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Abstract 

Optical measurements from high-speed, high-definition video recordings can be used to 
define the full-field dynamics of a structure. By comparing the dynamic responses 
resulting from both damaged and undamaged elements, Structural Health Monitoring 
(SHM) can be carried out, similarly as with mounted transducers. Unlike the physical 
sensors, which provide point-wise measurements and a limited number of output 
channels, high-quality video recording allows very spatially dense information. 
Moreover, video acquisition is a non-contact technique. This guarantees that any anomaly 
in the dynamic behaviour can be more easily correlated to damage and not to added mass 
or stiffness due to the installed sensors. 

However, in real-life scenarios, the vibrations due to environmental input are often so 
small that they are indistinguishable from measurement noise if conventional image-based 
techniques are applied. In order to improve the signal-to-noise ratio (SNR) in low- 
amplitude measurements, Phase-Based Motion Magnification (PBMM) has been recently 
proposed. 

This study intends to show that model-based SHM can be performed on modal data 
and time histories processed with PBMM, whereas unamplified vibrations would be too 
small for being successfully exploited. All the experiments were performed on a multi- 
damaged box beam with different damage sizes and angles. 
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1 Introduction 
Decades of continuous development allowed a consistent amount of vibration-based 

approaches to be proposed for the damage detection and assessment of structures 
(e.g. [1,2]). This is due to the global and local effects of the damage, which affects 
the overall dynamic characteristics of the structure but also works as a local source 
of added flexibility. Specifically, some of the most successful vibrational 
approaches exploit modal information [3] for Structural Health Monitoring (SHM) 
purposes. Nowadays, Experimental and Operational Modal Analysis (EMA / 
OMA) are common practice for both academic or industrial applications [4]. 
However, some practical issues persist, despite their widespread use. For instance, 
mounted sensors, like, e.g., accelerometers, strain gauges, or Linear Variable 
Differential Transformers (LVDTs), inevitably add mass to the measured structure 
and they can also increase locally the bending stiffness, according to how they are 
attached to the structure. These pointwise local changes produce effects which can 
be easily confounded with damage [5]. Moreover, most of these techniques, while 
theoretically valid, requires a large number of output channels for the recording of 
the structural response. This is particularly true for damage localisation, which 
implicitly requires a high spatial resolution [6]. 

Considering the hierarchical scheme of damage identification proposed in [7], 
a second-level procedure technique focused on local changes can hardly be 
achieved by a single point-wise recording, even if some attempts exist [8]. In fact, 
the spatial resolution of the acquisition negatively affects most of the common 
damage localisation techniques which make use of mode shapes and their first and 
second derivatives [9]. This becomes an issue in real-life scenarios, when affixed 
sensors are, for economic constraints or other practical reasons, deployed in a 
limited number. Hence, the information gathered cannot be but discretised and 
sparse and often suboptimal.    

Optical measurements are a possible solution for some of these issues. Video 
cameras offer a non-contact measurement technology that can produce spatially 
dense information. Moreover, they are (relatively) low-cost and agile to deploy: if 
no physical obstacle subsists in the line of sight, spatial resolution is only a matter 
of focal distance between the camera lens and the investigated structure. They also 
allow different angles of observation, even resulting in a stereo acquisition if 
needed.  

The pinhole camera model [10] behind optical methods of measure can be 
defined with relative ease; once displacements are defined in terms of pixels, the 
conversion to SI length units (i.e., millimetres) is only a matter of calibration, by 
multiplying them by the known length of a reference object divided by the number 
of pixels it spans over [11–13]. Other non-contact alternatives exist: laser scanning 
is the main competitor of video-based techniques. A complete discussion will be 
too long to be reported here; an exhaustive comparison can be found in [14] and 
some related studies recently made by the Authors are reported in [15]. For the aim 
of this work, it is enough to say that high-speed cameras are much more common 
and easy to access than multi-point laser scanners, especially for untrained 
labourers. 

Some other attempts to perform damage localisation from video recordings 
exist in literature. For instance, [16] used the Lukas-Kanade Optical Flow 
algorithm; whilst [17] developed a real-time digital image processing routine. The 
most obvious use is for enhancing visual inspection, such as proposed, e.g., in [18] 
for the inspection of rail wheel profiles. Plenty of similar concepts exist; optical 
measurements extracted from video recordings are established and common in 
practice. Digital Image Correlation (DIC) [19], point tracking (PT) [20], and many 
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other approaches (e.g., [21–24], to cite a few) are all currently used to extract time-
dependent displacements. All these video acquisition techniques are known to be 
satisfactorily accurate; nevertheless, each one has its own caveats and technical 
requirements and limitations: some need high-contrast markers, speckle pattern or 
other arrangements before recording. Vision-based techniques are also often 
coupled with other more traditional techniques, especially for the monitoring of 
the dynamics of vast surfaces such as e.g. landslips or glaciers [25]. In the field of 
SHM, they have been successfully applied extensively (see, e.g., [26–32]). In 
particular, DIC techniques have been successfully use for inspection of bridges 
[33] and of other civil engineering structures [34] in both concrete and asphalt [35], 
as well as for mechanical components and machines, even by means of unmanned 
aerial vehicle video acquisitions [36,37]. An exhaustive review of several DIC 
techniques can be found in [38]; interested audience may find useful information, 
especially for the applications of DIC techniques in aerospace and civil 
engineering instances, in [39]. 

The approach applied here, the Phase-Based Motion Magnification (PBMM) 
algorithm [40], differentiates from these other methods in resorting to a post-
processed source rather than the actual video; hence, the useful information is 
magnified and the Signal-to-Noise Ratio (SNR) is artificially increased. The useful 
motion information, previously indiscernible, is so undisclosed. Specifically, it uses the 
Complex Steerable Pyramid [41] architecture for spatial and temporal filtering the 
video frame by frame, to amplify subtle motions undetectable by the naked eye 
(other alternatives, based e.g. on Riesz Pyramids [42], have also been proposed). 
This can be used to extract both pixel-wise displacement time histories and 
Operative Deflection Shapes (ODSs) roughly correspondent to the structure’s 
mode shapes [43]. 

The rest of the paper is organised as follow. In Section 2, the Phase-Based Motion 
Magnification procedure is outlined and discussed; the underlying theory and 
implementation steps are reported for completeness. A brief comparison with similar works 
is reported as well. In Section 3, the case study proposed is described in detail. Section 4 
reports the obtained results. Finally, in Section 5 conclusions are drawn. Some hints 
regarding damage identification, assessment and modelling for multiple and/or angled 
damages are provided where needed. 

2 Phase-Based Motion Magnification 

Motion magnification techniques can be broadly classified between Lagrangian and 
Eulerian approaches [44], depending on if a given brightness-related feature is 
tracked frame-by-frame among the image for all pixels, or if instead the brightness 
intensity is measured at a fixed voxel grid. The Authors of this paper already dealt with 
Lagrangian techniques in some previous researches [45]; advantages and limitations of 
both typologies can be found, for instance, in [46] (for the particular case of particle 
tracking). The PBMM algorithm belongs to the family of the Eulerian approaches; 
any subgroup of pixels can be used to obtain time series of brightness intensity and 
therefore of any related motion, and any arbitrarily large element of the grid can 
be used as a ‘virtual’ accelerometer [47]. The pros of this approach can be listed 
as follow: respect to a Lagrangian approach such as in [48], it allows to process the 
video decoupling the spatial and temporal problems; thus, the computational cost 
is greatly reduced, and selective amplification (that is to say, the magnification of 
only a certain range of temporal frequencies) may be performed. Time-consuming 
tasks like tracking, layer segmentation, and inpainting the manufactured video are 
avoided. With respect to the linear Eulerian technique proposed in [44], noise in 
the video is translated and not amplified with the content of interest; moreover, 
intensity-based Eulerian techniques support only smaller amplification factors and 
requires very high spatial frequency to perform optimally. 
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2.1 Mathematical formulation of the problem 
Let I be a 2D image intensity profile under global translation over time. Let 

the frame being permanently w  pixels wide and h  pixels height. If

[0, ] [0, ]= (x, y), x w , y h x  is the 2-dimensional pixel coordinates vector, t  is 

the time expressed in terms of frames and ( , )t x is the locally-defined, time-

dependent displacement function, then ( ( , ))I tx x  defines frame-by-frame the 

spatial brightness profile of the whole captured image. For comparison, both 
Optical Flow (OF) and DIC revolve around I as well: OF methods approximate 
the motion field under the image brightness consistency constraint [49] between 
current and initial frames; DIC techniques estimate ( , )t x   through image 

correlation between ( , ) I t tx and a reference frame 0 0( ) ( , )I I tx x .   

The aim of motion magnification is to obtain a “manufactured” video montage 
where ( (1 ) ( , ))I t  x x   for an arbitrary magnification factor  . If it is legit 

to assume all motions (global and local ones) to be pixel-wise linear, ( , )t x can be 

represented as a linear combination of sinusoids; this can be therefore achieved by 
considering a spatial 2-dimensional Fourier series decomposition, i.e.,

02 ( ( , ))
,1

( ( , ))
k i t

I t A e
 

  


 
 

   x x
x x     (1) 

along both  x - and  y -direction, for each complex sinusoid 

02 ( ( , ))
, ,( , ) i t

S t A e
 

   
 x x

x corresponding to a given combination of spatial 

scale   (at non-dimensional pulsation 0 ) and orientation   , with the 

corresponding spatial amplitudes , ( , )A t  x . The pivotal concept is, therefore, to 

amplify the related motion by modifying the spatial phase 

0( , ) 2 ( , ))t t   x (x x , accordingly to the Fourier shift theorem.  In fact, it 

is known [50] that phase provides a better estimation of the motion than the 
brightness amplitude, especially for very small motions and in conditions of 
changing illumination, thus outperforming both DIC and OF methods. Local 

displacement can be directly extracted from spatial phase information ( , )t x . 

Focusing on   alone, regardless of the actual amplitude associated with it, one 

can observe that contours of constant spatial phase change from frame to frame, 

accordingly to the structure motion. For a fixed instant t and direction   , it is thus 

possible to define ( , ) ( , )t x y c   x  for any arbitrary value of c .  By 

varying t, the phase contours become smooth space-time surfaces. Since the points 

move within the motion field, ( ( ), ( ), )x t y t t c   must hold; thus, by deriving 

along time, according to the chain rule, it is possible to define the local velocities 
(in terms of pixels over the 2D frame space) from the  gradient of spatial phase, as 
[50] 

( , ) ( , ) ( , )
( , ) ( ( , , ) ( , ,1) 0

t t t
t ,1) u v

x y t

  


  


  
    

  
& & &

x(t) x(t) x(t)
x(t) u  (2) 
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Being  
( , ) ( , )
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x x
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horizontal and vertical directions, respectively.  
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(3) 

By comparing the velocity at any given frame respect to the initial value at  
0t  , displacement time histories can be defined for the whole duration of the 

video, theoretically for any given subregion of pixels [51]. However, 
homogeneous/textureless regions may be locally ambiguous. Hence, in [47] it is 
strongly suggested to restrain the use of this technique to edges, and only for the 
investigation of the motions happening in the direction perpendicular to them. This 
is what has been done here since the transverse motion was the major interest in 
this case study. 

Magnification can be circumscribed to a specific range of frequency by 
bandpass filtering. This allowing also to remove the temporal mean 

02 ( , )x y  x x  and isolating the vibrational motion at any given location, 

i.e.,  

0( , ) '( , ) 2 ( , )B t t t    x x x     (4) 

Where the bandpassed 2D matrix of local phases at time t, ( , )B t x , can be 

multiplied by   (prime symbol in “ ' ” only indicates a factorisation by the 

constant 02 ). This cause the selected range of frequencies to undergo a 

magnified phase shift, hence a proportionately amplified motion, that is to say, 

02 ( (1 ) ( , ))
, , ,

ˆ ( , ) : ( , ) i B i t
S t S t e A e   
     

   x x
x x   (5) 

What defined so far applies to global motions, as the 2-D Fourier transform 
decomposes the frame in sinusoids along the whole image along the x - and/or  y

-directions. To perform it frame-by-frame in a local region of interest, a spatially 
multi-scale, spatially localised set of transform filters are needed. The Complex 
Steerable Pyramid (CSP) is a viable option in this sense [52]. 

2.2 Complex Steerable Pyramid  

Basically, the pyramid architecture is an overcomplete, steerable, and complex-
valued band-pass filter bank, able to decompose a given input (here, a frame) according 
to its orientation, position and spatial scale; the details for the filter bank implementation 
are reported step-by-step in  [53]. In the signal processing ambit, the overcompletness of 
a filter refers to the degree of redundancy of its frame. That is to say, the frames of a 
Gabor system (i.e. a time-frequency shift made up by functions constructed from 
modulating, dilating and translating a generating function) not being a Riesz basis of a 
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Hilbert space, can produce more robust and stable decompositions than by resorting to a 
nonredundant basis, but at the cost of more computational effort and less compactness 
[54]; major details can be found in [55,56]. This property is here exploited as it provides 
a larger amplification capability. In the same context, the steerability of the same 
indicates an orientation-selective convolution kernel, which may be expressed via a linear 
combination of a set of basis filters, i.e., rotated versions of itself [57]. 

The Complex Steerable Pyramid has a wavelet-like impulse response, in the sense of 
finite spatial support, necessary to capture the variations of the locally-defined motion in 
a 2D frame. It is important to remark that the wavelets themselves are not suited for 
motion estimation; in fact, the well-known Mallat algorithm [58] for Discrete Wavelet 
Transform (DWT) is affected by aliasing problems (i.e. low-frequency contaminations), 
due to the implicit limitations of orthogonal separable wavelet decompositions. Even 
Laplacian Pyramid, another widespread alternative for multi-scale representation, may 
suffer the same issues and, moreover, it is not steerable and more difficult to invert for 
signal/video reconstruction (i.e., it is not self-inverting [59]; because of that, the error 
introduced by sub-bands quantisation also produces low-frequency distortions in the 
reconstructed image). Eventually, the aim is to maintain the useful multi-scale sub-
band decomposition typical of wavelets, often used for time or space localisation 
in the frequency domain [60], but also having them (almost) aliasing-free in the 
space domain, thus equivariant with respect to translation. This is obtained thanks 
to the sub-sampling, overcomplete scheme of the CSP. Its filters resemble 
complex Gabor filters, that is to say, globally-defined complex sinusoids 
windowed by a Gaussian envelope. It is this modulation that gives them finite 
spatial support. Resorting to complex numbers is essential to deal efficiently with 
local amplitudes and local phases simultaneously. Again, similar to wavelets, all 
the transfer functions in the oriented bands of the pyramid are scaled and rotated

‘children’ of a basic filter, defined by their scale and orientation, that is,  ,  , 

so that the discrete Fourier transform of a single frame can be defined (in the 
frequency domain) as 

, ,1

k
I S    



 
   %%    (6) 

where ,S 
%   are the DFTs of the several spatial frequency bands ( , )S t x .  

It must be noted that a CSP’s transfer functions only contain the positive 
frequencies of the respective real pyramid’s ones. Since the decomposition in the 
frequency domain is polar-separable, the independence of scale and orientation 

representation is guaranteed. For any number of orientation bands k , the basis 

functions of the pyramid are k th order directional derivative operators, spanning 
over a rotation-invariant subspace. The major issues are overcompleteness, which 

equals 4 / 3k   (by comparison, Laplacian Pyramid’s overcompleteness is 4/3, and 
orthogonal wavelets are not overcomplete at all. Moreover, complex pyramids are 
twice as overcomplete than real-valued ones), and ringing artefacts, which are 
mainly due to the not perfect reconstruction in the space domain. Another limit, 
which will be discussed in more detail later, regards the size of the local support. 

Collapsing the CSP produce a manufactured, motion-amplified frame for the 
resulting video montage. The steerability of the pyramid allows performing this 
amplification in every direction, even if for the case study here reported, 
transversal displacements are of major interest (given that the axial displacements 
are orders of magnitude smaller and of much less interest). Thus, confounding 
them with the vertical component of motion (with almost no error in practice), the 

direction of greatest interest is for / 2  . 
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2.3 Motion Amplification Procedure  

By applying the filtering procedure described above to every spatial scale and every 
orientation of the CSP, a collection of amplified and non-amplified motions is defined 
(the overall scheme is sketched in Fig 1). The results are ad hoc displacement THs and 
ODSs, magnified of an arbitrary factor in the frequency range of interest. 

The procedural steps are as follow. Firstly, the 2D Fourier Transform is 
computed (step ‘a’ in Fig 1); this way, each point represents a frequency contained 
in the image in the spatial domain. Being the image size the same in both the spatial 
and the frequency domain, the range of inspected spatial frequencies is directly 
linked to the image definition, i.e., to the spatial sampling; the higher the number 

of pixels  N w h  , the broader the range becomes. On the other hand, for 

frames, the data become a 3D w h M  tensor of complex numbers, with a very 
large size and very sparse useful information. This decomposition along spatial 
sinusoids is well-suited for Modal Analysis, as the expected mode shapes to be 
extracted are sinusoidal as well. The zero-frequency component – that is to say, 
the spatial average brightness of the frame –  is shifted to the centre of the image 
in the amplitude spectrum, and higher frequencies are confined to the edges. The 
bright spot in the middle of Fig 1 image in the top right corner is evidence of the 
prevalence of content at the lower spatial frequencies. 

At this step, scaled and steered real-valued filters are applied to the complex 
matrices (step ‘b’ in Fig 1). Filters can be thought of as ‘masks’ applied in the 
Fourier domain of the single frames; the results are the components at the several 
scales and directions. Moreover, being the filter bank pyramidal, the number of 
pixels is halved at any decomposition step, not too different from what happens 
with the aforementioned Mallat’s Algorithm for DWT. This convolution process 
produces coefficients that, being complex numbers, define both the local phase 
and the local amplitude of the windowed basis functions at any point and along 
any direction. According to the user’s desires, a frequency band of interest is 

defined between the two bound values low
f and highf ; the so-obtained coefficients 

are then filtered, bandpassing in the time domain, to isolate the temporal 
frequencies required while cutting off lower and higher frequency content which 
shall not be magnified (step ‘c’ in Fig 1). 

 The spatial amplification itself is user-defined in terms of the magnification 
factor  . Thus, multiplying scalar-wise only their phase component, the motion 
is ‘amplified’ (in the sense, over-displaced) without any manipulation of 
brightness’ amplitude (step ‘d’ in Fig 1). Moreover, an optional amplitude-
weighted spatial smoothing was performed over the   adjacent pixels, to avoid 
unrealistic discontinuities due to noisy measurements and/or excessive 
manipulation. The unmodified/untouched low-pass and high-pass residual 
information are then finally added to reach complete reconstruction (step ‘e’ in Fig 
1). The procedure, up to this point, can be performed with no major modifications 
to the software codes provided by the authors of [40,44] and [51] in the MatLab 
toolboxes available at [61] and [62]. 

It is then possible to extract the ODSs from the manufactured video output by 
means of edge detection (step ‘f’ in Fig 1).  In the study here reported, a Canny 
edge detection routine [63] was found to produce a more robust and reliable results 
respect to similar alternatives (Sobel, Prewitt, or Roberts algorithms). The routine 
is simply required to recognise frame-by-frame the edges of the beam, to isolate 
them from the surroundings, and to extract them. To do so, a lower and a higher 
threshold of the Canny edge detection algorithm are empirically set, according to 
the illumination and the background, to discard as much unneeded information as 
possible. 
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 The preserved pixelwise edges (i.e., the ones with edge strength above the 
lower limit and below the upper one) are then used as an approximation of the 
actual mode shape which natural frequency falls into the prescribed range of 
temporal frequencies. 

Fig 1. Scheme of the Motion-Magnification and ODSs extraction procedure.

2.4 Limitations of the method 

For reasons that will emerge later on, it is important to recall the theoretical and practical 
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limits of this spatial amplification procedure. The length of the windowing Gaussian 
function defines their spatial support, in terms of pixels. An optimal compromise is to 
consider octave-bandwidth spatial filters. However, the local phase can only be shifted 
within the filter window support, as any further translation would (a) have strongly reduced 
or null intensity and (b) produce artefacts in unwanted neighbouring locations. This point 
is better discussed in [40]; for simplicity sake, it is sufficient to say that to sustain larger 
phase shifts, wider windowing function would be needed. However, resorting to sub-octave 
bandwidth means to increase the overcompleteness of the problem, as adjacent supports 
would overlap. Moreover, overlapping windows make the estimation of local phase more 
difficult and are thus less apt for the direct extraction of displacement signals. 

Frequency-wise, satisfactory results were obtained by applying octave-width 
pyramids with relatively limited computational costs, maximum compactness and 
minimal over-completeness. For ODSs, larger magnification factors were needed, 
in order to better highlight local discontinuities; thus, sub-octave CSPs 
(specifically, with four filters per band) were used there. 

2.5 Distinctions with similar works 
PBMM is a novel technique, as mentioned previously, firstly proposed in [40] 

for several applications, encompassing (but not limited to) the vibrational 
monitoring of structures. The approach was also recently conjugated with a Blind-
Source Separation technique for the operational modal analysis of simple 
structures [64], extended to stereo camera vision for the investigation of 2-
dimensional plates [65], and combined with Machine Learning [66]. During the 
writing of this paper, another very recent work was brought to the Authors’ 
attention, which merged PBMM and Particle Tracking Velocimetry to perform 3-
dimensional modal identification [67]. The same approach has been thereafter 
applied to the structural dynamic characterisation of wind turbine blades, with 
[68,69] and without [70] damage applied. Differently from what performed there, 
here a direct comparison between the pristine and the damaged ODSs has been 
used to pinpoint the location of reduced stiffness; several kinds and extension of 
damage have been also considered. 

The work presented here is a methodological and schematic experimental 
investigation of the PBMM algorithm possibilities as a video processing tool, 
applied in the ambit of enhanced visual inspection for SHM purposes. More 
specifically, the three issues of damage detection, localisation and severity 
assessment are all addressed, plus the direct visualisation of the amplified motion 
of the damage’s edges. The efficiency of the procedures for damage detection and 
localisation is also studied for different depths and angles, with single and multiple 
saw-cuts. This experimental validation is intended to fall in the broader effort of 
the whole SHM community to make optical methods in general, and the video-
magnification algorithm specifically, a robust and reliable tool for practitioners in 
civil and mechanical engineering.  

3 Experimental Setup 

The experimental setup for this study is pictured in Fig 2; the characteristics of the 
aluminium box beam portrayed are reported in Table 1. The tests were performed 
at Cranfield with a Data Physics® Signal Force™ modal shaker; DP760 close-
loop control system was used to induce 11 s -long triangular impulses at the 

clamped base, with a peak value of g = 5 g. Measurements were performed with 

an Olympus ® I-speed 3 camera, setting always a frame rate of 1000sf  frames 

per second (fps). Due to the camera internal memory capacity, recordings were 
limited to 4897 frames, 1280x1024 pixels wide (width x height). The high pixel 
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density was useful to achieve a high spatial frequency resolution. All videos were 
recorded and then stored uncompressed in .hsv format. An open-faced lighting 
fixture with a tungsten light source was used for illumination. The camera was 
mounted on a levelled tripod and it is assumed to be perfectly static. A video 
stabilisation routine (available on the MatLab ® Computer Vision System 
Toolbox) was nevertheless applied before the phase-based magnification, to 
neglect any imperceptible and random extraneous movement due to possible 
environmental excitations. Focal length was set to about 160 cm, chosen in order 
to be not too close (to avoid lens distortion at the frame edges) neither too far, 
having the aluminium box beam occupying most of the horizontal width of the 
image. The camera and the light source were both slightly moved during the 
experiment for practical reasons. This turned out to be also useful to test the 
method robustness with respect to prospective and illumination changes, which 
proved to be good.  

Theoretically, the Nyquist’s limit of the acquisitions is / 2 500fs  Hz. 

However, for practical reasons, many sample points per period are necessary for 
accurate time-frequency estimation. This is particularly important for impact tests, 
where instantaneous variations in frequency and amplitude in the free decay 
response matter and high temporal frequency resolution is needed. Thus, only 

frequency content up to 1/20th of s
f  (50 Hz) was inspected. This eventually limited 

the study to only the first eigenfrequency of the beam, as the second mode is above 
250 Hz. 

Fig 2. Experimental Setup. 
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Table 1: Material and geometrical properties of the aluminium bar 

Young Modulus E 69 GPa
Mass per unit of length  0.322 /kg m

(Density  2170 3/kg m ) 

Free Length L 716 mm
Side (W=H ) 25 mm
Thickness t 2 mm
Cross-section A 184 2

mm
Moment of inertia I 41.63 10 4

mm

The target “damage” has been emulated by means of two u-shaped slots, regular and 
equal throughout the whole beam width, artificially inserted by sawing the box beam at 
two separate locations (cut thickness 1 mm; Fig 3.a). The first notch was positioned at 

1' 205 x mm from the clamped section. The second notch was introduced in 

2' 319  x mm , closer to the box beam mid-length. The two notches are axially 

distanced apart enough ( 114  x mm  ) to not influence the stress fields of one 

another. The crack growth was simulated by further sawing the specimen: damage 
conditions are reported in Fig 4.a - 4.g; the order of increasing damage is reported 
in Table 2. The second slot was cut with a 5:1 mm inclination (vertical rise to 
horizontal run; thus 90 78.7 11.3      ) to investigate both the effects of 

multiple damages and the influence of slanted cuts. In this case, the damage 
location is intended as the intersection between the notch and the outer beam edge.  

Emulating the damage by means of saw-cuts with known geometrical 
properties allows the repeatability of the experiment and enable to better discern 
the components (angle of slope, length of the cut, etc) that influence the frequency 
shift and the increase in the transverse displacements. This is a convenient 
expedient used since decades (e.g. [71]) and still pretty common in recent works 
to study damages within a fixed location and increasing depth (for instance, [72]), 
even if obviously only approximating real-life cracks. For a deeper discussion on 
the comparison of naturally occurring fissures and man-made crack-like notches, 
particularly in the context of experimental validation for vibration-based 
techniques. the reader is referred to [73]. To reduce any possible environmental-
induced uncertainty, all the experimental tests were performed on one day; the 
beam was not dismounted from the clamp until the end.   
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Table 2: Damage Levels 

Damage severity 
case 

damage depth (*) 

(reference #) 
1d 2d

no damage - - 

#1 1 mm no damage 

#2 5 mm no damage 

#3 10 mm no damage 

#4 15 mm no damage 

#5 15 mm 5 mm 

#6 15 mm 10 mm 

#7 15 mm 15 mm 

 (*) intended as the vertical component of length; corresponding to damage extension 

for 1 1l d  but not for 2 2 2/ cos( ) l d d . 

Fig 3. Box beam lateral view and hollow cross-section. The beam reference 
frame {O,x’,y’} is also shown; black arrows point to the intersections between 
the edge slots and the edge itself.   
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(a) (b) 

(c) (d) 

(e) 

(f) 

(g) 

Fig 4. (a – g) increasing damage conditions: in the same order, case #1, #2, 
#3, #4, #5, #6, and #7 (see Table 2 for better description). 
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4 Results of the Damage Investigation 

Damage detection and damage localisation were performed on different video recordings 
for the same damage level conditions, to establish separately that the frequencies extracted 
from the first video acquisition were actually confirmed in the second. For both damage 
detection and damage localisation, short sections were extracted from videos, 
starting right after the impulse application. This way, the captured transverse 
motion was assumed as pure free oscillations and there was no need to depurate it 

from the input motion g  imposed at the base.

The dynamic behaviour of a multi-cracked box beam depends on the number of 

damaged cross-sections present, c
N , and on their parameters – namely, for the i th

damage, the crack depth i
d , the slant angle i

 , and their respective location '
i

x . 

All these parameters eventually affected the damage assessment process. 
The selected range of frequencies for motion magnification was defined 

between 30 – 50 Hz. That range surrounds the undamaged structure’s first natural 

frequency, 46
n

f  Hz, while being slightly skewed to the lower frequencies to 

account for its expected decrease when damage is introduced. In order to have 
comparable results, it was maintained equal for all the damage scenarios. 

4.1 Damage Detection and Severity Estimation 

The frequency shift of the first fundamental mode is expected to vary appreciably when 
damage is inserted [1]. Indeed, the frequency shift in the structural response from impact 
tests is a classic methodology for damage detection, well-known in Literature and standard 
in common practice since decades. The comparison is made with the displacement time 
history from the pristine structure under a similar input: with no additional sensors’ masses 
attached, all changes can be directly linked to a (local) reduction in structural bending 
stiffness. Tracking the decreasing trend of the first eigenfrequency as the fissure length is 
artificially incremented can be considered as an index for damage severity assessment. The 
exact position of the crack is also known to influence this frequency shift [74]; for instance, 
for any combination of boundary conditions and vibration mode, the inflexion points of the 
corresponding eigenshape will be unreactive to the presence of damage,  irrespective to its 
depth and slope. However, there are caveats in applying these differences in frequency shift 
as an approach for damage localisation. In fact, these methodologies are arguably more 
subject to confounding influences than eigenshapes-based techniques like the one here 
utilised and described in the following Section.  

By applying the PBMM algorithm, a time history (TH) of spatial phase changes 
(and thus, of related magnified displacement) was extracted in the range of 
frequencies analysed, by comparing the nth frame with the first one. The extrados 
upward edge at mid-length cross-section was used as a ‘virtual’ sensor for output 
recording; L/2 is known to be an optimal location for sensor placement on a 
cantilevered beam-like structure [76]. Only the vertical component was considered, 
assuming it equal to the whole transverse motion (with a negligible error for very 
small oscillations). Fourier Transform was then performed on them; the procedure 
is pictorially described in Fig. 5 for better comprehension. 2-second-long (2000 
frames) fractions of the several videos were considered, to reduce the 
computational cost of the whole procedure. This resulted in a reduction of 

resolution in the frequency domain ( , 0.5  s Video samplesf f N Hz), which is 

still considered a good resolution for the specific case here investigated. Results 
are enlisted in Table 3; all frequency values are rounded up to the first decimal unit. 
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As it can be observed, there is a divergence between the values reached and the 
ones acquired from laser velocimeter on random noise (RN) tests. This may also 
be due to the different sampling frequency ( being for the laser velocimeter 

, 2048s LDVf Hz). The frequency shifts respect to the pristine structure’s 

fundamental frequencies are also reported. 

Fig 5. A conceptual sketch of the TH extraction and Fourier Transform 
process. 

Table 3: First natural frequency, as extracted by the laser tachometer from RN tests and 
through video PBMM from impulse tests. 

damage level laser 
velocimeter (*)
(random noise)

Frequency 
shift 

video 
PBMM (*)
(impulse) 

Frequency 
shift 

[Hz] [%] [Hz] [%] 

no damage 46.3 -    46.3 - 

#1 45.8 -1.1 46.3 ~0 

#2 44.7 -3.5 45.7 -1.3 

#3 42.2 -8.9 40.7 -12.1 

#4 37.0 -20.1 34.8 -24.8 

#5 36.7 -20.7 34.5 -25.5 

#6 36.1 -22.0 33.8 -27.0 

#7 34.4 -25.7 32.2 -30.5 

(*) data recorded at ' / 2x L

The frequency shift between no damage and damage level #3 (corresponding to a 10-
mm-deep indentation of the upper surface) exceeds 5% of the initial undamaged value, 
which in real-life operative conditions can be considered as a safe threshold between actual 
damage and statistical variations due to changing environmental conditions e.g. 
temperature. Further changes can be linked to the increased damage severity level. By 



1

inserting the second slot, the first natural frequency is additionally reduced. However, 
multiple damages with different depths and/or angles make the damage 
investigation problem ill-posed, as slots with different lengths and orientations can 
produce identical frequency shifts of the first resonance [77][78][79]. Thus, 
damage sizing is only viable for the first four cases analysed (damage levels #1 to 
#4). 

It can be inferred from Table 3 that the effects of increasing the size of the 
second notch are much less evident than for the first one. This is coherent from 
what known from Literature. Indeed, as a consequence of oblique crack 
propagation, mixed-mode stress conditions are induced at the crack tip – more 
precisely, a combination of mode I (tensile) and mode II (in-plane shear) loading. 
Thus, the apparent Stress Intensity Factor (SIF) at the crack tip should be 
partitioned into its distinct components [80]. Moreover, as long as the two damages 
have different depths, the larger one has majorly significant effects on the first 
natural frequency, especially if it is closer to the clamped end [81]. Also, the farther 
the two damages are located, the smaller is the frequency reduction caused by the 
superposition of their effects (for the same damage severity and if both are located 
far from any antinodal point of the corresponding mode shape).  

4.2 Operational Deflection Shapes & Damage Localisation 

Any damaged mode shape is known to deviate from its corresponding undamaged, 
original version, as increased transverse displacements happen due to the local effects of 
stiffness reduction. This is a much more convenient parameter for damage localisation than 
natural frequencies, as their behaviour to varying crack position and length is very 
complicated and subject of studies since decades [7]. By running a Canny edge 
detection routine frame-by-frame on the processed video montage, the ODSs of 
the amplified motion corresponding to the first mode’s natural frequency were 
isolated and stored. The assumption made is that, being the modes well-separated, 
the actual motion very small and the selected bandwidth of frequencies relatively 
narrow, the PBMM is able to cleanse the motion from the other superimposed 
modes. Hence, the amplified ODSs can be considered as a good approximation of 
the first mode, for both the pristine structure and all the damage scenarios. 

For this aim, 0.2 seconds-long tracts of the video captured were selected for 
video processing, taken straight after the end of the input force application. Thus, 
200 frames out of 4897 recorded, i.e., a tenth of the amount used for damage 
detection, were employed. That was intended to speed up the procedure and to 
reduce the computational burden. Moreover, it was observed that after relatively a 
few oscillations, even amplified motion decay to a point where the damage-
induced local increase in flexibility becomes indistinguishable. Instead, for any 
recording considered, the difference in amplitude among the few periods so 
selected was found to be always negligible.  

Being the undamaged first natural frequency roughly equal to 46 Hz, up to nine 
periods could be obtained from the test on the pristine structure; for damaged 
conditions with lower eigenfrequencies and longer periods, slightly fewer 
instantaneous pictures of the damaged ODSs at their largest deflection were 
captured. In turn, any period of oscillation for a damaged beam can be further 
divided into a compressive half-cycle and a tensile half cycle, considering the 
direction of the forces acting on the crack’s edges and tip [82]. For the specific 
case tested here (i.e. edge saw-cuts located on the extrados), the compressive semi-
period corresponds to the upward transverse deflection of the beam, while tensile 
stresses develop during downward bending. It is crucial to remind how the 
operative shapes, bending in the two directions, should be theoretically identical 
as the system remains linear (no evident signs of nonlinearity where found in the 
recorded output, and the surfaces of the two slots were visibly seen to never come 
in touch; this point will be better addressed later on in Subsection 4.3). However, 
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the effects of gravity cause these two configurations to differ evidently in practice. 
A comparison between a downward and the following upward deflection is 

depicted in Fig 6.a, for the maximum level of damage (case #7, magnified 16 
times). Respect to the undamaged case, the effects of the local reduction in 
stiffness are immediately noticeable. Indeed, for the same level of external 
excitation and for the same amplification factor, transverse displacements at the 
beam free tip are much more pronounced in the damaged scenario respect to the 
pristine structure, especially for downward deflections. This is qualitatively 
represented in Fig 6.b and 6.c. 

In all cases, amplitude factors up to 16   were used, for better evidence the 
otherwise invisible vibrations; quarter-octave CSPs were utilised to support larger 
amplification. These made the problem 56x over-complete, increasing the number 

of spatial filters from 34 to 258. Unit spatial smoothing was applied ( 1  ).  

Aiming at a centimetre-wise localisation, 66 points, included between 0' 55x

mm and ' 716
TIP

x  mm and equally spaced of 10 mm from each other (apart 

from the last point, which is only 9 mm from the second to last), were considered 
along the reference line (Fig. 7). In-between points were interpolated linearly, with 
sub-pixel accuracy. For simplicity, relative positions are therefore expressed 

respect to the normalised length 0 0' ( ' ' ) / ( ' ' )
TIP

x x x x     (the two slots 

positions being 1' 0.23   and 2' 0.40   according to this non-

dimensionalised length). 
As expected from the dynamics of a slant-cracked beam [83,84], the vibrations 

are larger in the case of the transverse cut; oblique slot angles produces a lower 
decrease in bending stiffness and thus weaker, less evident effects, even if their 

length / cos( )
i i

l d is actually slightly longer than for their transverse cut of 

equivalent depth (where i il d ). The resulting ODSs are reported in Fig 8. Moving 

mean was used to further smooth out the measurement noise; ODSs are normalised 
over their maximum displacement for comparability. The Modal Assurance 
Criterion (MAC) was also applied as a global damage index, by comparing the 
damaged cases and the baseline eigenshape of the pristine structure; the values are 
reported in Table 4 (1 meaning complete correspondence with the undamaged 
beam and 0 no correspondence). 

Damage-induced effects can be noticed as an apparent stiffening of the beam 
tract included between their position and the beam left (clamped) end. This is 
caused by the normalisation respect to the maximum transverse displacement; as 
aforementioned, it is the complementary tract between the damaged cross-section 
and the beam right (free) end that undergoes larger transverse displacements. 
Results are consistent with what expected, even if some noise and other effects due 
to subpixel interpolation and approximation persist. 
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(a) 

(b) 

(c) 

Fig 6. (a) Comparison of the maximum downward (green) and the maximum 
upward (purple) deflection for the most damaged case (#7). (c). For both (b) and 
(c), undamaged beam’s edges are shown in green, damaged one’s in purple. In 

all cases, parameters 16   and 1  were used. 

Fig 7. The 66 points considered for damage localisation, superimposed to a 

frame from the post-processed video ( 4  and 1  ). 
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(a) 

(b) 

Fig 8. (a) downward and (b) upward deflections of the ODSs considered, with a zoom 
on the portion of most interest (respectively, (b) and (d)). The beam tract length shown is 

normalised between 0 ( 0' 55x mm) and 1 ( ' 716 
TIP

x mm ).  
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Table 4: MAC values for the damaged ODSs (normalised over the maximum 
displacement)

Damage level MAC value (*1) 
(downward deflection)

MAC value (*2) 
(upward deflection) 

[-] [-] 

#1 > 0.99999 > 0.99999 

#2 0.99983 > 0.99999 

#3 0.99923 0.99994 

#4 0.99824 0.99975 

#5 0.99671 0.99963 

#6 0.99564 0.99949 

#7 0.99531 0.99933 

(*1)- (*2) calculated respect to the undamaged downward and upward ODS, 
respectively. 

It seems from the extracted ODSs that the local effects of the slanted cut are 
more evident than the ones of its transverse equivalent. Again, this can be a side-
effect of the ODS normalisation, but it may also be due to the two slots respective 
positioning. Slot angle seems to influence the results nevertheless, as its 
prominence is more evident in downward deflections than in the upward ones; in 
general, upward effects seem to be strongly attenuated respect to the ones induced 
by downward deflections, probably due to gravity affecting the results, 
emphasising displacements to the downside. The two edge slots’ location at the 
extrados may also be a cause for this double-sided behaviour. 

It is crucial to remark that the two slots introduced here do not follow the 
breathing crack model [85], as their edges never come in contact and the structural 
response was linear. This aspect will be better analysed in the next subsection. 

Euclidean Square Distance (ESD) was used as a baseline-based technique for 
damage localisation, by comparing the difference in the transverse displacements 
of the normalised damaged and undamaged shapes at any point; results are 
depicted in Fig 9. This approach was applied as a global feature on a previous work 
[86], where its efficacy was proved to be dependent on the damage position; thus, 
it has been used here to locally determine the position of the damage. The concept  
can be seen as a complication of the well-known Mode Shape Difference (MSD) 
method and it can be analytically defined as 

2d u
p p pESD , p 1,2,..., L        (7) 

Where 1 2( , ,..., )  d d d d

L
  is the ODSs of the damaged beam, spanning over 

L measurement points, and 
d

p  is its pth term; same applies for the undamaged 

baseline ( u  and u

p  respectively). All values have been normalised to the 

maximum value of the most damaged case (#7) for easiness of graphical 
comparison. The normalised ESD proved to be functional, except for some 
unavoidable side effects which return false peaks close to the beam free end; this 
is due to the ODSs normalisation at the maximum displacement, as already noted 
in [86]. Nevertheless, the highest peak was in all cases corresponding to the actual 
slot position. These two methodologies are here applied as a basic example for 
merely didactic purposes; any viable mode shape-based approach would fit the 
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aim. 

(a) (b) 

Fig 9. Normalised Euclidean Square Distance (ESD,as a metric of difference between 
damaged and undamaged ODSs, considering downward (a) and upward (b) deflections. 
The two metrics peak in correspondence of the cut cross-sections.

4.3 Visualisation of the open slot’s surfaces motion 

So far, the steerability of the CSPs has been basically unused, as the major interest was on 
transverse displacements only. However, when applied along other directions than the 
vertical, motion magnification allows visualising the otherwise imperceptible motions of 
the damage surfaces. 

Two main categories of crack models exist: the already-cited breathing crack 
(which behaves nonlinearly) and the fully open crack [87]. By assuming the man-
made slots as representative (in vibrational terms) of a crack, the case here 
investigated belongs to the second group, as the slots’ faces were found to never 
come in contact, and no perceptible nonlinearity was found in the recorded data. 
On the other hand, while not formally ‘breathing’, both notches (especially the 

transverse one at 1x ) enlarge and reduce their surfaces’ distance under the 

influence of both gravity and unbalance forces acting on their respective cross-
sections. This mechanical behaviour, unnoticeable by the naked eye or in the pre-
amplification video, is visible in the zoomed picture in Fig 10. A slight yet evident 
enlargement happens at every period during downward deflections. For this 
configuration, the camera was moved closer to the box beam, with a resulting focal 
length of circa 75 cm; for the given pixel resolution and amplification factor, the 
slot’s surface actual horizontal motions are estimated to be sub millimetric. 
. 
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(a) (b) 

Fig 10. The magnified motion of the transverse slot’s surfaces: (a) enlarging during 
downward deflection and (b) shrinking during the upward tracts ( 8, 1   ). 

5 Discussion and Conclusions 

By looking at the discrete Fourier transform of a single frame extracted from a 
recorded video sequence, the amplitude component contains all the spatial frequencies of 
the image in the spatial domain, while the phase part brings the information needed to 
reorder the basis functions correctly for inverse 2-dimensional DFT. It comes obvious that 
altering the phase along time, the translation of the related pixels in the space domain – 
that is to say, the captured motion – can be manipulated. Thus, a Phase-Based approach is 
a well-suited candidate for motion magnification. The study presented here is intended as 
a systematic proof of concept for its application to Computer Vision-based Structural 
Health Monitoring. Several compelling and demanding configurations have been 
considered for this experimental investigation, such as angled, multiple damages, 
applied to a simple case study (a cantilevered box beam), which is well-
representative of a multitude of similar, relatively slender structures.  

The concept is that subtle changes in the vibrational behaviour, imperceptible by eye, 
become evident when the interesting temporal frequency range is amplified dozens times. 
By benchmarking the results from the experimental modal analysis (eigenfrequencies and 
ODSs) against the pristine data, damage detection, sizing and localisation have been proved 
feasible (with due care). Displacements THs were extracted from a chosen point and used 
for damage detection and sizing, resorting to a comparison in the frequency domain with 
the pristine baseline. ODSs, extrapolated via quarter-octave Complex Steerable Pyramids 
and Canny edge detection, were used again for damage severity assessment (by comparing 
the MAC value between any of them with the undamaged case) and for damage 
localisation. The amplified videos allowed even to perceive the movements of the edge 
slots’ faces. 

Specifically, it was found that fissures as small as a 1 mm-long indentation on the 
25x25 mm hollow cross-section of the box beam can produce noticeable effects on its 
frequency response; a 5 mm-long saw-cut generated appreciable deviation in the damaged 
ODS respect to the pristine baseline. These results were obtained in a controlled laboratory 
environment and assuming notches as a good approximation of the vibrational behaviour 
of actual cracks. Less deep saw-cuts went unnoticed to the techniques applied to the motion 
magnified frames. Damage sizing was also proved feasible, at least for the single damage 
case and for a transverse-cracked beam.   

The benefits of the technique are evident. With no added masses or stiffening due to 
screwing/attaching sensors, video recording is non-contact and thus completely non-
invasive. Therefore, in the absence of mounted transducers, the pure dynamic response of 
the damaged or pristine structure can be investigated ‘as is’. No wiring is needed, and no 
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power signal transmission issues may arise. 
If proper care is used in the acquisition, the technique may be implemented with relative 

simplicity. To the current state, experimental results may be not as accurate as with other 
more traditional techniques such as laser vibrometer and attached accelerometers. 
Nevertheless, other advantages make video processing competitive with the established 
techniques to rapidly acquire a large amount of data with high spatial and temporal 
resolution, even for weakly-excited structures. For instance, unlike single-point LDV, 
video cameras allow capturing the whole structure of interest, or at least a large, continuous 
part of it, along any direction belonging to the focal plane. Multipoint LDV would produce 
more accurate ODSs, but not necessarily denser, and at cost of longer experimental 
procedures, more post-processing, and costlier instrumentations. Using better video 
equipment with superior specifics, the accuracy of video acquired data can be increased 
significantly. 

Results showed a good agreement between the frequencies extracted via laser and video 
acquisition, with discrepancies between the measurements never larger than 7% even in 
the worst cases and less than 1% in the best ones. PBMM specifically overcomes the issues 
of other similar visual enhancement strategies based on motion amplification, both Eulerian 
and Lagrangian.  

The remaining main issue is to efficiently mine all the data captured by the video 
camera. The volume of the acquired information becomes easily very high when increasing 
the frame-per-second rate and/or the pixel density. Cropping the image in order to isolate 
the interesting part of the structure can improve the efficiency of the procedure; 
nevertheless, one should always remember that reducing the number of pixels also decrease 
the range of spatial frequencies which can be studied. State-of-the-art model order 
reduction tools for image compression can be used to reduce the dimensionality of the 
problem, speeding up the computational process, with an acceptably small decrease in 
accuracy; big data analysis techniques might turn out to be useful. This may eventually 
lead to an application downloadable from the internet and applicable on commercial mobile 
devices with consumer-grade cameras. That leaves large room for improvement and further 
researches. 
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