defect density, it is

quite plausible to assume that after sufficient annealing time the strain can be reduced to a

minimal level which would be at the point where the defect and strain energy is not sufficient

to activate further grain growth. This energy equilibrium should lead to (nearly) strain-free

platinum which is only possible when the planar dimensions of the platinum and the substrate

layer are (nearly) equal. Corresponding to this, the experimental evidence for stress-free

Pt/TiO2 electrode was reported by Bruchhaus et al [25] in an in-situ stress measurement

showing the bottom electrode is nearly stress-free when close to the annealing temperature.

Equal planar dimensions of the bottom electrode and silicon substrate at the annealing

temperature is important for the stress or curvature calculations by Eq. (2) and (4) in terms of

the reference point for the calculation. It was mentioned in section 3.1 that for stress or

curvature calculation in a temperature range T there must be a reference temperature (T1) at

which all layers of the composite have equal length so that the curvature and stress change

can be calculated from T1 to any temperature T2. Thus, in the case of annealed platinum on

silicon there exists such reference temperature.

If PZT was deposited on such substrate the only strain in PZT film immediately before

the treatment at the crystallization temperature must stem from the PZT layer itself. Thus, the

planar dimensions of PZT layers at the reference temperature can be very different. Two

different scenarios are possible after PZT crystallization – the first where all layers of the

composite have equal planar dimensions including the PZT layer, and the second where the

PZT layer planar dimension is smaller and it is thus under strain after the crystallization.

Which scenario is more likely will depend on the crystallization kinetics of PZT. According to
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the investigations of the orientational dependence of elastic energy of solid state phase

transformation from one phase into a second, coherent phase only such crystals are formed for

which the elastic energy between the two phases is minimal [24] provided the initial phase is

strain-free. Supposed there is an additional term of the strain energy rising from the strain

between the film and the substrate, other orientations for which higher elastic energy is

required become possible and can be related to the strain energy at the crystallization

temperature. The match of the film orientation to the substrate orientation can be realized by

minimal deviations from the equilibrium. Thus, as the pyrochlore to perovskite transformation

involves structural re-arrangements of PZT and depending on the strain balance between PZT

film and the substrate, it is quite possible that some or total accumulated strain in the film

below the crystallization temperature can be relaxed during the crystallization and manifest in

the appropriate orientation of the perovskite PZT film.

The stress results for all three films (Films 1-3) were calculated with Eq. (2) and

Stoney equation and are presented in Fig. 10. All films showed compressive stress. Above 2

m thickness there is a good agreement of the results for Film 1 and 2 calculated with either

equation. Below this thickness there is large deviation of the results when calculated with Eq.

(2) and Stoney equation. This difference of the results is most likely due to the sensitivity of

the Stoney equation to the ratio of film to substrate thickness, with Stoney equation being an

approximation to the case of thin films on much thicker substrates and thus more sensitive

when the thickness ratio is small. For the case of the Film 3 the results obtained with the

Stoney equation differ greatly from the results obtained with Eq. (2). The reason for this was

discussed in the previous paragraph and means that the Eq. (2) cannot account for the stress

that is due to plastic deformation of the substrate. It is also most likely that the crystallization

temperature does not correspond to the reference temperature at which all composite layers

have same planar dimensions. From the stress results obtained with the Stoney equation can

be seen that the consequence of the substrate contribution to the stress, which could not be
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separated from PZT stress contribution, leads to apparently much higher PZT film stress

within the first few PZT layers. With further PZT layer deposition the stress decreases

strongly and is approximately constant with thickness increase if PZT is thicker than 3 m.

4.5 Residual stresses in PZT films

The curvature calculation and stress calculation with the Eq. (2) and (4) were performed for

all samples from Tab. 1. The curvature was linear for all samples and the linear regression

coefficient r2 was 0.95 or better for all samples. A reasonably good match between the

measured and calculated curvature was found for all samples except for the predominantly

(100) oriented films where the TEC of PZT had to be reduced.

The residual stress results for Films 3 to 10 from Tab. 1 are summarized in Tab. 3. The

stress in the platinum layer was only dependent on the PZT annealing temperature and was

around 990 MPa for PZT 60/40 and around 860 MPa for PZT 40/60. In the silicon substrate

and silicon oxide the compressive stress was found to be a few MPa and around -130 MPa,

respectively.

In all PZT films the residual stress did not seem to be dependent on the PZT film

thickness similar to the results of sample one and two from Fig. 10. The increase of stress was

only fractional and within the experimental error.

This can be explained in the following way – when the first PZT layer is deposited the

film crystallizes on the substrate which can serve as a template for the film growth provided

the lattice mismatch between the film and the substrate is low. During cooling the thermal and

elastic stresses arise between the film and the substrate and account for the residual stress.

When the second PZT layer is deposited on top of already crystallized PZT layer it can

nucleate and grow in the same way as the first PZT layer. Thus, there is no component of

lattice mismatch on the stress with additional layer deposition. As the thermal or elastic
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mismatch act only at the interfaces of layers with different properties there is only small

residual stress increase due to total PZT thickness increase.

Among the comparable films, in terms of the same substrate and similar processing

conditions (Films 4, 5 and 10), the residual stresses in the PZT films were dependent on the

PZT composition. PZT 52/48 was found to have the highest stress among the three

compositions investigated in this study, which was around 90 MPa, followed by PZT 60/40

with 60 MPa, and the lowest in PZT 40/60 with around 10 MPa. Similar values for PZT 52/48

were reported by [13, 28, 36] and lower values for PZT 40/60 by [52].

The influence of the substrate size could be observed in Films 5 and 8 whereby the

former film was deposited on a 2" wafer and the latter onto a 4" wafer. All other experimental

parameters were identical. Thus the PZT 40/60 film deposited onto a larger wafer had much

higher residual stress, around 50 MPa, compared to the 10 MPa on a smaller substrate.

Furthermore, large differences in the residual stresses in the PZT 40/60 and PZT 52/48

films with different orientation were found. Depending on the predominant (100) or (111)

orientation PZT 40/60 films either compressive or tensile residual stress could have formed.

The compressive residual stress in PZT 40/60 films was introduced in the previous section.

The (100) oriented PZT 52/48 films showed tensile residual stress below 20 MPa for 2 or 3

m thick films, while much higher residual stress (92 MPa) was found in (111) oriented PZT

52/48 films. A PZT 52/48 film with mixed (111) and (100) orientation showed residual stress

around 56 MPa and thus in between the residual stress values for highly (100) and (111)

oriented films.

The (100) oriented PZT 40/60 films were obtained by a certain thermal profile (not

shown here) while for PZT 52/48 it was necessary to deposit the PZT films on a Pt(200)/Si

substrate (Film 7) or on a PbO (40 nm) coated Pt(111) substrate (Film 8). Both films 7 and 8

were highly (100) oriented, (Fig. 11). In both PZT 52/48 films the rhombohedral and
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tetragonal phases were found whereby the rhombohedral phase accounted up to 18% in Film

7 and around 30% in Film 8, based on the ratio of the integral intensities as

rtt

r

mbohedralrh
III

I
r

)200()002()200(

)200(


 (6).

Closer examination of the TECs of the tetragonal unit cell reveals that the TECs in (100) and

(001) vary considerably [34]. According to the measurements of poled and unpoled tetragonal

PZT by Cook et al [34] the unit cell expands in c-direction and contracts in a-direction (Fig.

12). Thus, upon the phase transition from paraelectric to ferroelectric phase (upon cooling) the

a domains and c domains are being formed, according to the stress at the Curie point as

reported by [9]. Upon further cooling, and in reference to the in-plane of the film, the a-

oriented domains lead to in-plane expansion while the c-domains lead to in-plane contraction.

According to Cook at el the average TEC is the sum of equal fractions of a1, a2 and c domains

as

3

2 ca 



 (7)

with a1=a2. As a consequence of the strain at the Curie temperature and the a- and c-

domain formation, the a-to c-domain ratio will dictate the average TEC of the film below the

Curie temperature. The residual strain is then the sum of the amount of generated strain above

the Curie temperature, the strain relaxation at the Curie temperature and the strain below the

Curie temperature.

In partially or completely (100) oriented PZT 40/60 for instance, the fraction of a-

domains accounts to around 60% or more while the fraction of c-domains accounts to 30% or
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less. Due to the large fraction of a-domains - formed as a result of tensile stress at Tc – lower

residual stress or even compressive stress can be found at the room temperature since the a-

domains compensate for the tensile stress upon cooling. In addition to the TEC anisotropy of

the tetragonal phase the morphotropic phase composition PZT 52/48 contains two phases –

the tetragonal and the rhombohedral - which can influence the total TEC and this must be

taken into account. The PZT 52/48 films can have two phases – the tetragonal and the

rhombohedral. The phase field simulations for epitaxial PZT 52/48 films show that the phase

formation in PZT 52/48 takes place gradually during cooling [53]. At first the tetragonal

phase is being formed which can partly transform to a rhombohedral phase. Thus the total

TEC of the (100) oriented PZT 52/48 films is the sum of the TEC of a- and c- oriented

tetragonal domains and the (100) oriented rhombohedral phase. In total, the thermal

contraction of (100) oriented PZT 52/48 films below the Curie temperature is lower than the

contraction of silicon resulting in low tensile residual stress. This was estimated by using the

TEC of the rhombohedral phase (=8.4x10-6 K-1), the estimated fractions of the rhombohedral

phase and the ratio of c- to a-domains and their TEC respectively. In (111) oriented PZT

films, the same phase transition from paraelectric phase to ferroelectric phase is taking place

at the Curie temperature, however, the efficient in plane strain compensation below the Curie

temperature must be much lower than that in (100) oriented films. Based on the TECs of the

tetragonal phase and the unit cell parameters [54] the contraction of the (111) lattice plane in

the plane of the film was estimated. The space diagonal of the tetragonal unit cell was

calculated at the room temperature and at 300 ºC using the anisotropic TECs in (100) and

(001) direction, 4.7x10-6 K-1 and -6.6x10-6 K-1, respectively, and the formula for space

diagonal in a cuboid as follows:

22
2

2
1 caad  . (8)
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The difference in the space diagonal between the 300 ºC and the room temperature (RT) is the

thermal expansion or contraction in the (111) direction upon heating or cooling between 300

ºC and RT. From this calculation the TEC in (111) direction can be estimated to be around

8x10-6 K-1. Thus, the thermal contraction of the tetragonal film below the Curie temperature in

the (111) in-plane direction is much stronger and adds up to the tensile residual stress.

It was mentioned in the section 4.3 that in the case of the predominately (100) oriented films

the TEC of PZT had to be reduced in order to find a good match between the experimental

and calculated results. The change of the TECs affected only the slope of the linear graph by

keeping the starting point of the initial curvature. After the discussion of the anisotropic TECs

of PZT especially for (100) oriented films with the a/c/a domain structure it becomes evident

why lower TECs were more appropriate for the curvature calculation. However, the lower

weighted average TEC can have other origins than the pure anisotropic TECs e.g. due to the

shifted Tc, according to the strain, to higher temperatures, as shown by [21] so that the large

TEC of the paraelectric phase accounts for less of the total thermal strain. Further, it must be

noted that the effect of the elastic anisotropy and especially for the different PZT

compositions should be considered in terms of different elastic biaxial moduli for different

compositions. However, this point was omitted due to the lack of data of elastic constants for

different PZT compositions.

It is interesting to note that, except for predominately (100) films, a good match

between experimental and modeled curvature was found. This, together with the reasonable

match of residual stress calculated with Stoney equation and Eq. (2) in films above 2 m thick

suggests that the stress in PZT is entirely due to thermal and elastic mismatch between PZT

and the substrate during cooling and that all accumulated stress in the CSD derived wet layer

is relaxed during the crystallization of PZT. The idea of PZT strain release during

crystallization accounts for the growth of PZT films with other orientations than those
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dictated by the substrate, e.g. in the case of (100) orientated PZT 40/60 films on Pt(111)

substrate. If the same thermal processing profile was applied to PZT 52/48, the film showed

predominant (111) orientation and thus the (100) orientation in PZT 52/48 films could only be

produced by depositing the film on a Pt(200) substrate or such seeding layer, like PbO, that

supports the PZT (100) nucleation on Pt(111).

The result of the cubic perovskite orientation established during the crystallization

further determines the strain in the film during cooling in the way that it can shift the

transition temperature to other temperatures and can create an appropriate domain

configuration [21]. Although the work in Ref. [21] was developed for sputtered epitaxial

PbTiO3 films a good agreement between this work and domain stability maps predicted by

[21] was found for the predominant a domain configuration in predominantly (100) oriented

PZT 40/60 films and a/c/a for PZT 40/60 films with mixed (111) and (100) orientation

depending on the differential thermal expansion (film-substrate).

6. Conclusions

In the presented study the residual stress development in PZT films was investigated by

means of wafer curvature measurements before and after the film deposition. The contribution

of the substrate stress to the total stress was separately investigated and the change of stress

during processing of one single layer or multilayer films was studied.

A combination of two equations, Eq. (2) together with the Stoney equation, enabled a

detailed residual stress analysis and Stoney equation was used to complement the results

which could not be obtained by the Eq. (2). On the other hand, if only Stoney equation was

used for stress calculation, the origin and development of stress could not be analyzed in such

detail as with Eq. (2). Both equations, where compared, yield similar results as expected.
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A variety of PZT films, up to 5 m thick and three different PZT compositions were

subject to stress analysis. Highest stress was found in (111) oriented PZT 52/48, up to 90

MPa, however the residual stress was strongly orientation dependent. A very little increase of

the residual stresses after the multilayer deposition of the films was found suggesting that

there is practically no residual stress difference between one layer or 25 layers thick PZT film.

A good match of the calculated and experimental curvature values, except for (100)

oriented PZT 40/60 and PZT 52/48 films, suggested that the major fraction of the residual

stress can be attributed to the thermal stress that developed during cooling of the film to the

room temperature after the film was fully crystallized. Further, the curvature analysis revealed

the impact of the orientation dependency on the stress which was attributed to the anisotropic

thermal expansion of PZT relative to the silicon substrate, as a result of domain formation at

the phase transition temperature. The effect of the anisotropic elastic properties of PZT was

not considered since the elastic constants for investigated PZT compositions are not known.
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Tab. I: Samples summary

PZT

composition

Film

thickness

[m]

Substrate Wafer

size Orientation

Film 1 PZT 40/60 5 Si/SiO2/Pt 2" (100)

Film 2 PZT 40/60 5 Si/SiO2/Pt 2" (100)

Film 3 PZT 40/60 5 Si/SiO2/Pt 2" (100)

Film 4 PZT 60/40 5 Si/SiO2/Pt 2" (100)

Film 5

PZT 40/60 2

Si/SiO2/Pt 2" Mixed

(100)/(111)

Film 6

PZT 40/60 2

Si/SiO2/Pt 4" Mixed

(100)/(111)

Film 7 PZT 52/48 2 Si/Pt(200) 3” (100)

Film 8 PZT 52/48 2 Si/Pt/PbO 2” (100)

Film 9 PZT 52/48 3 Si/SiO2/Pt 2” (111)

Film 10 PZT 52/48 4 Si/SiO2/Pt 2” (111)
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Tab. II: Average thermal and elastic properties for all layers in the temperature range between

RT and 550°C (or 630°C for PZT 60/40).

Layer average

TEC [1/K]

Biaxial Young’s Modulus

[GPa]

silicon (100) 3.6x10-6 [34] 180 in <110> direction [34]

silicon oxide 5.5x10-7 [35] 77 [34]

platinum/

titanium

9x10-6 [35] 290 [37]

PZT 40/60 3.7x10-6 85 [36]

PZT 52/48 5.3x10-6 85 [36]

PZT 60/40 4.7x10-6 85 [36]
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Tab. III: Residual stresses and orientation in Si, SiO2, Pt and PZT films.

Sample PZT

composition

Film

thickness

[m]

Orientation Residual stress [MPa]

Si SiO2 Pt PZT

Film 4 PZT 60/40 5 (100) -1 to -4 -131 990 62

Film 5 PZT 40/60 2 mixed (100)/(111) below 1 -115 860 10

Film 6 PZT 40/60 2 Mixed (100)/(111) below 1 -120 750 50

Film 7 PZT 52/48 2 (100) -1 N.A. 862 19

Film 8 PZT 52/48 2 (100) -1.6 N.A. 863 17

Film 9

PZT 52/48 3

mixed (111) /

(100) -1.3 -115 860 56

Film 10 PZT 52/48 4 (111) -4 -130 990 92
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Fig. 1: Thermal expansion of Si, SiO2, Pt and PZT in the temperature range between the

crystallization temperature of PZT 40/60 (550°C) and room temperature (RT) as used for the

residual stress calculation. The SiO2 graph refers to the axes on the right.

Fig. 2: Curvature of a 2" wafer after deposition of 1 m thick PZT film. Two sets of

measurements were performed according to Section 2.1, one perpendicular to the primary flat

(above) and one set parallel to the primary flat (down). The wafer area for each measurement

is depicted next to the graph, with the area of largest curvature marked in grey.

Fig. 3: Curvature of the 4" silicon wafer after the deposition Pt(100nm)/Ti(8nm) and 1 m

thick PZT film. Wafer geometry and the area of the measurement are represented in the image

in the right.

Fig. 4: Residual stress change and crystallite size after Pt/Ti sputter deposition and after

annealing at 550°C.

Fig. 5: Residual stress in Pt and Pt/Ti layer during stepwise thermal treatment in the

temperature range between room temperature and 550°C.

Fig. 6: Residual stresses in PZT 40/60 film deposited on an as-deposited and pre-annealed

platinized substrate and in the bare platinized silicon substrate in the temperature range for

PZT processing. Pt/Ti graph from Fig. 5 included.

Fig. 7: Residual stress in multilayer PZT 40/60 film after each thermal processing step. The

thermal profile is given in the text box. 5 PZT layers were deposited.
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Fig. 8: Experimental and calculated curvature for three PZT films deposited on three

differently prepared Pt/Si substrates after the substrate induced curvature was subtracted. The

titles of the graphs refer to the annealing temperature of the substrate. The sample balance

layer was annealed at 550°C.

Fig. 9: Residual stresses and absolute curvature in the substrates before and after annealing,

before the PZT films from Fig. 8 were deposited.

Fig. 10: Residual stress results for PZT films from Fig. 8 calculated with Stoney equation and

Eq. (2).

Fig. 11: X-ray diffractogram of films 4 (Pt(200)) and film 5 (PbO) .

Fig. 12: The effect of the anisotropic expansion on the tetragonal PZT unit cell in (100) and

(001) direction (above) and in the plane of the film (below).
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