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ABSTRACT:

The use of residual K (Kres) approaches for prediction of fatigue crack growth rates in

residual stress fields was studied. Finite element models of the samples were built and

the measured residual stress data put into the model. The virtual crack closure

technique (VCCT) was used to calculate resK (stress intensity factor from residual

stress) together with its changes with crack length using data from the part I paper.

Local Kres values were used to calculate effective R values. Kop and ΔKeff values

throughout the crack path in the weld were calculated. The master curve approach

was used to relate these to corresponding values for crack growth rates. Predicted

crack growth rates were compared with experimental results. Changes in crack

growth rate found as the crack grows through the weld can successfully be predicted

via application of this closure based model. Agreement between predictions and

experimental data was best for tensile residual stress fields and was not as exact in

compression. Possible reasons for this discrepancy are discussed.
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NOMENCLATURE
a = crack length
K = stress intensity factor

resK = stress intensity factor from residual stress

N = cycle (fatigue load)
dNda / = crack growth rate
G = strain energy release rate

jF = the reaction force on j node

iu = the total displacement from i node

t = thickness of samples
c = element size
E = the Young's modulus (modulus of elasticity)

nomR = applied load R ratio

effectiveR = R ratio with the presence of residual stress

effK = the effective stress intensity factor range

oS = the crack opening stress

minmax , SS = the applied maximum, minimum stress

1. Introduction

In the past few years it has been realised that calculation of stress intensity associated

with a crack in a residual stress field is a fruitful way of accounting for the effects of

residual stress fields on fatigue crack growth [1-5]. There are however a number of

different techniques to calculate or otherwise obtain resK values for a crack growing

in a varying residual stress field such as might be associated with a weld. Current

techniques are as follows. The cut compliance technique [2-5], for instance uses

slitting to cut the sample [5]. The residual stress distribution can then be calculated

via discretisation, taking account of the weight function from resK . Another method

uses weight functions, as suggested by Buechner [6] using one of the other functions

for different sample geometries produced by Glinka [7]. The finite element method [8,
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9] can be applied after residual stress profiles have been measured. For the weight

function method, the equation to be solved for Kres is:

 
a

a
resres dxxaxhK

0

)(),(  (1)

where ),( axh is the weight function, available for several geometries and conditions

[7]. )(xres is the residual stress distribution before crack propagation. However, if

redistributions of residual stress arising from crack propagation are not taken into

account, errors occur in calculation of resK . This has been pointed out by a number of

researchers e.g. [8, 10, 11].

For calculation of the effect of changes in resK on fatigue crack growth rates, two

complementary approaches can be used: one is the superposition approach [2, 12, 13];

the other uses the crack closure model [1, 9, 11, 15-18], as originally proposed by

Elber [18], and modified by Newman [15].

In the superposition approach, shown in Fig.1, the cyclic maximum and minimum

stress intensity factors tottot KK min,max, , derived from superposition of both external

and residual stresses are given by:

resapptot

resapptot

KKK

KKK
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The stress intensity factor range and effective stress ratio Reff are calculated:
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For Kres = zero Reff will be identical to Rapp the R ratio of the externally applied

loading.



4

In this approach, the stress intensity factor range K is independent of residual stress

and of Kres, however the effective stress ratio effR is significantly affected. Then

fatigue crack growth rates are a function of ΔKapp and Reff:

),( effapp RKf
dN

da
 (5)

Kres and Reff will change as the crack grows through the residual stress field and the

growth rate at each crack length can be obtained either from relevant experimental

da/dN data obtained at Reff or derived from da/dN at other values of R by use of the

Forman [19] or other expressions. The experimental da/dN data easiest to obtain will

be obtained on parent plate, but ideally should be material with the same strength and

microstructure as the weld and HAZ without the residual stresses.

For the crack closure approach, shown in Fig.2, the effective stress intensity factor

ΔKeff, the range of the applied load cycle for which the crack is open, can be

calculated [15] as:

appeff KUK  (6)

eff

open

R

SS
U






1

/1 max (7)

opentoteff KKK  max, (8)

)( effKg
dN

da
 (9)

where max/ SSopen was given by Newman [15], as shown in equation (12-17)

thereafter.

Following Newman [15], equations (6)-(7), the different curves of
dN

da
versus appK

measured at different R ratios can be replaced by a single “Master” curve of
dN

da
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versus effK . The master curve of effK vs. da/dN can be obtained [15] from 3 crack

growth rate curves measured at different tensile R values. For samples containing a

residual stress, values of Reff and ΔKeff can be calculated from Kres as described

above and then related to
dN

da
via the master curve.

Both approaches use calculations of Kres to derive changes in crack tip R ratio as the

crack tip moves through the residual stress field. However the two approaches differ

in their calculation of growth rates in that the superposition technique uses

experimental crack growth rate data from parent plate at the relevant R values ,

whereas in the closure approach the derived master curve can be applied to all values

of Reff, including negative ones, from data from just 3 positive R ratio tests.

However, Lam [8] has shown that there is a factor of four difference in calculated

resK depending on whether redistribution of residual stress with crack growth is

considered. Yong [10] and LaRue [11] accurately predicted fatigue life using a crack

closure model after considering the redistribution of residual stress. This suggests

that predictions of fatigue crack growth rates in residual stress fields should always

account for the redistribution of residual stress with crack growth in deriving Kres

values.

In this work finite element models were built using ABAQUS [20] for welded

samples of C(T) and ESE(T) geometries in three different sizes tested as described in

the companion Part I paper [22] Sample geometries and sizes are given in Table I.

Half of each geometry was modelled because of symmetries of load. The SIGINI

subroutine in ABAQUS can be used to input the initial stress. This subroutine can be

programmed by FORTRAN. A FORTRAN program was written to input the
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measured residual stress profiles (see Fig.6-8 in Part I [22]) into finite element models

using the SIGNI subroutine. This was the initial step of the analysis.

2. Balancing and redistribution of residual stresses

2.1 Balancing of residual stress fields

Residual stress fields must be self balanced. The experimental stress profiles shown in

figures 6-8 in part I of this work [22], are from discrete measurements along a line

within and parallel to the eventual crack plane and are not complete fields. Before the

Kres analysis, a static procedure was used to calculate the equilibrium self balanced

stress state for the finite element model. In this step, ABAQUS/Standard was set up to

check the stress field for equilibrium and to change the stresses via iteration to

achieve equilibrium. For CT and ESET samples, only the stresses perpendicular to the

crack plane were applied to the self balance routine. Stresses parallel to this plane

were not represented. In placing the experimental residual stress fields into the FE

model it was assumed that the same profile for stresses longitudinal to the weld

existed at all points normal to the crack plane up to the sample boundary. Because the

weld line is parallel to the long axis of the ESE(T) sample, stresses in this geometry

will be largely invariant with distance along the weld until the sample boundary is

approached and this assumption is justified.

For CT samples crack growth is along and parallel to the weld line. The residual

stresses contributing to crack growth in this case will be perpendicular to the weld line.

As fig. 7b in [22] shows, these stresses are relatively small ( maximum of 40-50 MPa)

and reduce significantly at distances in excess of 20 mm from the weld line. Hence

the assumption of residual stress profiles which do not change with distance away
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from the weld line is not as well justified, in contrast to the situation with ESE(T)

samples.

When residual stresses were put into the model, in both samples some small

rebalancing occurred. For ESE(T) samples these were believed to be partly due to the

nearby sample edge free surfaces, and partly due to incompatibilities between

measured partially defined fields and the assumed fields in other parts of the samples.

The changes arising from rebalancing were greatest in the CT samples; this probably

arises as a consequence of the assumptions discussed above.

2.2 Redistribution of residual stress with crack growth

After stress rebalancing, a crack was inserted in the FE model and allowed to grow by

removing nodes in the model. As the crack grew resK was calculated by the virtual

crack closure technique (VCCT) [21] from the finite element model. resK values in

each sample size were compared. Differences of resK in specimens of different size

will arise from differences in residual stresses. The Reff changes with crack length

were calculated, and then effK was calculated using equation (6-9). Using the crack

growth rate data from the parent plate shown in part I, the master curve plot of ΔKeff

Vs da/dN was calculated. Crack growth rates for ΔKeff were derived from this curve.

The residual stress field from a 148x40 ESET sample after equilibrium calculations

but before a crack is introduced, is shown compared to the measured residual stress

data in Fig.4. For this sample, the solid line connecting the square points is the

measured residual stress profile in the uncracked state , while the continuous line

without data points shows the same field after balancing. To balance the measured
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tensile stress data, the region without experimental data between the notch root and

the first experimental point should contain a local compressive field of -128 MPa.

Introduction of the crack modifies this initial field and at a length of 15.0 mm

significant redistribution of the original field is predicted, although the compressive

peak in stress immediately ahead of the crack tip remains large. Double stress peaks

are still predicted on either side of the weld line but the first one is much reduced.

Crack growth to 20 and 30 mm length further modifies and reduces calculated

residual stresses to trivial levels as the stress field further redistributes..

In Fig.5, for the C(T) sample 125x120 mm, the solid line with diamond points is the

measured residual stress on the uncracked sample, while the solid line without points

shows the calculated residual stress after balancing and before cracking. As was the

case for the ESET sample in figure 4, the balanced compressive residual stress at the

uncracked notch tip was large, in this case about -210 MPa. With crack growth to 65,

85 and 115 mm, calculated balanced compressive and tensile residual stresses are

reduced with the same trends as for the ESET sample. Larger CT samples showed the

same trends.

3. Calculation of resK from residual stress distributions

Finite element analysis was used to calculate the stress intensity factor resK from

residual stress by using ABAQUS. The models were built. using Quadrilateral shell

elements around the notch tip and along the crack lines. The element size was 0.05

mm; triangular elements were used in the transitional area and elements with four

nodes in the far field with the edge of 2 mm length in order to save run time. Rigid

elements were used to avoid overlapping material due to over-closure effects from the

compressive residual stress. In all finite element models contact elements were used

to simulate the applied pin loads. The virtual crack closure technique (VCCT) [21]
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was used for calculating strain energy release rate for unit sample thickness with the

formulation:

2

j iF u
G

t c



(10)

where jF is the reaction force on j node; iu is the total displacement from i node; t is

thickness of samples and c is element size, see Fig.6.

For plane stress, the relation between the strain energy release rate and stress

intensity factor (SIF) is as follows:

E

K
G

2

 (Plane stress)

E

K
G

2)1( 
 (Plane strain) (11)

If residual stresses are input to this model, resK can be derived from equations (10)

and (11).

3.1 resK and effR in ESE(T) samples

Following equations (4), (10) to (11), resK and effR were calculated. Fig.7 (a) shows

residual stress profile and resK for the smallest ESET sample. It is clear that residual

stress has a double peak of about 40.0 MPa and 28.0 MPa at crack lengths of about

16.0 mm and 29.0 mm respectively, while resK has a double peak as well about -1.5

mMPa and 0.2 mMPa at about 19.0 mm and 33.0 mm, a longer crack length

than the peaks in residual stress.

Fig.7 (b) shows a comparison of the nominal and the effective R ratio effR for this test

sample for nominal R ratios of 0.1 and 0.6. For the nominal R=0.1, effR starts from
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-0.8 then attains -0.9 at a crack length of around 10.5 mm. The Reff then steadily

increases with increasing crack length tending to Reff= 0.1 at a crack length around

30.0 mm. resK totally changed the curve of effR . For the nominal R ratio of 0.6,

effR starts from 0.5, then tends to 0.6 at 18.0 mm and is constant with increasing crack

length after this. For this sample experiments [22] show that residual stress has

significantly more effect on crack growth rate for a nominal R=0.1 than for a nominal

R=0.6. This is shown in Fig.9 of part I, [22]. This explains why it is difficult to

initiate a pre-crack under the load R ratio 0.1. For the larger sample, such as 185x50

mm and 370x100 mm, the compressive residual stress is larger still than in the

smallest 148x40 mm samples and fatigue cracks could not be initiated and grown at

R=0.1. Crack growth occurred in these samples at R = 0.6 only.

Following equations (4), (10) to (11), resK and effR in all three ESE(T) sample sizes at

nominal R of 0.6 were calculated and are compared in Fig.8a and b. Fig. 8a shows the

changes in Kres for cracks growing across the three sample widths of 40, 50 and 100

mm. Sample widths are represented as distances from the weld centreline; the

smallest sample width will be from -20 to +20 mm, the middle from -25 to +25 mm,

and the largest from -50 to +50 mm. The calculated Kres lines begin just ahead of the

notch tip for each sample. resK values in each sample start negative and move into

tensile (positive) values with increasing crack length. Positive values of Kres are

achieved at crack tip locations 8-10 mm from the weld centre line in all sample sizes.

As the crack tip grows beyond the weld, values of Kres tend towards zero in all

samples, again with the longest crack length being required in the largest samples.

This reflects the diminution of residual stress as the stress relaxes at long crack

lengths. The three sample sizes show big differences in Kres, particularly in the notch

region. The biggest samples show the largest values in both tension and compression,
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once again reflecting the relative sizes of the residual stress distributions (shown in

Fig.6 of Part. I [22]).

Changes in Reff with distance from the weld line are shown in Figure 8b where Rapp

=0.6. effR tends to Rapp=0.6 at crack tip distances of greater than 8-10 mm beyond the

weld line. At smaller crack lengths, when the crack tip is before the weld line, effR is

much reduced approaching 0.1 in the largest sample and 0.35 and 0.5 in the samples

50 mm and 40 mm wide. This reflects the larger negative Kres in this region. At crack

tip positions before -15 mm, Kres becomes increasingly negative, and Kmin and Kmax

reduce further as the crack length is small. When (Kres+ Kmin) becomes negative, Reff

becomes increasingly negative, the crack being largely closed during the compression

part of the load cycle. When (Kres+Kmax) becomes negative as well then Reff will

change sign and become positive; all of the load cycle being in compression. The

regions of negative and positive Reff in compression are not shown in Fig.8b as they

are difficult to represent graphically.

3.2 resK and effR in C(T) samples

Fig.9 shows the changes in resK and effR as the crack tip grows across CT samples. As

in the ESET samples, residual stresses around the notch tip are compressive for

stresses perpendicular to the weld. resK  at the notch roots are -5.0 MPa√m, 

 -8.0 MPa√m, and -18.5 MPa√m for samples 87.5, 125 and 250 mm wide, the values 

increase with increasing resK , becoming positive at long crack lengths. As in the case

of the ESET samples, resK tends to zero at long crack lengths, with the largest sample

requiring the longest crack length to become zero, reflecting the redistribution

behaviour of the residual stresses as the crack length increases in the three samples.
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Fig.9(b) shows that when the crack length is small, effR in CT samples is -0.3, -1.5

and -3.5 MPa m1/2 for samples of 87.5, 125 mm and 250 mm, implying ΔK is partially 

in compression, and ΔKeff is significantly reduced as the crack will be partially closed

for much of the load cycle. With increased crack length, effR moves into tension, and

tends to R = 0.1. In the biggest specimen, effR tends to 0.2 as resK becomes

significantly tensile. As in the case of Fig.8b the values of Kres in the region nearest

to the notch are not plotted in 9b as they are either fully in compression and positive,

or have very large negative values.

4. Fatigue life predictions in welds using the closure model

The equations introduced in [16] by the crack closure model can be used to

calculate a crack opening stress level oS for these tests as follows.

3
3

2
210

max

RARARAA
S

So  for 0R (12)

and

RAA
S

So
10

max

 for 01  R (13)

when minSSo  . The coefficients used [15-16] were:

 /1
0max

2
0 )]2/)[cos(05.034.0825.0( SA  (14)

0max1 /)071.0415.0(  SA  (15)

3102 1 AAAA  (16)

12 103  AAA (17)

For plane stress conditions, 1 , while for plane strain conditions, 3 . The flow

stress 0 is taken to be the average between the uniaxial yield stress and uniaxial

ultimate tensile strength of 2195-T8, see Table 2 in Part I. In this paper, α was set as 

the intermediate value 1.5  .
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Then the effective stress intensity factor range effK is given by

K
R

S

S

K

o

eff 





1

1
max (18)

effR was used in equations (12)-(18) instead of R . For 0effR , equation (13) was

used to calculate
maxS

So .

Crack growth rate data for parent material at three different R ratios of R=0.1, 0.35,

0.6 was taken from [22], These data are shown in Fig.10. effK and the master curve

can be calculated using the equations above. The resultant plot of da/dN Vs ΔKeff is

shown in Fig.11. The relationship of
dN

da
(m/cycle) with effK (MPa m ) in parent

material 2195-T8 can be represented as:

5332.411 )(100.3 effK
dN

da
  (19)

For the 100 mm wide ESET sample, values of effK vs. crack length represented as

distance from the weld centreline, was calculated for the test at R= 0.6. The results

are shown in Fig.12, for the situations with and without residual stress. The line

without residual stress is the normal unwelded situation. With residual stress, before a

crack length of 12 mm, effK  is reduced to 2 MPa√m, about one quarter of ΔK 

without residual stress. effK increases rapidly after 10 mm, merging with the line

without residual stress. In Fig.13, effK for the three sizes of ESE(T) samples are

compared. In the 370x100 mm, effK is much smaller than the smaller sample

because the residual stress is much higher there.
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4.1 Crack growth rates in ESE(T) samples

Figure 14a shows the predicted crack growth rates for the 3 ESET sample sizes. There

is little difference between the curves for the two smallest samples of 40 and 50 mm

wide. The 100 mm wide sample is predicted to have significantly reduced crack

growth rates at shorter crack lengths near the notch; the difference between all curves

reduces at long crack lengths and the largest ΔK values.  Figure 14 (b) shows a 

comparison of predicted and experimental data for the smallest sample; agreement is

excellent near the notch with some error (less than a factor of 2) in growth rate at the

largest growth rates. The same comparison for the largest 100 mm wide sample is

shown in figure 14 c. Here there is over prediction at both near the notch and at long

crack lengths. Experimental growth rates are generally smaller than calculated ones,

implying that calculated ΔKeff is slightly greater than is found experimentally. It is

interesting that the region in which the crack tip is crossing the weld line is where

agreement is closest.

4.2 Crack growth rates in C(T) samples

Figure 15a shows the predicted crack growth data for the 3 sizes of CT samples. In

many ways the CT samples show the same trends as the ESET in figure 13. There is

little difference in the predicted lines for the two smallest samples. The largest sample

has growth rates near the notch significantly smaller than the other two, at long crack

lengths there is little difference between the 3 curves. Figure 15b shows the

comparison between predicted and experimental for the smallest sample. Here there is

good agreement with a slight over prediction near the notch and under prediction at

long crack lengths. The same comparison for the largest sample is in figure 15c. ,

there is an increased tendency to overpredict growth rates in the near notch region.
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There is no tendency to underpredict growth rates. At no point is the error greater than

a factor of 2.

5. Discussion

5.1 Redistribution of residual stress in FE calculations

In this work, the Mode I opening mode only was taken into account for crack

propagation, so only residual stress perpendicular to crack plane was input to the

finite element model. Measured residual stress parallel to the weld direction (X-

direction) is much bigger than the stress perpendicular to the weld (Y-direction) for

the crack plane perpendicular to the weld, (shown in Fig.6 and Fig.7-8 in Part I [22]).

For ESE(T) samples, cracks grew perpendicular to the weld, therefore residual stress

parallel to the weld (X-direction) was considered. For the ESE(T) samples this was

50-120 MPa maximum depending on the sample size. Residual stresses perpendicular

to the weld (Y-direction) were much smaller than this and were ignored. Local

changes in stress near the notch only were necessary to achieve balance.

For C(T) samples, the biggest residual stress (X-direction) was not input to the model.

The local stress minimum on the crack plane when the crack is propagating on the

weld line is almost equibiaxial tension (figures 7 & 8 of part I [22]) and only 50 MPa.

The stress maxima parallel to the weld are displaced either side of the weld line and it

is unclear if crack growth will promote any stress redistribution other than to the

stress perpendicular to the crack plane- which is small in any case. These stresses

parallel to the crack plane were not put into the model, and may cause changes on

rebalancing. In C(T) samples stresses perpendicular to the crack plane reduced by

30% on finite element balancing. This change is felt to be unrealistic and it may be

that other components of stress not represented in the analysis act to maintain the

balanced field at the measured values. For these samples, residual stresses in both
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directions may need to be input at the same time. Despite this change the predicted

crack growth rates were in close agreement with experimental ones.

5.2 Using effK and effR in crack growth predictions

For both types of sample, the residual stresses around the notch tip were always

compressive, leading to difficulties of crack initiation and reduced initial crack growth

rates. The nominal R ratio and ∆Kapp are replaced with effective R ratio effR and

effK , these being a function of the local resK . Under the measured notch

compressive residual stress, Kres was calculated as mMPa25 for the largest ESET

sample and mMPa18 for the largest CT. Under external cyclic loading at R=0.1

(Kmax+Kres) < 0 and the entire range of ΔK is in compression. This situation can be 

physically interpreted as a region where crack faces are closed and no crack growth

can occur. If the R ratio is increased to 0.6, (Kmax+Kres) can become positive and ΔKeff

will be > 0. Provided that ΔKeff>ΔKeffth the threshold for crack growth, then crack

growth can occur. As crack growth proceeds, residual stress will decrease, Kres and

Reff become less negative and ΔKeff gradually increases, with consequent increasing

crack growth rates.

5.3 Effects of weld microstructure and HAZ hardness

The predictive model used here has assumed that the effects of the weld on fatigue

crack growth are largely a consequence of the residual stress distribution, its size and

shape in relation to the growing fatigue crack, and its effect on ΔKeff as it grows

through the weld. The effect on crack growth rate of changes in ΔKeff has been

interpreted in terms of growth rates measured on parent plate material. For the ESET

sample, this assumption is valid for most of the time, as the crack spends only a short

distance propagating through the weld nugget; most of the life is spent propagating
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through parent material. For CT samples, crack growth is initiated in the weld nugget,

and then grows out from the nugget to thermal mechanical affected zone. In figure 11

of part I [22] there are no obvious discontinuities in crack growth rates associated

with this transition in crack path, which might suggest that microstructure greatly

influenced crack growth rate. dos Santos et al, [23] have measured using microtensile

samples ductilities of between 20-30% on FSW nugget material. This is considerably

greater than parent plate ductility and suggests that fatigue crack growth resistance

will be superior in the nugget and provides a rationale for crack deviation to a weld

region where growth is faster. The greatly reduced hardness values recorded in the

welds in this study (figure 3 of part I [22]) support this conjecture. However, while

the effects of microstructure on crack path are clear, effects of it on crack growth rate

are not obvious.

A comparison of figures 14 (b) and 15 (b), showing the da/dN values for ESET and

CT samples, shows that for the smallest specimens, there is little difference in growth

rates in the two sample geometries, even though one is propagating in parent plate and

the other is growing in nugget material first, then moves out of it to the thermal

affected zone. This suggests that effects of microstructure and hardness are less

important in comparison to effects of ΔKeff. Equally, there is little difference in

accuracy of the predictions in ESET and CT (Figures 14 and 15) samples, despite the

use of parent plate data throughout.

6. Conclusions

(1) Experimentally measured residual stress data points can imply a residual stress

field which is not self balanced; when they are put into an FE model of the

sample rebalancing may result in significant changes to the measured fields.
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(2) Numerical models of residual stress redistribution with crack growth show that

stresses and Kres values reduce significantly as the crack grows.

(3) For ESET and CT welded samples, the edge notch root was in a compressive

residual stress field causing greatly reduced ΔKeff values and reduced crack

growth rates.

(4) Measured fatigue crack growth rates were strongly dependent on the residual

stress intensity Kres together with the applied R ratio, and the influence they

jointly had on ΔKeff and Reff.

(5) Effects of residual stress field on fatigue crack growth rates appear to dominate

over effects of microstructure and local mechanical properties; crack path

appears influenced additionally by local microstructure and mechanical

properties.

(6) A closure model based on calculation of ΔKeff using a master curve of parent

plate crack growth data has been successful at predicting fatigue crack growth

rates in welded samples of a wide range of sizes, residual stresses and crack

orientations with respect to the weld.
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Tables

Table 1 Sample dimensions C(T) and ESE(T)

Relationship with weld Type
Sample size (mm)

length x width
W(mm)

Crack parallel to weld C(T)
84x87.5 70
120x125 100
240x250 200

Crack perpendicular to
weld

ESE(T)
148x40 40
185x50 50

370x100 100
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Figures

Fig.1 Superposition approach for calculation of fatigue crack growth rates under residual

stress fields

(a)da/dN versus appK (b)da/dN versus effK

Fig. 2 Crack closure concept for calculation of fatigue crack growth rates in residual stress
fields.

Fig.3 ESE(T) and C(T) samples

Weld zone

Scan line

X

Y X

YWeld zone

Scan line
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Fig.4 Calculated effects of crack growth on residual stress distribution in 148x40 ESE(T) sample

Fig.5 Calculated effects of crack growth on residual stress fields in 125x120 C(T) sample
(CP=48 is crack tip position at 48.0mm away from sample edge, the others are the same)

Fig.6 Virtual crack closure technique

Notch 8.0mm

Notch 45.0mm
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Fig 7(a) Calculated resK and the measured residual stress profile in the smallest ESE(T) sample

(148x40 mm)
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Fig 7(b) Changes in effR with crack length in the smallest ESE(T) sample (148x40 mm) with

external load cycle of R=0.1 and R=0.6

Fig 7 resK and effR in the smallest ESE(T) sample (148x40)
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Fig. 10  Crack growth rates Vs ΔK  at R=0.1, 0.35, 0.6 in 8.0 mm thick 2195-T8 parent material.  

Fig. 11 “Master curve” of 8.0 mm thick 2195-T8 Parent material derived from Fig 10 data
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Fig.14(a) Predicted crack growth rate da/dN  Vs ΔKapp for three size ESE(T) samples with external
loading at R = 0.6

Fig.14 (b) Comparison of predicted and experimental fatigue crack growth rates for the

smallest ESE(T) sample (148x40) at R = 0.6; shaded area denotes the extent of the weld

nugget
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Fig.14 (c) Comparison of predicted crack growth rates with experimental ones for the

largest ESE(T) sample (370x100 mm) at R = 0.6; shaded area denotes the extent of the

weld nugget

Fig. 14 Predictions and experimental results in ESE(T) samples at R=0.6
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Fig.15 (a) Comparison of predicted crack growth rate da/dN for three sizes of C(T) samples

Fig.15 (b) Comparison of predicted crack growth rates with experimental ones for the
smallest C(T) sample (87.5x84 mm) tested at R = 0.1
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Fig.15 (c) Comparison of predicted crack growth rates with experimental ones for the

largest C(T) sample (250x240 mm) at R = 0.1

Fig.15 Predictions and experimental results in C(T) samples at R=0.1
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