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Robust Covariance Estimation for Data Fusion
From Multiple Sensors

João Sequeira, Antonios Tsourdos, Member, IEEE, and Samuel B. Lazarus

Abstract—This paper addresses the robust estimation of a co-
variance matrix to express uncertainty when fusing information
from multiple sensors. This is a problem of interest in multiple do-
mains and applications, namely, in robotics. This paper discusses
the use of estimators using explicit measurements from the sensors
involved versus estimators using only covariance estimates from
the sensor models and navigation systems. Covariance intersection
and a class of orthogonal Gnanadesikan–Kettenring estimators
are compared using the 2-norm of the estimates. A Monte Carlo
simulation of a typical mapping experiment leads to conclude that
covariance estimation systems with a hybrid of the two estimators
may yield the best results.

Index Terms—Covariance estimation, covariance intersection
(CI), data fusion, robust estimation.

I. INTRODUCTION

DATA FUSION is traditionally used to increase the accu-
racy of the measurement being performed and to over-

come unreliability in sensors or uncertainty in sensor outputs.
There is another benefit of data fusion which is particularly use-
ful for autonomous mobile robots [18], [22]. Different sources
undergoing fusion are usually based on different assumptions,
some of which may be invalid at any given time. By performing
data fusion, the assumptions are in a way “factored out.” Hence,
fusion can reduce a system’s dependence on invalid a priori
assumptions and make the system more robust. Given that
data fusion is a beneficial approach, the primary issue is how
to combine or fuse the outputs of systems that are possibly
disparate [3].

The literature on robust estimation of the uncertainty in a
set of measurements spans a wide range of scientific disci-
plines, ranging from chemistry to economics and medicine,
and provides a large number of estimation techniques for the
respective covariance matrix. M -estimators linearly combine
measurement vectors according to their Mahalanobis distance
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(see, for instance, [4]). S-estimators minimize the volume of
the ellipsoid associated with a covariance matrix subject to
a function of the Mahalanobis distance of the measurement
samples (see, for instance, [2]). The nearest neighbor variance
estimation (NNVE) [15] classifies measurements as outliers ac-
cording to their distance to the cluster of K-nearest neighbors,
with outliers showing larger distances. By estimating the dis-
tribution of the distances of nonoutliers, maximum likelihood
(ML) estimators for mean and covariance can be obtained.
The NNVE is argued to perform well in situations where the
number of outliers is large, as in estimating minefields from
noisy images.

In robotics, the navigation procedure often produces mea-
surements that already have an associated covariance matrix,
and hence, the estimation relies on the direct combination of
covariance matrices. Multiple techniques for information fusion
have been in use for many years in robotics, ranging from the
deterministic extended Kalman filter (EKF) to the stochastic
approaches using particle filters (see, for instance, [13], [14],
[20], and [21]). EKF-based estimation, widely used in self-
localization methods, explicitly yields a covariance matrix. In
its basis form, particle filters, also widely used for localization
and mapping, do not directly yield such matrices but require
its estimation from the particles at each step. The output of
the fusion process is a covariance matrix expressing the un-
certainty in the estimation error along the different degrees of
freedom.

In multiple robot systems, if complete communication be-
tween the robots is assumed together with a priori knowledge
on their respective dynamics, then typical EKF-based fusion
yields a covariance estimate for each measurement obtained by
a robot. However, it is seldom the case that an agent knows
enough information on its teammates that can be used for EKF-
based estimation, hence the need for the use of alternative
strategies such as covariance intersection (CI) or even ML
estimation directly from the data.

As illustrated ahead, data fusion using ML estimation tends
to be conservative, meaning that it looks only for the data,
implicitly assuming that it is all good, trying to minimize a
quadratic error. ML works only on measurements and does not
use existing covariance information that, in a sense, embeds
the way that data were generated, e.g., by an EKF-based
navigation system. If the data sets include measurements that
do not fit the true normal distribution, i.e., they can qualify as
outliers, then the resulting covariance estimate may be of poor
quality.

In critical applications such as search and rescue, information
from the structure of the covariance matrices associated with
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TABLE I
OGK COVARIANCE ESTIMATOR (Ω IS THE CLASS PARAMETER)

landmarks can be used to improve path planning, for instance,
by having robots moving according to directions where uncer-
tainty is maximal such that they can improve the mapping of
the area. Thus, both the covariance estimates by each source
and the fusion process must be robust to the presence of outlier
measurements.

CI [1], [11] addresses this problem by merging the differ-
ent covariances using a convex combination of the estimates.
Although producing better estimates than ML estimation (in
a sense to be detailed ahead), the fact that the correlation be-
tween the different information sources is not considered may
decrease the quality of the estimates. Also, when the covariance
of one source is “corrupted” due to outlier measurements, the
resulting combination may yield poor results.

This paper focuses on the estimation of a covariance matrix
for a single landmark that has been observed by two dif-
ferent sensors (although the framework is easily expandable
to a bigger number of sensors and landmarks). The estima-
tion of the covariance matrix is made using an orthogonal
Gnanadesikan–Kettenring (OGK) estimator, based on a robust
estimator from [8] (mean estimates are also important and can
be provided by the OGK procedure but are not addressed in this
paper). The distinctive feature of the OGK estimation is that it
combines the use of the actual measurements with an existing
estimate of the covariance and hence implicitly accounts for any
correlation between the sources of the measurements and for
the way that these were obtained. There are close relations be-
tween this type of estimation and principal component analysis
in the sense that the input data set that suffers is passed through
an orthogonal linear transformation.

The organization of this paper is as follows. Section II
describes the OGK estimator and presents a simple example
that illustrates the distinctive outlier rejection feature of this
estimator. A qualitative comparison between ML, CI, and
OGK estimates is provided in Section III. Section IV dis-
cusses typical quality indexes, from a robotics perspective,
for covariance estimators. Section V discusses the proposed
OGK-based estimator from the standpoint of statistical con-
sistency. A hybrid strategy using both OGK and CI estimators
is presented in Section VI, together with the results on several
Monte Carlo experiments that motivate the final conclusions in
Section VII.

II. ROBUST ESTIMATION OF A COVARIANCE

MATRIX IN DATA FUSION

When fusing data from different sensors, one can assume that
the statistical measures associated with each of them are the
best possible in some sense, e.g., the covariance estimated by
an EKF. The presence of disturbances in sensor measurements
may corrupt the estimates, although they are still optimal from
the filter point of view and the filter embeds its own strategy to
provide robust covariance estimates.

Sensors generating correlated data may also bias the esti-
mates in the sense that the fusion results may be overconfident.
Hence, it is interesting to test strategies that simultaneously
account for the confidence of each of the sensors but also keep
the conservative perspective that the sensors may be induced in
error and generate outlier measurements. As a sort of generic
argument, it is possible to construct hybrid estimators that
take advantage of the best characteristics of more specialized
estimators.

CI has been used to fuse simultaneous localization and
mapping estimates, and it is shown that it is an optimal method
when the cross correlation between the measurements being
fused is unknown [12]. It has been reported that the correlation
between the initial estimation errors may lead to a CI estimate
that is too optimistic [6].

In some applications, measurements from different sensors
may be correlated, e.g., as when a swarm of robot exchanges
information on their relative position. Since the CI does not
use any estimates of the cross correlation between the measure-
ments by different robots may lead to overoptimistic estimates.
A natural strategy to tackle this issue relies on estimating the
covariance of the data from multiple sources using the measure-
ments themselves and hence analyzing the data as a whole.

Fusing data from different sensors, which may be geograph-
ically distant, requires some sort of communication link, and
hence, the amount of information to be exchanged is a relevant
parameter. Often, the amount of data needed for robust covari-
ance estimation is small and copes with bandwidth constraints
in the communication link.

The class of OGK estimators used in this paper uses both
actual measurements and covariance estimates and is described
in Table I. It is a variation of that described in [5] and uses an
estimation of the covariance directly from the measurements
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Fig. 1. Samples representing the typical behavior of the OGK estimator class for Ω = I2. (a) Data set size 11. (b) Data set size 1001. (c) Data set size 11. (d)
Data set size 1001.

(the Gnanadesikan–Kettenring estimator), which can however
be replaced by other estimates. For the purpose of the experi-
ments, the class parameter is set to Ω = I2.

The OGK estimator starts by scaling the input data (step
2) and computing an initial covariance estimate using the
Gnanadesikan–Kettenring estimator (step 3). This initial es-
timate is used to obtain a new basis (step 4), formed with
the eigenvectors, where the scaled data are projected and new
variances are computed along each of the axis of the new
frame (step 5). The data are then reverted back to the original
frame (step 6). The underlying idea of the process is to extract
variances accounting for the distances between the measure-
ments. If one of the axes is much bigger than the other and the
variances along this axis are small, then it is likely that the mea-
surements that induce the length of the bigger axis are outliers.
The parameters Ω allow the scaling of the covariance found.

For the purpose of this paper, p = 2, corresponding to having
the sensors operating in a plane. Fig. 1 shows a typical behavior
of the estimator in Table I. The data follow a normal distribution
with (0, 0) mean and covariance [1, 0.8; 0.8, 1]. The points
(7, 1) and (−7, 7) are outliers generated out of the normal

distribution for the upper and lower plots, respectively. The
plots show the data as ◦ marks. The error ellipses in red and
blue correspond to the ML estimates for the data without and
with the outlier, respectively. The ellipse in black is the OGK
estimate, also including the outlier. All the ellipses correspond
to a 0.5 confidence degree.

The influence of the outlier in the estimation is clearly shown
in Fig. 1(a). The common ML estimator fails completely to
reject its influence. Instead, the OGK estimation is robust to the
outlier, although not completely rejecting it, as can be inferred
from the decrease in the error ellipse eccentricity relative to
the ML estimate for the undisturbed data. The dimension of
the data set induces a filtering effect that hides the influence of
the outlier (see Fig. 1). If the outlier is completely misaligned
with the true data, as in Fig. 1(c) and (d), then ML simply
increases the uncertainty to cover the outlier as if it were true
data. Instead, the OGK preserves the information on the relative
position of the outlier (note the orientation of the error ellipse)
but simultaneously preserves the information on the true data,
maintaining the area of the error ellipse close to that of the MLE
for the true data set.
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Fig. 2. Samples representing the typical behavior of the OGK estimator class for Ω = I2. (a) Data set size 11. (b) Data set size 1001. (c) Data set size 11. (d)
Data set size 1001.

The aforementioned example illustrates an interesting feature
of the OGK, namely, its ability to filter out the variances related
to measurements that differ much from those of the rest of a
data set.

The samples in Fig. 2 were obtained with the data set
generated according a covariance [1, 0.8; 0.8, 3]. The sample
with the smallest data set clearly shows the negative effect of the
outlier. As before, when the dimension of the data set increases,
the effect of the outlier vanishes in the ML estimate. The OGK
estimate is also influenced by the filtering effect induced by the
size of the data set, but the result is far more optimistic than that
of MLE.

The structure of the algorithm clearly indicates a scaling in
the input data. Moreover, the dimension of the data set and the
number of outlier measurements also have decisive influence
on the estimate. The outlier rejection property of the OGK
estimator is obtained partially through the filtering and scaling
of the variances of the input data. For example, as the dimension
of the axis of greatest variance of the true data set increases,
outliers aligned with that axis will tend to be considered as valid
data.

Classifying a measurement as outlier means that the proba-
bility of its occurrence does not fit the known distribution for
the data or that it disturbs, above some limit, the distribution
being estimated for the data set.

The parameter Ω allows additional tuning of the final covari-
ance such that a consistency criterion (defined ahead) can be met.

III. DATA FUSION USING ROBUST

COVARIANCE ESTIMATION

This section presents a qualitative comparison analysis on
the CI and OGK estimators using a number of simulations in
controlled conditions. The aim is to provide the reader with
an insight on the comparison behavior of the estimators in a
number of typical situations.

Two data sources are considered, each generating a 2-D
random variable specifying the measurement of the position of
some sensed landmark. In the first set of tests, the measure-
ments comply to normal distributions, without outliers, i.e., no
other noise is added to the measurements. The measurements
of both sensors are assumed to have the same mean (0, 0).
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Fig. 3. Test samples for data sources that are mostly uncorrelated. (a) Sample 1. (b) Sample 2. (c) Sample 3.

Fig. 4. Additional test samples for data sources with different correlation degrees. (a) Sample 4. (b) Sample 5. (c) Sample 6.

Fig. 3 shows three samples of the covariance estimate for
the fused data obtained using CI, ML estimator, and OGK
estimator. The covariances associated to the sensors are

Σ1 =
[

0.6 −0.707
−0.707 0.6

]2

Σ2 =
[

0.3 1.5
1.5 1

]2

.

Σ1 can be interpreted as coming from a highly accurate sen-
sor along the measurement direction but with a wide detection
aperture. Σ2 can be identified with a sensor with poor accuracy.
The preferred directions of the two sensors are almost orthog-
onal, meaning that the correlation between the measurements
from the two sensors tends to be small.

The measurements from the two sensors are represented
by the ◦ symbols. For the sake of comparison, all ellipses
shown correspond to the same confidence degree of 0.5. The CI
estimates use a parameter value of ω = 0.5, which, in a sense,
means that there is no preferred data source.

If the two sensors are highly uncorrelated and with the very
different variances along the principal directions, then CI tends
to “lock” on the sensor with the smallest variance along the
principal direction. This is a reasonable behavior from the
point of view of determining uniquely the best measurement
direction. However, it is not necessarily the case if, for instance,
the covariance information is used to plan a path that has to
optimize some combination of the path length and the total
uncertainty at each target. Instead, the behavior of the OGK

suggests a much less optimistic estimate for the uncertainty
resulting from the fusion of the data. In some occasions, this
seemingly less optimistic view may still be the most reasonable,
namely, when the uncertainty along the main axis is high (as in
Fig. 3 sample 3).

Fig. 4 shows some additional situations, where both sen-
sors have clearly preferred measurement directions, i.e., the
eccentricity of the corresponding error ellipses is high. Also,
each of the three samples corresponds to a different degree of
correlation between the sources.

Sample 4 illustrates an extreme situation when sensors with
close characteristics (the eigenvalues of both the covariance
matrices are identical) provide measurements obtained along
orthogonal directions. In what concerns the area of the error
ellipses, the CI clearly outperforms the OGK. The CI returns
the intersection between the two ellipses, corresponding to
the region where both sensors generate data. This is a known
feature of the CI method [12]. The OGK instead enlarges the
corresponding error ellipse in order to cover for the whole data.
Both data sets are well structured, including only measurements
fitting the Gaussian distribution. This means that the OGK
assumes that the large variations between them are not outliers,
and hence, the corresponding covariance must be large enough
to accommodate them all.

In sample 5, the characteristics of the two sensors are much
closer than before, meaning that the eigenvalues of one co-
variance matrix are close to the corresponding ones of the
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Fig. 5. Test samples for correlated data sources with additional data in data set 1.

other matrix and the corresponding eigenvectors are far from
being orthogonal (as in sample 4). The CI tends to exhibit a
characteristic between those of the individual sensors, whereas
the OGK seems to focus on the variances along the principal
directions of the whole set of data.

In the extreme situation when the two covariances are similar
(sample 6), the CI estimator (with ω = 0.5) naturally yields a
coherent result, as it preserves the information already in the
two input covariance estimates. The OGK estimate exhibits
principal directions consistent with the input data but with a
slight decrease in the area of the corresponding error ellipse.
The OGK behavior is clearly more optimistic (in the sense that
the total uncertainty is smaller) than that of the CI.

Fig. 5 shows another set of comparative results when addi-
tional outlier measurements, marked as +, are added to the first
data set. The covariances of the sample populations are Σ1 =
[1.5, 0.6; 0.6, 1] and Σ2 = 1.5 ∗ [1.5, 0.6, 0.6, 1]−1 for sample
7. Samples 8 and 9 were obtained with Σ2 = [0.3, 1.5; 1.5, 1]2.
The upper plots show the covariance estimates accounting for
the additional data, while the covariances in the lower plots do
not include them.

As in the previous examples, the CI estimator operates on
the ML estimates, and hence, it is naturally led to an erroneous
estimate due to the incorrect covariance for source 1. The OGK
uses the raw measurements and hence tends to outperform the
CI in the sense that it is far less sensitive to the disturbance data.

Sample 7 clearly shows the influence of the additional data
on the ML estimates. Without the additional data, both estima-
tors show comparable performances. If the new data are seen
as outliers, then, from the upper plot, the OGK estimator still
maintains an eccentricity compatible with the remaining of the

data. Otherwise, if the outlier is considered as coming from
the real distribution, then the CI tends to yield an optimistic
estimate, as the eccentricity is clearly emphasized relative to
that in the lower plot.

In sample 8, the OGK clearly adopts an optimistic estimate
(in terms of the area in the interior of the error ellipse) when
compared with the CI and ML. Without the additional data, both
estimates are similar and more optimistic than the MLE.

Sample 9 shows an interesting double characteristic of the
OGK. If the additional data are seen as an outlier, then the OGK
estimate is barely influenced. However, the decrease in the
eccentricity of the ellipse shows that the data were accounted
for. The CI estimate shows some robustness to the presence of
the outlier data, although its influence is clearly bigger than in
the OGK.

The qualitative analysis in this section is implicitly based on
the empirical comparison of the eccentricities of error ellipses
and on the corresponding areas covered. It is worth to remark
that the scaling of the input data in the Algorithm in Table I may
bias the comparison.

IV. PERFORMANCE INDEXES

This section goes over the quantitative comparison between
the CI and OGK estimators from a mission standpoint.

A covariance matrix Σ expresses the average number of
measurements that fall inside the associated error ellipse for
some confidence degree (it is well known that the RV qTΣ−1q
has a χ2 distribution). The bigger the χ2 value is, the poorer the
fitting of the data to the ellipse (it is implicitly assumed that the
data do not contain any outliers). This means that, the lower a
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TABLE II
QUALITY MEASURES FOR THE ESTIMATOR TESTS

norm of Σ is, the bigger the confidence that the data fit to the
estimated covariance, and hence, norms related to the area of
the ellipse are acceptable quality indexes.1

Minimizing the area under the estimation error ellipse is a
common goal (as in CI-based fusion; see [12]). In addition, as
aforementioned, eccentricity also provides useful information
on the quality of the estimation. Eccentric ellipses indicate
preferred directions for further exploration of the nearby space.
However, as can be seen in some of the aforementioned exam-
ples, it may also be interesting to lose eccentricity and favor
a smaller area. Therefore, a combination of the two measures
may prove interesting.

The det(Σ) measure is common in CI context, and it is
closely related to the Frobenius norm

√
sum(diag(ΣTΣ)).

‖Σ‖2 is the largest singular value of the matrix. To include
information on the eccentricity of a covariance ellipsoid, one
can propose the measure

ν(Σ) =
√

min (eig(Σ)) /max (eig(Σ))

which is, in fact, the inverse of the so-called condition number
for the ellipsoid.2

For the 2-D case, the area of the error ellipse corresponding
to the Σ covariance is A(Σ) = πλ1(Σ)λ2(Σ), and hence, the
relation with the ν(Σ) measure is

√
A(Σ)/ν(Σ) =

√
π‖Σ‖2.

The lower the ‖Σ‖2, the more interesting the estimator is.
Table II shows the values obtained from the previous tests for

a number of quality measures.
The results show an empirical evidence that the values

‖ΣOGK‖2 are consistently lower than those of ‖ΣCI‖2 when
the input data sets are uncorrelated. Using, from the example,
the 2-norm, samples 1, 2, and 4 are examples where the CI out-
performs the OGK, whereas the opposite happens in samples 3,
5, and 6.

The aforementioned indexes also suggest that each of the CI
and OGK methods has preferred regions of operation, depend-

1A practical consequence of the theorem on the equivalence between norms
in R

n is that any norm in R
n can be used.

2Matlab operators sum, diag, and eig operators are used here to simplify the
notation.

ing on the degree of correlation between the data sets. This
suggests that a hybrid of the two methods is used.

V. CONSISTENCY OF THE CLASS OF OGK ESTIMATORS

When the two data sources show a low degree of correlation,
as when the axis of major (respectively minor) variances is
orthogonal, the CI estimate is consistent in the sense that the
deviation between the estimated covariance for the fused data
Σ and the correlation of the error between the estimated and
real values of the mean obtained by the fusion Σerror is always
positive semidefinite (see [11] and [19])

Σ − Σerror ≥ 0. (1)

The eigenvalues of Σ may be bigger than those of Σerror.
Given that both Σ and Σerror are Hermitian, using the
Rayleigh–Ritz theorem [9], for any vector x

λn(Σ)x�x ≤ x�Σx

x�x
≤ λ1(Σ)x�x

λn(Σerror)x�x ≤ x�Σerrorx

x�x
≤ λ1(Σerror)x�x

with λ1(·) and λn(·) as the biggest and smallest eigenvalues of
the argument matrices, respectively, and hence

(λn(Σ)−λ1(Σerror)) x�x≤x�(Σ−Σerror)x
x�x

≤ (λ1(Σ)−λn(Σerror)) x�x. (2)

Given that both Σ ≥ 0 and Σerror ≥ 0 (see [16, Th. 8.25])
and that (2) must hold for any two matrices Σ, Σerror

λn(Σ) − λ1(Σerror) ≤λn(Σ − Σerror)

λ1(Σ − Σerror) ≤λ1(Σ) − λn(Σerror).

Therefore, in order for (1) to hold, it is necessary that
λ1(Σ) ≥ λn(Σerror), which can be interpreted as the estimate
Σ being conservative in the sense that the uncertainty expressed
by Σ is bigger than that expressed by the correlation of the
estimation error Σerror, at least along the direction of the
eigenvector associated to λ1(Σ)).

In general, Σerror is difficult to obtain as the real value of the
fused mean is unknown; only the estimate is available.
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Fig. 6. Typical maps obtained for a unit power Gaussian noise and including outliers. (a) OGK–CI. (b) CI.

The OGK algorithm in [5] uses an estimate for the mean
as μOGK = Aν, with A as the matrix defined in step 5 of
Algorithm 1 and ν as a vector of means of the Z variable in
the algorithm. Thus, in the OGK version in [5], the parameter
matrix Ω also affects the estimate μOGK.

However, from an application viewpoint, Ω represents a
free parameter that can be used to tune the estimated covari-
ance to the adequate conditions independently of the estimate
of the fused mean. From step 5 in Algorithm 1, ΣOGK =
(ED−1)T Ω Γ Ω (ED−1), and hence, Ω can be used to scale
the eigenvalues of ΣOGK while preserving the eigenvectors.
From (2), if only the matrix ΣOGK has its eigenvalues scaled,
leaving Σerror unchanged, then the left-hand term can be made
positive, which means that (1) holds. For this, it is enough to
select Ω such that the smallest eigenvalue of Σ is large enough.
Therefore, by proper choice of Ω, the class of estimators in
Table I can always be made consistent in the sense of (1) and
eventually optimize other criteria.

A more strict notion of consistency involves the checking of
convergence to the true value of the estimator as the dimension
of the sample increases. An estimator sequence is weakly
consistent if it converges in probability to the true value of
the estimator as the number of tests n grows, i.e., it verifies
Chebychev’s inequality (see, for instance, [10]). The CI can
be shown to be consistent in this strict sense. It is enough to
consider two data sets generated by identical distributions, and
it is clear that the resulting fused covariance matrix is identical
to those used to generate the data sets.

Instead, a simple simulation shows that the OGK does not
have identical property. In fact, generating a data set normally
distributed for some arbitrary covariance matrix, the corre-
sponding OGK covariance estimate does not converge to the
original covariance no matter the size of the data set.

VI. HYBRID SENSOR FUSION AND CASE STUDY

Both fusion strategies can be mixed in a hybrid OGK–CI sys-
tem. Following the discussion in Section IV on the use 2-norm

quality measure, the decision on which strategy to use is based
simply on the direct comparison of the 2-norm values for each
of the strategies.

At each iteration, ΣCI and ΣOGK are computed, and the
selection is made using the rule

Σ = arg min (‖ΣCI‖2, ‖ΣOGK‖2) .

Σ is thus the covariance matrix representing the uncertainty in
the target position estimates at a given iteration that minimizes
the 2-norm performance index.

To illustrate the performance of this hybrid fusion strategy,
a mapping application is demonstrated in simulation. The en-
vironment is a planar area with five static targets. These are
to be mapped by a single robot moving along a predefined
path. The robot is equipped with a single range sensor that
returns an estimate for the position of a target. The sensor
is assumed to have a detection cone with 1◦ aperture, and
the range measurements are corrupted by Gaussian noise. The
measurements are further corrupted by Gaussian outliers of
fixed variance, with the time between consecutive outliers being
exponentially distributed. The robot contains a local map that
is updated periodically to contain the targets identified. At each
instant, a measurement is taken by the sensor onboard the robot.
Once a target is placed in the local map, it can be fused with
others, or it is kept unchanged; it is never deleted.

The data association policy encompasses three stages and is
identical for both strategies and based on grouping neighbor
measurements. In the first stage, a measurement is fused with
the existing map if it falls inside the error ellipse of some
target already in the map. If this condition is not verified, the
measurement is added to the map as a new target. At the second
stage, after the end of the run, any two targets with overlapping
error ellipses are fused together. The final stage groups targets
lying in a small common neighborhood and selects only one
of them to represent the real target. No fusion occurs at this
stage. The ΣCI and ΣOGK are thus computed only at the first
and second stages.
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TABLE III
DATA FROM MONTE CARLO EXPERIMENTS

A measurement detecting a target has associated a position
and a covariance matrix. In what concerns the CI, these data
are fused with the data of each of the targets already on
the local map that have been associated with this one. The
OGK estimate is computed by first joining the target position
estimate corresponding to the measurement to the complete set
of measurements taken by the robot along the path that were
associated to this target and applying Algorithm 1 afterward.

Fig. 6 shows the typical runs when CI and a hybrid OGK–CI
fusion are used. The robot moves along straight lines such that
the sensor range covers the whole area. A unit power Gaussian
noise was used. During the mission in the left-hand plot, the
OGK estimator was called a total of 30 times. A total of four
outliers was generated during this run. For the CI-only map, in
the right-hand plot, a total of five outliers was generated. The
plots suggest that the hybrid estimator has a better performance
than the CI alone. Even with the additional outlier, the total
number of false targets detected by the CI alone is clearly bigger
than when using the hybrid, and these are scattered on the whole
area.

Monte Carlo experiments have been performed to compare
the two strategies. Each experiment involved 100 runs and
different conditions for measurement noise and outliers. The
robot is set to travel at 0.5 m/s, and the range measurements
are taken at 10-Hz sampling rate. The performance indexes
considered indicate the number of runs in which the OGK–CI
strategy outperforms the CI strategy according to two factors:
1) the number of detected targets and 2) the average 2-norm
of the covariances obtained for each of the five real targets.
Failing to detect all the five real targets is considered a miss.
Table III shows the data for the Monte Carlo experiments and
performance indexes obtained. The λ column indicates the
mean time between outliers. The “targets detected index” is the
number of runs for which the number of targets detected by
the OGK–CI strategy was smaller than or equal to the number
detected by the CI alone and for which all of the real targets
were detected. The “covariance index” is the number of runs
for which the average ‖Σ‖2 value, computed over all the real
targets using OGK–CI, is better than the corresponding value
computed using only the CI strategy.

The results suggest that the hybrid OGK–CI strategy out-
performs the CI-based strategy when the mean time between
outliers λ disturbing the sensor measurements decreases. This
is verified even for moderate amounts of noise power in mea-
surements and is an indicator of interesting filtering properties
of the OGK–CI that reduce the number of false positives. The

average 2-norm over the set of real targets tends to favor the
OGK–CI for low measurement noise and outlier levels.

VII. CONCLUSION

This paper has compared the CI and OGK covariance esti-
mators for the fusion of information from two sources.

The comparison between the two estimators uses the 2-
norm of the estimated covariance matrix. The analysis on the
relevant bounds for the two measures shows that, in worst case
conditions, there are regions of the spectrum of the covariance
matrix where each of the estimators outperforms the other. This
suggests that a hybrid of the two estimators can provide the best
results in a generic application.

Monte Carlo experiments in a mapping application show
an interesting side effect, namely, that of leading to a smaller
number of false positives in target detection and identification
while preserving the quality of the covariances estimated for
each target.

The application of the OGK estimation technique to 3-
D applications needs a recalculation of the bounds involved.
Still, the same basic principles apply. Future work includes
the testing of different forms of hybridizing the OGK and CI
covariance estimators in the collaborative fusion of information
from multiple unmanned aerial vehicles in mapping missions.
More generally, robotics applications dealing with the multiple
sensor fusion problem may use single of hybrid fusion strate-
gies such as the one described in this paper. Cooperative search
missions involving, for instance, ground and aerial vehicles are
a natural class of applications.

A complementary research line to be explored in future work
is the use of alternative covariance estimators, such as the M
and S estimators referred in Section I, which may yield inter-
esting results in the hybrid technique discussed in this paper.

APPENDIX

COMPARING THE CI AND OGK ESTIMATORS

Given the performance measures considered in the previous
section, to compare the CI and OGK estimators, closed-form
solutions for the eigenvalues of the estimates ΣCI and ΣOGK

as functions of the eigenvalues of covariance matrices A and
B are required. In both cases, getting such solutions results
in algebraic lengthy expressions that are hard to compare.
Eventually, good bounds on such expressions are also difficult
to derive.
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This section follows [17] closely, using Weyl’s inequalities
(see, for instance, [7] and [9]) to compare the two estimators.

In general, unless the bounding errors are known, the com-
parison between bounds of performance measures for two
different algorithms does not allow a direct comparison of the
algorithms themselves (only of the bounds). However, they may
give good indications on their expected behavior, i.e., if upper
and lower bounds on the performance measures are available,
where conditions can be stated under which one of the strategies
performs always better than the other. In such cases, it may be
worth to keep the two strategies running in parallel and choose
the better one in run time.

A) Bounds on the CI Estimator: Listing the eigenvalues of
a Hermitian matrix in decreasing order λ1 ≥ λ2 ≥ · · · ≥ λm,
the eigenvalues of the sum Σ−1 = ωA + (1 − ω)B of any two
Hermitian matrices verify Weyl’s inequalities

λ(Σ−1)i+j−1 ≤ λ(A)i + λ(B)j , for i + j − 1 ≤ n

where A and B correspond to the inverses of the covariance
matrices used by the CI algorithm. Assuming that each of the
sources of information is of dimension p = 2, meaning that the
robots are assumed to move on a 2-D surface, and denoting by
A and B the inverses of the respective covariance matrices and
by ΣCI the CI estimate, Weyl’s inequalities yield

λ1

(
Σ−1

CI

)
≤λ1(ωA) + λ1 ((1 − ω)B)

=ωλ1(A) + (1 − ω)λ1(B)

λ2

(
Σ−1

CI

)
≤λ1(ωA) + λ2 ((1 − ω)B)

=ωλ1(A) + (1 − ω)λ2(B)

λ2

(
Σ−1

CI

)
≤λ2(ωA) + λ1 ((1 − ω)B)

=ωλ2(A) + (1 − ω)λ1(B).

Using

λ1(ΣCI) = 1/λ2

(
Σ−1

CI

)
λ2(ΣCI) = 1/λ1

(
Σ−1

CI

)
one can write the following lower bounds:

1

max
{

ωλ1(A) + (1 − ω)λ2(B),
ωλ2(A) + (1 − ω)λ1(B)

} ≤λ1(ΣCI)

1
ωλ1(A) + (1 − ω)λ1(B)

≤λ2(ΣCI).

Any two square matrices A and B verify

det
(
Σ−1

CI

)
≡ det(A + B) ≥ det(A) + det(B) (3)

and hence

λ1

(
Σ−1

CI

)
λ2(Σ−1)≥ω2λ1(A)λ2(A)+(1−ω)2λ1(B)λ2(B)

or

λ2(ΣCI) ≤
1

λ1(Σ) (ω2λ1(A)λ2(A) + (1 − ω)2λ1(B)λ2(B))

Fig. 7. Upper and lower bounds for ‖ΣCI‖2.

≤ 1
min(λ1(Σ))(ω2λ1(A)λ2(A)+(1−ω)2λ1(B)λ2(B))

≤
max

{
ωλ1(A) + (1 − ω)λ2(B),
ωλ2(A) + (1 − ω)λ1(B)

}

ω2λ1(A)λ2(A) + (1 − ω)2λ1(B)λ2(B)
. (4)

Similarly for λ1(ΣCI), yielding the following upper bound:

λ1(Σ)

≤ 1
λ2(Σ) (ω2λ1(A)λ2(A) + (1 − ω)2λ1(B)λ2(B))

≤ 1
min (λ2(Σ)) (ω2λ1(A)λ2(A) + (1 − ω)2λ1(B)λ2(B))

≤ ωλ1(A) + (1 − ω)λ1(B)
ω2λ1(A)λ2(A) + (1 − ω)2λ1(B)λ2(B)

(5)

from which the upper bound of ‖ΣCI‖2 = λ1(ΣCI) can be
computed.

Fig. 7 shows the above bounds for a limited region of the
covariance matrix spectrum. For the sake of representation,
λ1(A) = λ2(A) = 0.5, and ω = 0.5.

By construction, λ1(B) ≥ λ2(B), meaning that only this
region is meaningful.

B) Bounds on the OGK Estimator: In the form in Table I,
the OGK estimator does not use directly the covariance matri-
ces associated to each of the landmarks (although, as mentioned
before, step 3 can use the result of, for example, a CI estimate).

For the purpose of the OGK analysis, denote the set of
n measurements from the two sources A and B as X =
[X1,X2] and X1 = [xA1, . . . , xAn, xB1, . . . , xBn]T, X2 =
[yA1, . . . , yAn, yB1, . . . , yBn]T. Measurements from sources A
and B have covariances AX and BX , respectively

AX =
[

σ(XAxx
)2 σ(XAxy

)
σ(XAyx

) σ(XAyy
)2

]

BX =
[

σ(XBxx
)2 σ(XBxy

)
σ(XByx

) σ(XByy
)2

]
.
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When the measurements of source B are appended to those of
source A, the resulting covariance is

CX =
[

σ(XCxx
)2 σ(XCxy

)
σ(XCyx

) σ(XCyy
)2

]

which, assuming that both sources generate the measurements
with the same mean, can be written as

CX =
1
2

[
σ(XAxx

)2+σ(XBxx
)2 σ(XAxy

) + σ(XBxy
)

σ(XAyx
)+σ(XByx

) σ(XAyy
)2 + σ(XByy

)2

]
.

(6)

From Table I, one can write the estimate in a generic form

ΣOGK = (ED−1)TΓED−1 = D−T ETΓED−1

= D−1ETΓED−1

=
[

σ(XCxx
)−1 0

0 σ(XCyy
)−1

] [
e11 e12

e21 e22

]

×
[

σ(CZxx
)2 0

0 σ(CZyy
)2

]

×
[

e11 e21

e12 e22

] [
σ(XCxx

)−1 0
0 σ(XCyy

)−1

]
.

Also from Table I, the covariance matrix for the transformed
Z variable CZ is given by

CZ = ETD−TCXD−1E = ETD−1CXD−1E (7)

from where σ(CZxx
)2 and σ(CZyy

)2 can be computed.
Using Schwarz inequality

‖ΣOGK‖ ≤ ‖D−1‖‖E‖‖Γ‖‖ET‖‖D−1‖

and since E can be assumed unitary without losing generality

‖ΣOGK‖ ≤ ‖D−1‖2‖Γ‖. (8)

From (7), using [9, Th. 5.6.9], valid for any matrix norm, the
unitary property of E, and Schwarz inequality

σ(CZxx
)2 ≤‖CZ‖ ≤ ‖ET‖‖D−1‖‖CX‖‖D−1‖‖E‖

≤‖D−1‖2 ‖CX‖ (9)

(a similar expression can be written for σ(CZyy
)2). Substituting

in (8)

‖ΣOGK‖2 ≤ ‖D−1‖4
2 ‖CX‖2.

Using the explicit calculation for the eigenvalues of CX , it
can be easily verified that

‖D‖2 = max
{
σ(CXxx

)2, σ(CXyy
)2

}
= λ1(D) ≤ λ1(CX)

‖D−1‖2 = max
{

1
σ(CXxx

)2
,

1
σ(CXyy

)2

}
= λ1(D−1)=

1
λ2(D)

and since λ2(CX) ≤ λ2(D)

‖D−1‖2 ≤ 1
λ2(CX)

.

Fig. 8. OGK upper bound and CI lower bound.

Since CX is Hermitian, λ1(CX) = ‖CX‖2, and the lower
bound form for Weyl’s inequalities (see [9, Th. 4.3.1]) is

‖ΣOGK‖2 ≤ λ1(CX)
λ2(CX)4

≤ λ1(AX) + λ1(BX)
(λ2(AX) + λ2(BX))4

. (10)

Fig. 8 shows the behavior of the upper bound (10) superim-
posed on the lower bound that was previously obtained for the
CI procedure. Under the aforementioned assumption of equal
means for the measurements by each of the data sources, it
is clear that there are regions of the spectrum where each of
the estimators outperforms the other. By selecting a different
parameter for the OGK estimate, it is possible to increase the
region in which the OGK outperforms (in the 2-norm sense) the
CI and hence compensate for the deviations eventually when the
aforementioned assumption does not hold.
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