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Abstract

It is important to monitor manufacturing processes in order to improve product quality and

reduce production cost. Statistical Process Control (SPC) is the most commonly used method for

process monitoring, in particular, making distinctions between variations attributed to normal

process variability to those caused by ‘special causes’. Most SPC and multivariate SPC (MSPC)

methods are parametric in that they make assumptions about the distributional properties and

auto-correlation structure of in-control process parameters, and if satisfied, are effective in

managing false alarms/positives and false negatives. However, when processes do not satisfy

these assumptions, the effectiveness of SPC methods is compromised. Several non-parametric

control charts based on sequential ranks of data depth measures have been proposed in the

literature, but their development and implementation have been rather slow in industrial process

control. Several non-parametric control charts based on machine learning principles have also

been proposed in the literature to overcome some of these limitations. However, unlike

conventional SPC methods, these non-parametric methods require event data from each out-of-

control process state for effective model building. This paper presents a new non-parametric

multivariate control chart based on kernel-distance that overcomes these limitations by

employing the notion of one-class classification based on support vector principles. The chart is

non-parametric in that it makes no assumptions regarding the data probability density and only

requires ‘normal’ or in-control data for effective representation of an in-control process. It does

however make an explicit provision to incorporate any available data from out-of-control process

states. Experimental evaluation on a variety of benchmarking datasets suggests that the proposed

chart is effective for process monitoring.

Keywords: Control chart; Support vector machines; Kernel-distance
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I. Introduction

In order to improve product quality and reduce production cost, it is necessary to detect

equipment malfunctions, failures, or other special events as early as possible. For example,

according to the survey conducted by (Nimmo 1995; Chen, Kruger et al. 2004), the US-based

petrochemical industry could save up to $10 billion annually if abnormal process behavior could

be detected, diagnosed and appropriately dealt with. By monitoring the performance of a process

over time, statistical process control (SPC) attempts to distinguish process variation attributed to

common causes from variation attributed to special causes, and hence, forms a basis for process

monitoring and equipment malfunction detection (Martin, Morris et al. 1996). It is also the most

commonly used tool to analyze and monitor processes (Eickelmann and Anant 2003).

Most SPC methods are parametric in that they make assumptions about the distributional

properties and auto-correlation structure of in-control process parameters, and if satisfied, are

very effective in managing false alarms/positives and false negatives. Among others, they offer

the following statistical and practical advantages: 1) only data from an in-control state is

necessary to initialize the control chart, 2) data from a relatively limited number of sub-groups

(say 20 to 30) is adequate for accurate initialization, and 3) tradeoffs between false

alarms/positives (Type-I error) and false negatives (Type-II errors) can be managed (by changing

the width of the control limits and the sub-group sample size, respectively). While conventional

SPC charts (such as the Shewhart type control charts (Shewhart 1926), the cumulative sum

(CUSUM) control charts, and the exponentially weighted family control charts) are developed for

univariate processes (Manabu, Shinji et al. 2004), multivariate statistical process control (MSPC)

is employed to monitor processes that have correlated multi-variables (Montgomery 2001). One

type of MSPC is multivariate charts extended from univariate SPC methods, including

Hotelling’s 2T chart (Hotelling 1947), multivariate EWMA (Lowry, Woodall et al. 1992);

(Runger and Prabhu 1996), (Testik and Borror 2004) and multivariate CUSUM charts (Ngai and
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Zhang 2001); (Runger and Testik 2004). Another type of MSPC is based on latent variable

projection, such as Principal Component Analysis (PCA) and Partial Least Squares (PLS)

(MacGregor and Kourti 1995) (Raich and Cinar 1996) (Yoon and MacGregor 2004). An

alternative approach to account for the dynamic aspects of the data in MSPC is to use MRA

(multi-resolution analysis) (Bakshi 1998; Teppola and Minkkinen 2000). For a good review of

MSPC charts, see (Lowry and Montgomery 1995). Among these, Hotelling’s 2T chart is widely

used in practice (Sun and Tsung 2003).

The standard assumption behind majority of SPC and MSPC methods mentioned above is

that the process variables follow a Gaussian distribution (Rose 1991), a questionable assumption

in several industrial processes (Polansky 2001), and in particular, highly automated processes

(Chinnam and Kolarik 1992). (Schilling and Nelson 1976) and many other researchers have

investigated the effects of non-normality on the control limits and charting performance. To

alleviate such effects, some distribution-free or non-parametric control charts have been proposed

based on sequential ranks of data depth measures (Liu and Singh 1993; Aradhye, Bakshi et al.

2001; Stoumbos and Reynolds 2001; Chakraborti, Van der Laan et al. 2003; Messaoud, Weihs et

al. 2004), but their development and implementation have been rather slow in industrial process

control (Chakraborti, Van der Laan et al. 2001).

Several non-parametric control charts based on machine learning and pattern recognition

principles have also been proposed in the literature. For example, (Cook and Chiu 1998) proposed

radial basis function (RBF) networks to recognize shifts in correlated manufacturing processes,

(Chinnam 2002) proposed support vector machines (SVMs) for recognizing shifts in correlated

and other manufacturing processes, and (Smith 1994) and (Pugh 1991) considered multi-layer

perceptron (MLP) networks for implementing Shewhart type control charts, all relaxing the

Gaussian assumption. While these methods have shown success in relaxing the Gaussian

assumption, the fundamental limitation with these and most other machine learning methods

proposed in the literature for process control is that they cast the problem as that of
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‘classification’ or ‘pattern recognition’, and hence, strictly require example data from all out-of-

control states of interest. This is a critical limitation for obtaining example cases from all such

states might be difficult, expensive, or even impossible. The second limitation is that they make

no explicit provision to make tradeoffs between Type-I errors (false alarms) and Type-II errors

(inability to detect shifts in process condition). Most of these machine learning methods also

necessitate modeling and training for each specific failure type. A model that is developed for a

specific type abnormal event (out-of-control state) cannot necessarily give good classification

accuracy for another type of abnormal event.

This paper presents a new non-parametric kernel-distance control chart that employs the

notion of one-class classification or novelty detection to overcome these limitations and adopts

support vector machine (SVM) principles for doing so. There are several reasons for basing the

proposed control chart on SVM principles: 1) They are a system for efficiently training linear

learning machines in the kernel-induced feature space, 2) they successfully control the flexibility

of kernel-induced feature space through generalization theory, and 3) they exploit existing

optimization theory in doing so. An important feature of SVM systems is that, while enforcing the

learning biases suggested by generalization theory, they also produce ‘sparse’ dual

representations of the hypothesis, resulting in extremely efficient algorithms (Cristianini and

Taylor 2000). This is due to the Karush-Kuhn-Tucker conditions (Kuhn and Tucker 1951)

(Mangasarian 1994), which hold for the solution and play a crucial role in the practical

implementation and analysis of these machines. Another important feature of the support vector

approach is that due to Mercer’s conditions on the kernels (Mercer 1909), the corresponding

optimization problems are convex and hence have no local minima. This fact, and the reduced

number of non-zero parameters, marks a clear distinction between these systems and other

machine learning algorithms, such as neural networks (Cristianini and Taylor 2000). The end

result is that the proposed kernel-distance control chart is non-parametric, only requires data from

an in-control process state, makes provision to utilize any available data from out-of-control
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states, and allows some tradeoff between Type-I and Type-II errors. The proposed kernel-distance

control chart supports both univariate and multivariate processes and can monitor both process

location and dispersion aspects through a single control chart.

A notable exception in the literature that also offers several similar features is another kernel-

distance control chart (called k-chart) independently proposed by (Sun and Tsung 2003), also

based on a one-class classifier, Support Vector Data Description (SVDD), developed by David

Tax (Tax 2001; Tax and Duin 2004). However, a significant limitation with SVDD, and hence the

k-chart by Sun and Tsung, is that it lacks any ability to make a good distinction between outliers

and normal data within the training set. In addition, they make no provision to utilize any

available data from out-of-control states, and lastly, they offer no structured method for making

tradeoffs between Type-I and Type-II errors. This can also result in poor representation of the in-

control process state if the data available for initializing the control chart is not pre-processed for

elimination of outliers. Our proposed kernel-distance control chart overcomes these limitations by

integrating the SVDD method with principles borrowed from Support Vector Representation and

Discrimination Machine (SVRDM) by Yuan and Casasent (2003). Many of these positive

attributes of our proposed kernel distance control chart are illustrated in Figure 1. Here, we

particularly work with the same multivariate process control dataset employed by (Sun and Tsung

2003). Figure 1(a) illustrates a plot of ‘normal’ process data projected onto the space of the two

most dominant principal components (identical to Figures 11-12 of (Sun and Tsung 2003)), along

with a known ‘outlier’ point (from Figure 13 of (Sun and Tsung 2003)). If one were to use the

data from Figure 1(a) to initialize the k-chart, there is no guarantee that the outlier point will be

recognized to be an outlier (see for example Figure 9 of (Sun and Tsung 2003)). On the contrary,

the kernel distance control chart proposed here gives us several options. Supposing that the

outlier data point is not so labeled and presented for chart initialization, the proposed method

recognizes the point to be an outlier (as shown in Figure 1(a)). If the outlier point is labeled prior

to chart initialization as an ‘outlier’, the proposed method recognizes this label and puts it outside
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the normal boundary (as shown in Figure 1(b)). If for some reason, one chooses to treat this

outlier point as a ‘normal’ data point, the proposed method will accept this constraint and treats

the point as normal and defines normal process boundary with the point as a boundary point (as is

evident from Figure 1(c)). Thus, the proposed kernel distance control chart is very robust and can

take advantage of any available data/knowledge regarding process faults. In addition, our

proposed method also offers an effective heuristic for optimizing the kernel parameters,

something missing from SVDD and the k-Chart from Sun and Tsung. For all these reasons, we

label the proposed method the robust kernel-distance control chart or rk-Chart in short.

(a) (b)

(c)

Figure 1. Flexibility of rk-Chart. In Panel a) the point well outside the normal data is “unlabeled” but is
recognized and declared to be an outlier by rk-Chart. In panel (b) the point is “labeled” as an outlier, and

the rk-Chart again declares it an outlier making use of the labeling. The results are identical to those
without labeling. Finally, in panel c) the point is “labeled” as normal, and rk-Chart accepts this constraint
and treats the point as normal and defines normal process boundary with the point as a boundary point. In

all these cases, the rk-Chart was tuned with typical parameters (specified later).
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The rest of this paper is organized as follows: Section II provides background information on

support vector machines, the theory behind rk-Chart is presented in Section III, experimental

results in Section IV, and concluding remarks in Section V.

II. Support Vector Machines

This section provides a brief background on support vector machines (SVMs) rooted in

Statistical Learning Theory, a notion first introduced by (Vapnik 1998). We first explain the

basics of SVMs for binary classification and then discuss how the technique can be extended to

deal with the problem of one-class classification for developing rk-Chart.

II.1. Binary classification – Linear case

SVMs belong to the class of maximum margin classifiers. They perform pattern recognition

between two classes by finding a decision surface that has maximum distance to the closest points

in the training set, which are termed support vectors. We start with a training set of points

d
i x  , 1,2...,i N where each point ix belongs to one of two classes identified by the label

 1, 1iy   and d is the dimensionality of the points. Let the training set be denoted

by 1{( , )}N
i i iy  x . Assuming linearly separable data, the goal of maximum margin classification

is to separate the two classes by a hyperplane such that the distance to the support vectors is

maximized. This is achieved by minimizing
2w subject to the constraint ( ) 1 0i iy b   x w ,

where w is normal to the hyper-plane. Figure 2 illustrates these concepts for the separable case.

In order to provide for non-separable cases, the formulation is modified as follows:

Minimize
2

iw C   (1)

Subject to:   1 0i i iy b     x w (2)

This quadratic optimization problem can be solved efficiently using the following Lagrangian

dual formulation:
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Maximize
,

1
2i i j i j i j

i i j

y y     x x (3)

Subject to: 0 i C  and . 0i i
i

y  (4)

where i denote the Lagrange multipliers. The Lagrangian formulation of the problem offers the

advantage of having Lagrange multipliers in the constraints and training data in the form of inner

products between data vectors (Müller, Mika et al. 2001). In the solution, non-zero i values

represent support vectors that are on the separating hyper-plane (satisfying the equation

0b  w x ).

-b
||w||

w

Margin
2/||w||

Support
Vectors

Origin

Seperating
Hyperplane

Figure 2: Separation of classes by hyper-plane.

II.2. Binary classification – Nonlinear case

In many cases, classes are not linearly separable. In order to learn non-linear relations with a

linear machine, we need to select a set of non-linear features and to rewrite the data in the new

representation. This is equivalent to applying a fixed non-linear mapping of the data to a feature

space, in which the linear machine can be used. Thus, the non-linear separable case could be

handled in two steps: first a fixed non-linear mapping transforms the data into a feature space F ,

and then a linear machine is used to classify them in the feature space. One important property of

linear learning machine is that it can be expressed in a dual representation. That is, the hypothesis

can be expressed as a linear combination of the training points so that the decision rule can be

evaluated using just inner products between the test point and the training points. If one could
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compute the inner product ( ) ( )i x x in feature space directly as a function of the original

input points, it becomes possible to merge the two steps needed to build a non-linear learning

machine. We call such a direct computation method a kernel function. A kernel is a function K ,

such that for all , Xx z

( , ) ( ) ( )K   x z x z (5)

where  is a mapping from X to an inner product feature space F .

By replacing the inner product with an appropriately chosen ‘kernel’ function, one can

implicitly perform a non-linear mapping to a high dimensional feature space without increasing

the number of tunable parameters, provided the kernel computes the inner product of the feature

vectors corresponding to the two inputs. Thus, the use of kernels makes it possible to map the

data implicitly into a feature space and to train a linear machine in such a space, potentially side-

stepping the computational problems inherent in evaluating the feature map.

In practice, the approach taken is to define a kernel function directly, hence implicitly

defining the feature space. In this way, we avoid the feature space not only in the computation of

inner products, but also in the design of the learning machine itself. Mercer’s theorem (Mercer

1909) provides a characterization of when a function ( , )K x z is a kernel (i. e. what properties are

necessary to ensure that it is a kernel for some feature space). An important family of kernel

functions is the polynomial kernel:

( , ) (1 )dK   x z x z (6)

where d is the degree of the polynomial. In this case the components of the mapping are all the

possible monomials of input components up to the degree d . An even more popular kernel in the

literature is the Gaussian (Tax and Duin 1999; Yuan and Casasent 2003):

2 2

( , )K e   x zx z (7)
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For a good discussion on making kernels, see (Cristianini and Taylor 2000). For more

detailed information on the broader topic of support vector machines see (Müller, Mika et al.

2001).

III. Robust Kernel-Distance Control Chart (rk-Chart)

III.1. rk-Chart as a one-class classifier

As stated earlier, the proposed robust kernel-distance control chart (rk-Chart) employs the notion

of one-class classification for process monitoring, and in doing so, models the boundary of

process data from an in-control state and declares the process to be in control or out of control

depending on where the new observation lies with respect to the boundary that exists in the

feature space.

In the statistical process control literature, the two most important measures that are of

particular interest in the context of process monitoring are measures of process central tendency

and process dispersion. As originally proposed by W. Shewhart (Shewhart 1926), the sample

arithmetic mean is the most employed measure for central tendency (among other measures such

as mode and median). While the simplest statistical parameter that describes variability in

observed data is the sample range, the sample standard deviation is a better estimate of

variability for it considers every observation. Not unlike many multivariate statistical process

control (MSPC) methods, the proposed rk-Chart jointly models these measures of central

tendency as well as dispersion in a multi-dimensional space. While we recommend the sample

mean and standard deviation as statistical measures for process monitoring (resulting in a 2-

dimensional space), the proposed rk-Chart method is a general method and can incorporate any

other type of location and dispersion measures, promising application specific measures, as well

as other measures such as higher-order statistical moments (e. g., skewness and kurtosis). The

only requirement for rk-Chart is that the vector of sample statistical measures is real, d
i x  ,

where d denotes the dimensionality of the vector. However, note that the number of support
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vectors (as well as the size of the training set) necessary for adequate representation of normal or

in-control process state will increase as a function of d . In the case of multivariate processes, the

feature space could simply be the process variable space or a transformation thereof (such as the

space of dominant principal components). While it is also possible to introduce features from the

co-variance matrix of the subgroup sample to monitor process dispersion, care should be

exercised to manage d . Given that rk-Chart models the process data in two or higher

dimensional spaces, in the case of univariate processes, it is necessary that the subgroup sample

size be greater than one to facilitate extraction of at least two features (such as mean and standard

deviation). While rk-Chart can in theory deal with both univariate and multivariate processes, and

jointly monitors both location and dispersion measures, it does not necessarily have the ability to

identify the type of process fault (such as a process location shift or process variance shift).

Thus, in developing the proposed control chart, we deviate from classical SVM designed for

binary classification to representation of boundary from a single class (i. e. d
i x  ). rk-Chart is

particularly inspired from Support Vector Data Description (SVDD) (Tax and Duin 1999) and

Support Vector Representation Machine (SVRM) (Yuan and Casasent 2003) and gives the

minimum volume closed spherical boundary around the in-control process data, represented by

center c and radius r. Minimization of the volume is achieved by minimizing r2, which

represents structural error (Müller, Mika et al. 2001):

Min 2r (8)

Subject to: 2 2
i r i  x c , ix : thi data point (9)

The formulation above does not allow any data to fall outside of the sphere. In order to make

provision within the model for potential outliers within the training set, a penalty cost function is

introduced as follows (for data that lie outside of the sphere):

Min 2
i

i

r C   (10)
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Subject to: 2 2
i ir   x c , 0i  i (11)

where C is the coefficient of penalty for each outlier (also referred to as the regularization

parameter) and i is the distance between the thi data point and the hyper-sphere. Once again,

this is a quadratic optimization problem and can be solved efficiently by introducing Lagrange

multipliers for constraints (Vapnik 1998):

 

2

2

( , , , , )

( 2 )

i
i

i i i i i i i
i i

L r r C

r



   

  

       



 

c ξ α γ

x x c x c c
(12)

where i and i are Lagrange multipliers, 0i  , 0i  , and i ix x is inner product of ix and ix .

Note that for each training data point ix , a corresponding i and i are defined. L is minimized

with respect to r , c , and ξ , and maximized with respect to α and γ . Taking the derivatives of

(12) with respect to r , c , ξ , and equating them to zero, we obtain the following constraints:

i i
i

c x (13)

0i iC     i (14)

1i
i

  (15)

Given that 0i  , 0i  , constraint (14) can be rewritten as:

0 i C  i (16)

The following quadratic programming equations can be obtained by substituting (13), (14), (15),

and (16) in (12).

Max
,

( ) ( )i i i i j i j
i i j

     x x x x (17)

Subject to: 0 i C  i , 1i
i

  (18)

Standard algorithms exist for solving this problem (Tax 2001). The above Lagrange

formulation also allows further interpretation of the values of α . If necessary, the Lagrange
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multipliers ( i , i ) will take a value of zero in order to make the corresponding constraint term

zero in (12). Thus, the rk-Chart formulation satisfies the Karush-Kuhn-Tucker (KKT) conditions

for achieving a global optimal solution. Noting that i iC    , if one of the multipliers becomes

zero, the other takes on a value of C . When a data point ix is inside the sphere, the

corresponding i will be equal to zero. If it is outside of the sphere, i.e. 0i  , i will be zero

resulting in i to be C . When the data point is at the boundary, i and i will be between zero

and C to satisfy (15). The quadratic programming solution often yields a 'few' data points with a

non-zero i value, or support vectors. What is of particular interest is that support vectors can

effectively represent the data while remaining sparse. Let { : 0}SV
i ix  S denote the set of

support vectors.

In general, it is highly unlikely that a hyper-sphere can offer a good representation for the

boundary of in-control process data in the ‘original input space’. Hence, data ought to be

transformed to a ‘higher dimensional feature space’ where it can be effectively represented using

a hyper-sphere. Not unlike SVMs, rk-Chart also employs kernels to achieve this transformation

without compromising computational complexity. Thus, the dot product in (17) is replaced by a

Kernel function, leading us once again to the following quadratic programming problem:

Max
,

( , ) ( , )i i i i j i j
i i j

K K   x x x x (19)

Subject to 0 i C  i , 1i
i

  (20)

III.2. Gaussian kernel optimization within rk-Chart

The proposed robust kernel-distance control chart employs the one-class classification

formulation from above along with a Gaussian kernel. The Gaussian kernel has been shown to

particularly offer better performance over other kernels for one-class classification problems (see

(Tax 2001) for more discussion on this) and hence the motivation for using it. The issue is
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optimization of the scale parameter  of (7). While  could be specified by the user, rk-Chart

employs the procedure outlined in Table 1 for choosing  .

Table 1: Heuristic procedure for choosing  for the Gaussian kernel.

Step 1: Calculate the average 'nearest neighbor distance', denoted dn , between all the data points in the

dataset (i. e. ( )nnd
d in E x where || || || || ,nnd

i j i k ix i k j i      x x x x E denotes

average operator over the training set ).
Step 2: For each data point ix :

2.1: Construct a local robust kernel-distance ‘boundary’, denoted - L
irk B , utilizing the set

2 2{ :|| || (2 ) }i j j i dn  S x x x (i. e. data within a sphere of radius 2 dn ).§ In building

- L
irk B , set || ( ) ||

i i

L
i i iE E  S Sx x for the Gaussian kernel (i. e. the average distance of

data within iS to the mean of iS ). Let *
ir denote the optimal radius of - L

irk B , i. e. the
quadratic programming solution.

2.2: If *- ( )L
i i irk B rx , i. e. the data point is rejected by a scaled or inner - L

irk B of radius *
ir

where 0 1  (a parameter pre-specified by the user, typically around 0.95), it is added

into the boundary list, denoted BLS . It is also necessary that for any data point to be part of
BLS , it cannot be accepted by any other inner - L

jrk B . In addition, if i iS x , ix is

excluded from BLS for it might be an outlier. Fig. 3 illustrates this procedure for

determination of BLS .

Step 3: The optimal global - Grk B (i. e. the rk-Chart boundary that represents the complete training set
 ) is then constructed using the following Gaussian kernel parameter:

*

min( ) max( )
arg max { ( )}
nnd nnd
i i

BL SV

x x
 

 
 S S .

§ Tax and Duin (Tax and Duin 1999) show that this setting of the local sphere radius to 2 dn results in good
performance.

Figure 3: Determination of class boundary list: Data points on the boundary will be rejected by inner local

rk-Boundaries.

Boundary Point

Interior Point

Local rk-Boundary

Inner Local rk-Boundary

Local Sphere
of radius 2x dn
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In the context of a global rk-Chart, smaller  values yield more representing points (i. e. support

vectors) and a tighter hyper-sphere, whereas larger values give fewer support vectors and result in

a bigger hyper-sphere. The goal is to identify a value for  that results in good agreement

between the 'support vector list' SVS of the global rk-Chart boundary and the 'boundary list' BLS

resulting from local rk-Boundaries (see Table 1 for precise definitions of these terms, and Figure

3 for a depiction of the class boundary list):

*

min( ) max( )
arg max { ( )}
nnd nnd
i i

BL SV

x x
 

 
 S S (21)

In general, smaller  values result in a global support vector list that is a superset of the

boundary list, with some points that are not part of the boundary list. On the contrary, larger 

values result in a global support vector list that is a subset of the boundary list. In assessing this

agreement, rk-Chart computes the fitness of a  value by employing a two-part strategy:

effective representation and compactness. Effective representation is achieved by ensuring that

the global support vector list 'best matches' the boundary list. Compactness on the contrary

emphasizes a smaller support vector list, which improves generalization. Compactness is

managed through a user-defined parameter 0 1  . The higher the value of  the more

compact the support vector list and the higher the Type II error (i. e. inability to detect novel

conditions), resulting in a larger hyper-sphere.

There is typically a  value, denoted by c , that results in near perfect agreement between

the support vector list and the boundary list. As  exceeds c , the support vector list gets

smaller. The actual value of  employed in constructing the proposed global rk-Chart is:

( )c max c       (22)

Figure 4 illustrates the influence of different compactness levels on the quality of representation,

using an example dataset. The innermost rk-Chart boundary provides effective representation but

with 20 support vectors all of which are in BLS ( 0)  , whereas the outermost rk-Chart boundary
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achieves compactness with just 2 support vectors ( 1)  . While the parameters

min min( )nnd
ix  , max max( )nnd

ix  , c are calculated empirically, the compactness parameter 

and the rk-Chart boundary scaling parameter  (employed for constructing the scaled inner

- L
irk B ) need to be pre-specified by the user or require repeated trials (typically set around 0.95).

Figure 4: Influence of  on rk-Chart representation.

Once the optimal  value is calculated based on the desired degree of compactness, one can

construct ‘inner’ and ‘outer’ boundary representations by correspondingly changing the radius of

the rk-Chart hyper-sphere. Figure 5 illustrates this procedure for the same dataset from Figure 4.

It is clear that as the radius is changed the overall geometric shape is maintained while the scale

changes.

Figure 5: Influence of scaling rk-Chart hyper-sphere radius (using parameter ) on boundary

representation.
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III.3. Learning from abnormal data

There are occasions when observation samples from abnormal or out-of-control process states are

available in the training set. Not exploiting this information can have a major detrimental effect

on the performance of the control chart (in terms of Type-I and Type-II errors). The earlier rk-

Chart formulation can be modified as follows to exploit any available examples from out-of-

control states:

Min 2
i o j

i j

r C C    (23)

Subject to: 2
i ir   x c and 2

j jr   x c (24)

where oC is the penalty value for an out-of-control state data point falling inside the

representation boundary.

The Lagrange formulation of this new problem is as follows:

 

2

2

( , , , , )

( 2 )

i o j i i
i j i

j j i i i i i
j i

L r r C C

r

   

   

   

        

  

 

c ξ α γ

x x c x c c
(25)

To satisfy KKT condition, we once again take derivates of the cost function w.r.t. the parameters

and equate them to zero, leading to the following equations:

1i i
i i

    (26)

i i j j
i j

   c x x (27)

Substituting (26) and (27) in (25), leads us to following Lagrange formulation:

,

, ,

,

( , , , , ) ( ) ( ) ( )

( ) ( )

( )

i i i i i i i j i j
i I i J i j I

i j i j i j i j
i I j J i J j I

i j i j
i j J

L r    

   

 

  

   



     

   

 

  

 



c ξ α γ x x x x x x

x x x x

x x

(28)
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where, I is the class of in-control state examples and J is the class of out-of-control state

examples. This formulation can be simplified by labeling out-of-state classes as '-1' and in-

control class as '+1'.

1
1

i
i

i

x I
y

x J


  
(29)

'
i i iy  (30)

Substituting (29) and (30) in (28) results in the following:

Max ' ' '

{ , } , { , }

( ) ( )i i i i j i j
i I J i j I J

 
 

   x x x x (31)

0 i C  (32)

0 j oC  (33)

1i i
i i

    (34)

As can be seen from equations (31-34), the formulation essentially remains the same with an

additional constraint for the corresponding Lagrange multiplier value of the out-of-control state

example.

IV. Experimental results

The application of rk-Chart will be discussed in two subsections: First, rk-Chart is evaluated

using datasets that follow common probability distributions (i. e. normal, lognormal and

exponential). We then evaluate rk-Chart using a benchmarking dataset (i. e. the Smith dataset)

(Smith 1994) that has been used extensively for methodological development and evaluation in

the process control literature (Chinnam 2002).

First, normal, lognormal and exponential distributions are employed to generate data.

Parameters for the distributions and a sample of dataset are given in Table 2 and Figure 6,

respectively. For a typical X chart, it is recommended to have at least 20-25 patterns (Woodall
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and Montgomery 1999). In our experiment, 250 samples are generated for each distribution.

Samples are grouped with size of 10 and two features, the mean and the standard deviation, are

calculated for each sample group, resulting in only 25 two-dimensional data points.

Table 2: Parameters of distributions for evaluation experiments.

Normal Lognormal Exponential

Normal Behavior (Nor)
 0 0 1
 1 1 -

Small Mean Shift (SM)
 1 1 2
 1 1 -

Large Mean Shift (LM)
 3 3 4
 1 1 -

Small Variance Shift (SV)
 0 0 -
 2 2 -

Large Variance Shift (LV)
 0 0 -
 3 3 -
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Figure 6: Example time Series. a) IID Exponential, b) IID Normal, c) IID Lognormal.

We trained rk-Chart in two ways: First, with only in-control data, and second, with in-control

and limited out-of-control data as well. In the latter case, we used 10 abnormal patterns. As

mentioned before, rk-Chart does not require out-of-control data, but having some helps to

improve the accuracy of the method. Type-I and Type-II errors are defined as rejecting a true

hypothesis and accepting a false hypothesis, respectively. In a statistical process control context,

Type-I error refers to rejecting an in-control process as if it is out-of-control and Type-II error

refers to accepting an out-of-control process as if it is in-control. The format of reporting Type-I

and Type-II errors is given in the Table 3. The results of rk-Chart implementation on processes

that follow normal, lognormal, and exponential distributions are summarized in Table 3.
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Table 3: Type-I and Type-II errors defined.

Hypothesis Test
Estimated

In-control Out-of-control

A
ct

ua
l In-control Correct Type-I error

Out-of-control Type-II error Correct

Table 4: Classification accuracy for: 1) (Left side of the table) Training only with 25 in-control patterns or
sub-groups, each of which sub-group sample size of 10. 2) (Right side of the table) Training with 25 in-

control and 10 out-of-control patterns, each with a sub-group sample size of 10; a) Normal b) Lognormal c)
Exponential distributions; SM: Small Mean Shift, SV: Small Variance Shift, LM: Large mean shift, LV:

Large variance shift.

1) Training only with in-control data 2) Training with in-control and limited out-
of-control data

a.1
Estimated

a.2
Estimated

In-control Out-of-
control In-control Out-of-

control

A
ct

ua
l

In-control 88.3% 11.7%

A
ct

ua
l

In-control 86.6% 13.4%

O
ut

-o
f-

co
nt

ro
l SM 7.4% 92.6%

O
ut

-o
f-

co
nt

ro
l SM 9.0% 91.0%

LM 0.0% 100.0% LM 0.0% 100.0%
SV 6.4% 93.6% SV 4.1% 95.9%
LV 0.2% 99.8% LV 0.1% 99.9%

a) Normal Distribution

b.1
Estimated

b.2
Estimated

In-control Out-of-
control In-control Out-of-

control

A
ct

ua
l

In-control 73.2% 26.8%

A
ct

ua
l

In-control 81.3% 18.7%

O
ut

-o
f-

co
nt

ro
l SM 4.5% 95.5%

O
ut

-o
f-

co
nt

ro
l SM 9.5% 90.5%

LM 0.0% 100.0% LM 0.0% 100.0%
SV 14.8% 85.2% SV 16.9% 83.1%
LV 4.1% 95.9% LV 3.0% 97.0%

b) Lognormal Distribution

c.1
Estimated

c.2
Estimated

In-control Out-of-
control In-control Out-of-

control

A
ct

ua
l In-control 88.8% 11.2%

A
ct

ua
l In-control 80.8% 19.2%

O
ut

-
of

-
co

nt
r

ol

SM 23.9% 76.1%

O
ut

-
of

-
co

nt
r

ol

SM 16.0% 84.0%
LM 0.7% 99.3% LM 0.4% 99.6%

c) Exponential Distribution

As seen from Table 4, the non-parametric rk-Chart technique is able to detect out-of-control

processes with no available out-of-control data with Type-I errors ranging from a highest of

26.8% to a low of 11.2%. Type-II errors ranged from 23.9% down to 0% in the case of no

available out-of-control data. When limited training data from faulty process states are available,



22

Type-I errors improve to a high of 19.2% and a low of 13.4%. Type-II errors also improve with

limited faulty process training data, to a high of 16.9% and a low of 0%.

We will also demonstrate the effectiveness of rk-Chart for detecting mean and variance shifts

in using the benchmarking dataset generated by Smith (Smith 1994) and compare the results from

a general support vector machine (SVM) method proposed by (Chinnam 2002) and a multi-layer-

perceptron (MLP) neural network model (Smith 1994). The dataset has 300 samples from in-

control state and out-of-control states of large mean shift (LM), small mean shift (SM), large

variance shift (LV), and small variance shift (SV). The parameters are given in Table 5. The

results will be reported in three different categories. In the first category, the results of rk-Chart

will be compared with results of Shewhart chart, MLP and SVM. Note that MLP and SVM create

a distinct model for each abnormality type (e.g. small mean shift, large variance shift). In the

second category, two different rk-Chart results are reported: rk-Chart(1), which is trained with

only in-control data and rk-Chart(2), which is trained with in-control and limited out-of-control

data. Note that MLP and SVM cannot be implemented in case of absence of out-of-control

samples. In the third category, the results of rk-Chart that is trained with very limited in-control

(i.e. 25 samples) and out-of-control data (i.e. 10 samples) are reported.

Table 5: Parameters of testing datasets.

State Label  
Normal Behavior (Nor) 0 1
Small Mean Shift (SM) 1 1
Large Mean Shift (LM) 3 1

Small Variance Shift (SV) 0 2
Large Variance Shift (LV) 0 3

Table 6: Classification Accuracy of rk-Chart versus MLP, Shewhart Charts and SVM charts using the
benchmarking dataset from Smith (1994). *in: In-control data, out: Out-of-control data.

rk-Chart MLP Shewhart
Control Charts SVM

Test Train Test Test Test Train
Small Shift 91% 92% 72% 73% 93% 91%

Large Shift 96% N/A 100% 100% 100% 99%
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In the first category, classification accuracy is reported in methods such as MLP, Shewhart

chart and SVM instead of Type-I and Type-II errors. Thus, the classification accuracy of rk-Chart

is calculated in order to compare the results with these methods. The weighted average of Type-I

and Type-II errors are calculated, considering the number of patterns used for in-control and out-

of-control data. As seen from Table 6, rk-Chart performs better than MLP and Shewhart charts.

SVM is only 1% to 4% better than rk-Chart. Even though SVM method gives better results than

rk-Chart, there are two difficulties of implementing SVM and MLP in real world settings:

1. A distinct model is developed for each of the out-of-control state for SVM and MLP.

There are four out-of-control states (SM, LM, SV, LV) resulting in four SVM and MLP

models. Even though each model works well for developed out-of-control states, they

cannot effectively work for other out-of-control states that are yet to have a model. In

addition, SVM and MLP may be sensitive to an undefined out-of-control state. In

contrast, rk-Chart characterizes the in-control state of the process and it has the ability

to detect any undefined and unseen type of out-of-control state.

2. SVM and MLP are trained with 300 samples from in-control state and 300 samples

from each modeled out-of-control state resulting in 4 models using a total of 2400

samples. On the other hand, rk-Chart uses only 300 samples from in-control state and

200 samples from out-of-control states.

Table 7: Type-I and Type-II errors for the benchmarking dataset from Smith (1994) using rk-Chart.
In*: in-control state, Out*: Out-of-control state. rk-Chart(1): Training with 300 normal samples. rk-Chart(2):

Training with 300 normal and 200 abnormal samples (100 small mean shift, 100 small variance shift)

Estimated
rk-Chart(1) rk-Chart(2)

In* Out* In* Out* In* Out* In* Out*
Train Test Train Test

A
ct

ua
l

In-cont. 100% 0% 84% 16% 88% 12% 90% 10%

O
ut

*

SM N/A N/A 5% 95% 1% 99% 7% 93%
LM N/A N/A 0% 100% N/A N/A 0% 100%
SV N/A N/A 15% 85% 4% 96% 9% 91%
LV N/A N/A 15% 85% N/A N/A 8% 92%
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In the second category, we will report rk-Chart results with no and limited out-of-control

data. In the former case (i.e. rk-Chart(1)), only 300 samples of in-control data are used for training,

in the latter case (i.e. rk-Chart(2)) 300 samples of in-control and 100 samples of small mean shift

and 100 samples of small variance shift are employed for training. The Type-I and Type-II errors

as given in Table 7 are promising with 16% Type-I error and highest 15% Type-II error in rk-

Chart(1) and 12% Type-I error and highest 9% Type-II error with rk-Chart(2).

In the third category, rk-Chart is implemented with very limited in-control data. We

implemented rk-Chart with 25 training patterns from the benchmarking Smith (Smith 1994)

dataset and results are shown in Table 8.

Table 8: Process state classification for non-correlated Smith data with limited number of in-control and
out-of-control samples (i. e. 25 in-control and 10 out-of-control patterns)

Data size of 25
rk-Chart

in* out*

A
ct

ua
l

in 88% 12%

ou
t

SM 9% 91%
LM 1% 99%
SV 8% 92%
LV 4% 96%

As seen from Table 8, in the worst of the cases tested, rk-Chart had the power to effectively

detect out-of-control conditions 91% of the time (9% Type-II error), with false alarm rate of only

12% (Type-I error) even with limited data size.

As for parameter selection in initializing rk-Charts, when the control chart is initialized with

just in-control data, two parameters are required: a penalty value for misclassification of in-

control data ( C ) and compactness ( ). The recommended default parameter values are 1.0 and

0.2, for C and  , respectively. An additional penalty parameter ( 0C ) is required for cases with

any available out-of-control data for initialization. The recommended default parameter value is

once again 1.0. All the experimental results reported here are based on these default settings.

Extensive experimentation with these parameters suggests that the rk-Chart is relatively robust
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with respect to parameter value selection and that the recommended default values work well in

most cases. However, individual applications can call for different types of tradeoffs between

Type-I and Type-II errors, which call for appropriate selection or tuning of rk-Chart parameters.

V. CONCLUSION

A new process control technique based on support vector machine principles, called robust

kernel-distance control chart (rk-Chart), is proposed for both univariate and multivariate

processes. rk-Chart has several advantages over the conventional SPC techniques and pattern

recognition methods in the literature. rk-Chart does not make any assumption about the data

distribution, which is a fundamental restriction for conventional SPC techniques. In addition,

conventional SPC techniques cannot benefit from available out-of-control data, whereas rk-Chart

can learn from out-of-control samples, where applicable. Pattern recognition methods used for

process control in the literature based on other support vector machine (SVM) principles, radial-

basis function (RBF) networks, and multi-layer-perceptron (MLP) neural networks require

excessive amount of in-control data as well as out-of-control data. Furthermore, a distinct model

for each type of out-of-control process needs to be created and trained using both in-control and

out-of-control data with SVM, RBF and MLP. These models are not sensitive to out-of-control

conditions other than those on which they are trained. In contrary, rk-Chart characterizes in-

control-processes and requires only in-control data. However, it makes an explicit provision to

accommodate any available out-of-control data. Thus, it is sensitive to all types of out-of-control

processes. It is also shown that rk-Chart is able to give very reasonable results with limited in-

control and out-of-control data when tested using a variety of datasets.
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