
1

Analytical Letters, 2007, Volume 40, Issue 8, Pages 1549 to 1555

Nano-porous Light-emitting Silicon Chip as a Potential Biosensor Platform

Juankun Zhang *1, Weiliang Zhang1, Shanmu Dong1，Anthony P F Turner2

1 Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin

University of Science and Technology, No. 29 Tianjin Economic Technological

Development Area, Tianjin, 300457, P. R. China

2 Cranfield Health,, Cranfield University, Silsoe, Bedfordshire, MK45 4DT, UK

*Corresponding author. fax: +86 22 60602298

E-mail address: zhangjk@tust.edu.cn

mailto:zhangjk@tust.edu.cn


2

Abstract

Nano-porous silicon (PS) offers a potential platform for biosensors with benefits both

in terms of light emission and the large functional surface area. A light emitting PS

chip with a stable and functional surface was fabricated in our laboratory. When

protein was deposited on it, the light emission was reduced in proportion to the

protein concentration. Based on this property, we developed a rudimentary

demonstration of a label-free sensor to detect bovine serum albumin (BSA). A serial

concentration of BSA was applied to the light chip and the reduction in light emission

was measured. The reduction of the light intensity was linearly related to the

concentration of the BSA at concentrations below 10-5M. The detection limit was

8x10-9 M.
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1. Introduction

Light emission from porous silicon (PS) was first described by Canham in 1990.

During the early 90’s, exploitation of this phenomenon mostly focused on

microelectronic and optoelectronic areas (Smith et al. 1992; Hamilton 1995; Canham

1997) with research being carried out by physical and material scientists. Following

this initial work, the effect of nano-structures, the light emission principle and further

surface characterization studies were also undertaken (Linford et al. 1995; Song et al.

1998; Parisinia et al. 2000). It was shown that the PS light-emission intensity is

largely reliant on surface termination (Allen et al. 1999). Conjugating groups with

phenylacetylenyl (Song et al. 1998) completely quenched the light emission, whereas

isolated double bonds only quenched 40±80% of the light intensity (Buriak et al.

1998). Simple phenyl termination had little effect, as compared to the Si±Hx

terminated PS (Song et al. 1998).

Since the electrical and optical properties of PS are largely determined by its

nano-structure and are particularly sensitive to adsorbates on the internal surfaces, the

changes in these properties following chemical interactions enables PS to operate as a

basic chemical sensor (Mulloni et al. 2000; De Stefano et al. 2003a; De Stefano et al.

2003b; De Stefano et al. 2004)

Chan and co-workers (Chan et al. 2001) demonstrated a DNA sensor with Bragg

reflector. Porous silicon can luminesce efficiently in the visible. When a luminescent porous
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silicon layer is inserted between two Bragg reflectors, the broad luminescence band is altered and

multiple, further the very narrow peaks are detected.

An interferometric biosensor using a double-layer of PS has been investigated by

Pacholski et al. in 2005. It comprised of a top layer with large pores and a bottom

layer with smaller pores. The reflectivity spectrum of this structure displayed a

complicated interference pattern. Shifts of the Fast Fourier Transform (FFT) peaks

indicate penetration of biomolecules into the different layers. A small molecule,

sucrose, entered into both porous Si layers, whereas a large protein only entered the

large pores. Detection was accomplished either by computing the weighted difference

in the frequencies of two peaks or by computing the ratio of the intensities of two

peaks in the FFT spectrum. More recently, De Stefano and co-workers (De Stefano et

al. 2006) published their work on PS based optical microsensor for the detection of

L-glutamine. The molecular binding between the glutamine-binding protein (GlnBP)

from Escherichia coli and L-glutamine (Gln) was revealed as a shift in wavelength of

the fringes. Due to the hydrophobic interaction with the Si-H terminated surface of the

porous silicon, the GlnBP protein, which acts as a molecular probe for Gln, penetrates

and links into the pores of the porous silicon matrix.

In the current work, we employed the principle of PS light intensity changes

following molecule adsorption to develop a simple and low cost label-free biosensor

(see the conclusion section).

2. Materials and methods
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The PS was fabricated from p-type silicon with a specific resistance ρ=1-2 Ω.cm

using an electrochemical etching process at 300 mA/cm2 in hydrofluoric acid (HF)

solution followed by treating with H2O2 to oxidize the PS surface (Linford et al.

1995).

The pore size of PS was detected by Jem-100Cex-II transmission electron

microscope (TEM) from Shimadzu.

The surface chemistry was analyzed by VECTOR22 fourier transform infrared

(FT-IR) from Brurker Optics.

The protein binding capacity of PS chip was achieved by immersing the PS chips

into the 5mg/ml BSA solution for 2 hours at room temperature. After rinsed

thoroughly with dH2O, the protein-PS surface was etched off with sonication in 20%

HF and then the protein concentration was measured using Bio-Rad protein assay.

This assay is based on the observation that the absorbance maximum for Coomassie

Brilliant Blue G-250 shift from 465 nm to 595 nm when binding to protein and the

differential colour change of the dye in response to various concentrations of protein.

The standard curve was made from a concentration series of bovine serum albumin

(BSA). Samples and standards were reacted with dye for 5 minutes and then read at

OD595.

The relationship between the PS surface fluorescence reduction and the immobilized

BSA concentration was analyzed. The adsorption was carried out by immersing the

PS chips of 0.5mm2 into BSA solutions with concentration of 0.05mg/ml，0.1mg/ml，

0.5mg/ml, 1mg/ml, 2mg/ml and dH2O for 2 hours at room temperature. The chips
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were then washed with dH2O thoroughly. After drying in air, the fluorescence

intensity was measured using a RF-5301 fluorometer from Shimadzu. The chip

stability was also studied by measuring the light emission from the same chips every

hour, every day and every month. All experiments were undertaken in triplicates.

3. Results and discussion

The factors affecting light emission from PS are functional groups, gas, other

molecules and the pore size on the PS surface. The pore radii vary from 4-12 nm for

PS etched at 220 mA/cm2 and up to 300-800 nm for PS etched at 600 mA/cm2

(Janshoff et al. 1998). Under our working condition, the pore size of PS is about 20nm

(figure 1). The PS chips are stable for more than 4 months (figure 2 and more data did

not show here). When exited with UV light at about 360nm, the PS emits bright

fluoresce at 569nm. The silicon dissolution involves two free carriers (electrons and

holes). When PS was etched in the HF solution, the surface acquires Si-F bonds and

Si-H termination and it became hydrophobic and unstable. After the surface was

oxidized with H2O2, the PS surface was modified with Si–OH and Si–O (Figure 3). It

then became hydrophilic, stable and ready for protein adsorption.

The protein binding capacity of PS chip is about 4 µg/cm2 (see material and

methods).

The results shown in Figure 4 were obtained by immersing the PS chips into

different concentration of BSA solutions and then measuring the light reduction. This

revealed that the intensity of fluoresce varied in inverse proportion to the
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concentration of BSA. When BSA concentrations were lower than 1mg/ml, the

fluorescence was reduced by about 9% for each increase in BSA concentration of

0.5mg/ml. However, when the BSA concentration was greater than 1mg/ml, the

fluoresce reduction became much less, indicating that the surface of the chips were

saturated with BSA. Further, the detection limit was calculation based on the data

from figure 4 and it was 8x10-9 M.

The light reduction was presumably caused by the interaction between the PS

surface and BSA. The ions existing on the PS surface within the nano-structure absorb

energy from UV and then emit light. When BSA molecules bound to the surface, the

PS surface chemistry, charges, pore size and structures are all subject to change.

Consequently, the energy intake and light emission were reduced. However, we also

found that some gases, biological materials, inorganic and organic molecules also

change the light intensity as well (results are not shown).

4. Conclusion

We have investigated a simple and label free optical BSA sensor, based on the

interaction of protein molecules with the nano-PS surface. The PS obtained under our

experimental conditions has the pore size of about 20nm and area of about

500cm2/cm3 and emitted fluorescence under UV light. This provided good

characteristics for new biosensor development. We showed that a series of

concentrations of BSA absorbed on the surface of the PS resulted in a proportional

decrease in fluorescence, We also found that some gases, biological materials,
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inorganic and organic molecules also change the light intensity as well. The detection

limit of the sensor was about 8x10-9 M. This method for monitoring BSA is label free

and uses a simple and inexpensive technique for PS preparation. As a measurement

system it is simple to operate and offers high sensitivity and hence may have utility

for a range of analytes provided that suitable selectivity can be introduced onto the

surface.
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Legends

Figure 1. The PS pore size image of TME.

Figure 2. The PS fluorescence stability over more than two months.

Figure 3. The chemical structure (A) of PS and the FT-IF data (B).

Figure 4. The % of PS fluorescence reduction, after the adsorption with different

concentration of BSA.
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Figures

Figure 1.



13

- 100

- 80

- 60

- 40

- 20

0

20

40

60

80

100

15 30 45 60 75
Days

T
he

%
o

f
fl

u
o

re
sc

en
ce

ch
an

g
es

Figure 2.



14

3
4

1
1

2
9

2
5

2
2

6
1

1
6

2
9

1
0

8
1

9
3

7
8

7
8

4
6

5

5001000150020002500300035004000

Wavenumber cm-1

0
2
0

4
0

6
0

8
0

1
0
0

T
ra

n
s
m

it
ta

n
c
e

[%
]

Figure 3.

→
In HF In H2O2

(A)

Si-H

Si-O(B) Si-OH



15

Figure 4.
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