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Abstract—Multibeam radars (MBRs) enable multiple indepen-
dent channels by simultaneously exploiting spatial and waveform
diversity. Orthogonal waveforms are employed to form multiple
independent antenna beams, each one providing a different
function and using different dedicated radar resources. This
paper investigates sidelobe levels in MBRs and presents a
comparison with those of an Electronic Steerable Array (ESA)
that employs a single waveform in transmission to generate
multiple simultaneous beams. Simulations are carried out for a
3-channel MBR transmitting quasi-orthogonal Linear Frequency
Modulated (LFM) waveforms at Ku band. The response of the
MBR to an ideal point target as a function of aspect angle
as well as that to multiple targets in different locations has
been investigated. Results corroborate the analytical findings and
show that the sidelobe levels with respect to angle, at the target
range, are attenuated by the cross-ambiguity function properties
between the waveforms employed. The range response to a target
in low channel isolation suffers from cross-channel interference
that may alter the noise floor characteristics of the radar, hence
stressing the importance of suitable waveform selection.

I. INTRODUCTION

Multibeam radars (MBR) use waveform diversity (WD) to

form multiple independent beams and provide multiple simul-

taneous functions in different directions. Each radar channel

corresponds to a beam formed by a dedicated waveform

that is orthogonal to the waveforms that generate all other

beams [1] [2] [3] [4]. To achieve this, each element of the

array transmits a linear combination of orthogonal waveforms.

On receive, phase steering and waveform orthogonality are

employed in conjunction to reduce the mutual interference

between adjacent beams and allow MBR to provide multiple

simultaneous functions. The main benefits are maximum use

of the available bandwidth and increased resource management

performance.

The research community has been very active in the area

of orthogonal waveform design, particularly to address the

need of multiple-input multiple-output (MIMO) radar systems.

MIMO radar with collocated antennas is a radar config-

uration that enables improved parameter estimation, better

target detection, beamforming flexibility, improved angular

resolution, and minimum detectable velocity [5], [6]. Similarly

to MBR, MIMO systems rely on orthogonal waveforms in

transmission to provide multiple simultaneous channels all

exploiting the entire available bandwidth [7] [8]. The differ-

ence is that each element of a MIMO system transmits a

waveform that is orthogonal to the waveforms used by all

other antenna elements. MIMO radar can be synthesised with

collocated or widely separated antennas. When the antennas

are far apart, MIMO radar is a type of multistatic radar that

exploits spatial diversity of radar cross section (RCS) [9].

Both collocated and multistatic MIMO configurations demand

the use of multiple orthogonal waveforms [7]. Numerous ap-

proaches have been followed to design orthogonal or pseudo-

orthogonal waveforms for MIMO radars. Waveforms are often

not optimal because radar waveforms can only provide pseudo-

orthogonality and radar targets are characterised by a time-

varying and frequency selective response. A solution proposed

in the past is to employ numerically optimised polyphase

codes, but these make target detection more difficult because

they lack Doppler tolerance [8]. As a result, processing at the

receiver becomes more complex due to the requirement of

a bank of filters to account for the different Doppler shifts.

Doppler tolerance is one of the main advantages of linear

frequency modulated (LFM) waveforms [10]. Additionally,

when the chirp is not modulated in amplitude, the peak

power remains constant and the transmitter can operate under

saturation. An up-chirp and down-chirp can be used to form

independent beams but this approach is limited to only two

beams [1]. Chirp rate diversity can be used to produce more

than two channels [3], [11], [12]. In attempting to produce a

larger number of orthogonal waveforms, some authors have

combined FDM with LFM [13], [14]. However, the existing

proposed solutions are based on a numerical optimisation of a

matrix of chirps, discretely distributed in time and frequency

that result in loss of Doppler tolerance. Chirp rate diversity

was also used in telecommunication applications for channel

estimation and multiuser channel allocation [15]. Waveforms

with a large time-bandwidth (BT) product can be formed by

stacking together chirp signals with the same bandwidth to

form pseudo-orthogonal waveforms [16]. Although some of

the Doppler tolerance is lost, constant amplitude ensures maxi-

mum energy in transmission and chirp rate diversity allows for

multiple instances of pseudo-orthogonal waveforms. Although

no thorough examination to determine optimal parameters

of such waveforms has been conducted, a similar approach

was followed to numerically optimise chirp rate diversity

waveforms [17].

The aim of this paper is to investigate sidelobe levels in MBRs.

The solution presented here requires the use of combined

signal processing on both transmit and receive. It differs from
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other transmit-only solutions that can provide multiple multi-

function beams, without direct use of orthogonal waveforms,

such as those presented in [18] and [19]. In this paper, the

analytical results on MBR presented in [3] are extended to

multiple targets and sidelobe level performance is assessed

with a set of simulations for a 3-channel MBR transmitting

LFM chirps. A comparison with the case of a typical ESA

using only one waveform in transmission to create multiple

simultaneous beams is presented.

II. BACKGROUND THEORY

Let us consider an antenna array of K omnidirectional

elements transmitting signals arranged in a vector

s(t) = [s1(t) s2(t) · · · sK(t)]T (1)

with sk(t) being the transmitted narrowband signal at the kth

element of the array. The vector of all echo signals at the

receiving elements, reflected from the i-th target in a direction

θi can be expressed as

yi(t) = γia(θi)a
T (θi)s (t− ti) e

−j2πfctiej2πfit (2)

where γi ∈ C is the complex target reflection coefficient, ti
is the echo time-delay, fc is the carrier frequency, fi is the

target Doppler shift, and a(θi) is the manifold K×1 vector

corresponding to the direction θi with elements

ak(θi) = ej2πfcd sin θi(k−1)/c (3)

When N targets are present the vector of all received signals

is

y(t) =

N
∑

i=1

γia(θi)a
T (θi)s (t− ti) e

−j2πfctiej2πfit (4)

MBR uses a linear combination of orthogonal waveforms at

each antenna element to increase isolation between multiple

simultaneous beams that point in different directions [3].

Each antenna element of an MBR transmits a linear com-

bination of M orthogonal waveforms x(t)

s(t) = Wx(t) (5)

where W is a K ×M steering matrix defined as

W =
[

a

(

θ̃1

)

a

(

θ̃2

)

· · · a
(

θ̃M

)]∗

(6)

with the symbol ∗ indicating the conjugate operation. Each

column of W is a steering vector pointing in the direction

θ̃m, for m = 1, ...,M and the elements of x(t) are orthogonal

waveforms xm(t), each one corresponding to one of the M
beams. Inserting Eq. 5 in Eq. 2 leads to the received signal

y(t) =
N
∑

i=1

αia(θi)a
T (θi)Wx(t− ti)e

j2πfit (7)

where αi = γie
−j2πfcti . Extraction of the mth channel is

achieved by matched filtering the received signal at each

antenna element to xm(t) and by steering the receiving array

in the direction θ̃m so to obtain

zm(t) = aH(θ̃m) [y(t)⊛ x∗
m(−t)]

=

N
∑

i=1

αia
H(θ̃m)a(θi)a

T (θi)

×
[

M
∑

k=1

a∗(θ̃k)χmk(t− ti, fi)e
j2πfit

]

(8)

where the symbol ⊛ indicates the convolution function, and

χmk is the cross-ambiguity function between xm and xk

defined as

χmk(τ, fD) =

∫ ∞

−∞

x∗
m(t)xk(t+ τ)ej2πfDtdt (9)

Eq. 8 can be rearranged to obtain

zm(t) =

N
∑

i=1

βi(t)a
H(θ̃m)a(θi)a

T (θi)a
∗(θ̃m)χmm(t− ti, fi)

+

N
∑

i=1

βi(t)a
H(θ̃m)a(θi)a

T (θi)

×





M
∑

k 6=m

a∗(θ̃k)χmk(t− ti, fi)





(10)

with βi(t) = αi(t)e
j2πfit, where the first term represents

the co-channel response and the second term represents the

contribution of all the adjacent channels.When a set of or-

thogonal waveforms is employed, χmk(τ, fd) = 0 for k 6= m
and the contribution of all cross-channels is zero. A detailed

mathematical treatment of the signal model for the case of a

single target can be found in [3].

The amount of cross-channel interference depends on the

isolation between the signals in use and the aspect angle of

the target with respect to the direction of each channel antenna

beam. For perfectly orthogonal waveforms, the second term in

Eq. 10 is null and the response to the target in each channel

is the same of that of a typical single beam array. However, in

practice, waveforms are only quasi-orthogonal and the cross-

channel interference depends on the level of isolation and

cross-correlation properties between waveforms as well as the

beam pattern associate to all cross-channels in the direction

of the target. The difference with a conventional MIMO

radar, that requires an orthogonal waveform for each radiating

element, is that MBR requires orthogonal waveforms for each

independent beam. As a consequence, for MBR, a smaller

number of orthogonal waveforms is potentially required and

each beam can be associated to waveforms using different

resources and providing different performance parameters (e.g.

resolution and ambiguities).

The isolation between two signal is defined as

Imk(τ, fD) =

∣

∣

∣

∣

χmm(0, 0)

χmk(τ, fD)

∣

∣

∣

∣

=

∣

∣

∣

∣

χmm(0, 0)

χ∗
km(−τ,−fD)

∣

∣

∣

∣

(11)



Eq. 11 describes the ratio between the amplitude of the co-

channel and cross-channel contributions for two independent

beams pointing in the same direction. A pair of ideal orthog-

onal waveforms satisfy the equality χmk(τ, fD) = 0 for all

values of τ and fD. However, real waveforms will only be

pseudo-orthogonal and are commonly designed so that their

cross-ambiguity function is lower than a predefined value.

Waveforms designed with a high isolation for all possible pairs

ensure a small cross-channel interference.

III. ISOLATION FOR LINEAR CHIRPS

The isolation properties between waveforms generated by

employing linear chirps of the same duration over different

bandwidths, to allow for chirp rate diversity, were presented

in [3].

Let us consider two baseband chirps x1(t) and x2(t) of the

same duration T and of the form

x1(t) = ejπγ1t
2

ej2πfs1t (12)

and

x2(t) = ejπγ2t
2

(13)

for t ∈ (−T/2, T/2) and zero elsewhere. The starting fre-

quency of x1(t) is fs1 and the chirps have bandwidths B1 and

B2, and chirp rates γ1 = B1/T and γ2 = B2/T , respectively.

The bandwidth difference is ∆B = B2 − B1 (where the

bandwidth is positive for up-chirps and negative for down-

chirps). The general expressions of the isolation as a function

of the waveform design parameters was derived in [3] and for

τ < 0 can be expressed as

I12(τ, fD) =

√
2T∆B

∣

∣

∣

∣

∣

F

(

√

2∆B

T

(

T

2
+

B2τ − T (fs1 + fD)

∆B

)

)

− F

(

√

2∆B

T

(

−T

2
+

B1τ − T (fs1 + fD)

∆B

)

)
∣

∣

∣

∣

∣

−1

(14)

and for τ > 0

I12(τ, fD) =

√
2T∆B

∣

∣

∣

∣

∣

F

(

√

2∆B

T

(

−T

2
+

B2τ − T (fs1 + fD)

∆B

)

)

− F

(

√

2∆B

T

(

T

2
+

B1τ − T (fs1 + fD)

∆B

)

) ∣

∣

∣

∣

∣

−1

(15)

where F (·) is the complex form of Fresnel integral. The de-

tailed calculations demonstrating Eq. 14 and Eq. 15, including

more general results, can be found in [3]. Eq. 14 and Eq. 15

can be approximated to derive a lower bound on the isolation

I12 >

√

∆BT

2
(16)

Note, that Eq. 16 is a bound and isolation tends to increase

with the time-bandwidth product as well. From Eq. 14 and Eq.

15, the cross-correlation between an up-chirp and a down-chirp

with the same bandwidth can also be calculated as [1]

|R12(τ)| = A2

√

T

B

∣

∣

∣

∣

F

(√
BT

(

1− |τ |
T

))
∣

∣

∣

∣

(17)

For larger time-bandwidth products, Eq. 17 can be simplified

to obtain

I12 ≈
√
2BT, BT ≫ 1 (18)

IV. RESULTS

Simulations have been carried out to investigate the perfor-

mance of an MBR employing a linear antenna array trans-

mitting 3 orthogonal beams (i.e. three orthogonal channels)

using quasi-orthogonal linear chirps and to allow a comparison

with the performance of an ESA generating the same three

beams using a single waveform. The array consists of 30

ideal isotropic elements spaced of half the wavelength and

simulations have been run for a carrier frequency of 15 GHz.

The first channel of the MBR points at θ̃1 = 5 degrees and is

generated using an up-chirp of bandwidth B1 = 50 MHz (3 m

range resolution) and duration T = 10 µs. The second channel

points at θ̃2 = 15 degrees and employs an up-chirp of the same

duration and bandwidth 30 MHz. Finally, the third channel

points at θ̃3 = 30 degrees and is generated using a down-chirp

of bandwidth B3 = 50 MHz and the same duration T = 10
µs. The three LFM waveforms use the same frequency support

and their spectra are overlapped in frequency. With no loss of

generality, in this paper, we present the performance results

of the MBR relative to the extraction of the first channel.

Fig. 1. Cross-correlation properties of the three waveforms employed by the
MBR.

Fig. 1 shows the cross-correlation |χm,k(τ, 0)| between the

three waveforms employed by the MBR. As expected from

the theoretical results, the isolation between the first and the

second channels is about 25 dB and the isolation between the

first channel and the third channel is about 30 dB. As it is well

known, the cross-correlation between channels using pseudo-

orthogonal LFM waveforms also presents a much wider time-

domain response than that of the autocorrelation of a chirp



Fig. 2. Co-channel (g1,1) and cross-channel array pattern factors (g1,2 and
g1,3).

signal [3]. In order to characterise the array response the

antenna pattern factor

gm,k(θi) = aH(θ̃m)a(θi)a
T (θi)a

∗(θ̃k) (19)

is defined and analysed as a function of the target aspect

angle θi. The results in Fig. 2 show the co-pattern g1,1 presents

a clear peak in the direction of the co-channel at 5 degrees

with sidelobes, at about -26 dB, that account for the sidelobe

levels on transmit and on receive. The cross-patterns g1,2 and

g1,3 present a more complex response, with multiple peaks in

the vicinity of angles where the target falls in one of the three

antenna beams either on transmit or on receive. It is important

to stress at this point that the terms gm,k(θi) are the same

for both the MBR and the ESA configurations. However, for

ideal MBRs, the cross-patterns are suppressed by the isolation

properties between the waveforms employed.

Fig. 3 shows the normalised response of the AESA to a

single ideal point target located at 3 km from the radar as

a function of the target aspect angle. Results are relative to

the first channel of the ESA, that is to the beam pointing at

5 degrees. As expected, results show a peak in the response

when the target is at antenna boresight as well as a clear lower

response when the target is in the transmitting beams of the

other two channels. The results as a function of angle are

clearly visible in the cut of the response at the target range

in Fig. 4. Because the same waveform is used to generate all

beams, and all cross-channel interfering contributions are such

that χkm(τ, fD) = χmm(τ, fD), the response as a function

of range is that typical of a linear chirp. Fig. 6 shows the

response of the 3-channel MBR. As indicated by Eq. 10, the

peaks at 15 degrees and 30 degrees, relative to the target being

in the cross-channel beams, are suppressed but modulated by

the cross-ambiguity functions between the three waveforms.

The time-domain response along the range axis is modulated

by the cross-correlation functions between the chirps, presents

wider sidelobes and becomes a function of the target aspect

angle. The cut of the response along the angle direction at

Fig. 3. Normalised response in dB of the single-waveform ESA configuration
to an ideal point target at 3 km as a function of range and angle.

Fig. 4. Normalised response of the single-waveform ESA configuration as a
function of angle at the target range.

Fig. 5. Normalised response of the single-waveform ESA configuration as a
function of range at the target angle.

the target range is shown in Fig. 7 and shows a much cleaner

linear array response compared to that of the ESA. This is due



to the cross-patter factors modulated by the cross-ambiguity

functions being lower than the sidelobes of the co-channel

array factor g1,1. However, the range cut of the response at 5

degrees in Fig. 8 clearly shows the contribution of the cross-

channel interference below the isolation levels. Swapping the

waveforms employed in the second and third channels would

lower the immediate cross-interference floor of about 5 dB but

at the expense of a much longer response. Results could be

clearly improved by using waveforms with increased isolation

properties.

Fig. 6. Normalised response in dB of the 3-channel MBR to an ideal point
target at 3 km as a function of range and angle.

Fig. 7. Normalised response of the 3-channel MBR as a function of angle at
the target range.

In order to investigate the response of MBRs to multiple

targets at different distances and angles, simulations have been

repeated for three targets with different Radar Cross Sections

(RCS). The first two targets are in the co-channel beam (5

degrees direction) at a range of 3 km and 4 km from the radar.

The target at 4 km presents an RCS that is 10 dB lower than

the target at 3 km. The third target is at 4.1 km with a bearing

of 15 degrees but presents a much larger RCS that is 20 dB

stronger than the target at 3 km. Fig. 9 shows the response

Fig. 8. Normalised response of the 3-channel MBR as a function of range
at the target angle.

Fig. 9. MRB response to three targets with different RCS. Two targets are in
the co-channel beam at a range of 3 km and 4 km. The third target is located
in the cross-channel beam at an angle of 15 degrees and at a range of 4.1 km.

of the first channel of the MBR to the three targets. Results

show an evident cross-channel interference centred at 4.1 km

resulting from the presence of the strong reflector in the second

channel beam. The co-channel response to the strongest target

at 15 degrees, due the presence of the sidelobes of g1,1 and that

does not depend on the isolation properties of the waveforms,

is also evident at 4.1 km. The targets at 5 degrees present

the highest returns and contribute with the response shown in

Fig. 8, which is clearly visible for the target at 3 km. The two

targets in the co-channel remain the two strongest detections at

the expense of a significant distortion of the noise floor which,

for this noise-free simulation scenario, becomes dominated by

the contributions of the cross-channel responses. This could

be better suppressed, ideally below the thermal noise floor,

with the use of better isolated waveforms. The results relative

to the AESA are shown in Fig. 10. In this case, as expected,

the strong target at 15 degrees is received through the antenna

sidelobes and presents a higher return than the weaker target

at 4 km in the co-channel beam. As for any ESA, the target in



the co-channel could have been masked by the strong target

at 15 degrees or its sidelobes.

Fig. 10. ESA response to three targets with different RCS. Two targets are in
the co-channel beam at a range of 3 km and 4 km. The third target is located
in the cross-channel beam at an angle of 15 degrees and at a range of 4.1 km.

V. CONCLUSION

In this paper, the sidelobe level properties of MBRs have

been investigated. The model presented in [3] has been ex-

tended to demonstrate the analytical contribution of multiple

targets to cross-channel interference and sidelobe levels. Simu-

lation results for a 3 channel MBR exploiting quasi-orthogonal

LFM waveforms have been presented to corroborate the an-

alytical results. Results have shown that the array sidelobe

levels at the target range are attenuated by the cross-ambiguity

function properties between the waveforms employed. They

have also shown the range response to a target, for waveforms

with low isolation, suffers from cross-channel interference that

can alter the noise floor characteristics of the radar.
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