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Abstract: This paper investigates the interdependencies of crack depth and crack location on the dynamic response of a 

cantilever beam under thermo-mechanical loads. Temperature can influence the stiffness of the structure, thus, the change in 

stiffness can lead to variation in frequency, damping and amplitude response. These variations are used as key parameters to 

quantify damage of Aluminum 2024 specimen under thermo-mechanical loads. Experiments are performed on cantilever 

beams at non-heating (room temperature) and elevated temperature, i.e., 50°C, 100°C, 150°C and 200°C. This study 

considers a cantilever beam having various initially seeded crack depth and locations. The analytical, numerical and 

experimental results for all configurations are found in good agreement. Dynamic response formulation is presented 

experimentally on beam for the first time under thermo-mechanical loads. Using available experimental data, a novel tool is 

formulated for in-situ damage assessment in the metallic structures. This tool can quantify and locate damage using the 

dynamic response and temperature including the diagnosis of subsurface cracking. The obtained results demonstrate the 

possibility to diagnose the crack growth at any instant within the operational condition under thermo-mechanical loads. 
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1 Introduction 

Mechanical properties of metallic structure are more often dependent on their operating temperature. Properties like 

Young’s modulus, Yield strength or Ultimate tensile strength can change easily with varying temperature. In case of fatigue, 

failure is initiated from birth of a small crack and lead to catastrophic failure. The rise in temperature can lead to increase the 

size of the plastic zone near the crack tip which can affect crack propagation. Size of the plastic zone near the crack tip 

depends not only on the level of repeated loads but also on the material properties. It is very difficult to repair fatigue damage 

immediately. However, estimation of fatigue crack growth can make preventive maintenance much easier. Therefore, 

considering fatigue failure is the most common failure in mechanical structure, it is very critical to investigate the effect of 

thermal loads. There are many applications in which a structure undergoes combined dynamic and thermal loads such as 

aircraft wings, gas turbine blades and reciprocating pistons, etc. These components are more often exposed to extreme loads 

and raised significant challenges to ensure structural integrity. This significance propelled researchers in the past to 

investigate the potential of dynamic response parameters in damage quantification for structures working under thermo-

mechanical loadings.

Conventional nondestructive testing techniques are used to measure local or global behavior of a structure for damage 

assessment [1]. Out of these techniques, structural vibration is used most rigorously for global response analysis and 

measurements [2]. It can identify specific faults in the system and can also lead the repair of structures or components by 

diagnosing the root cause of damage. Published methods show that a vibration response can estimate structural or component 

damage long before their potential catastrophic failure. This early warning of emerging damage helps in scheduling reliable 

preventive maintenance in any industry. The characteristic of vibration response, such as displacement amplitude, mode 

shape and frequency, is dependent on the stiffness of a structure. The stiffness of a structure is a direct measurement of elastic 

properties of its material [3]. The elastic properties of a material are determined by its microstructure and hence even a very 

small disturbance or damage in microstructure can eventually affect dynamic response of a system. Most of the research is 

done at ambient conditions based on mechanical loads only. Khorshidi et al. [4] proposed a natural frequency-based method 

to diagnose a transverse crack in a beam. The crack was modeled as massless rotational spring. They developed a relation 

between natural frequency and crack depth by using Rayleigh quotient. Similar approach of modeling a crack as massless 

rotational spring was adopted by few other researchers [5-7].
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New methods for damage quantification using natural frequency degradation are presented recently [8-10]. Their research 

is an excellent contribution to existing literature related to damage quantification. They proposed a novel explicit closed form 

solution of the governing equation of an Euler-Bernoulli beam with a roving body possessing mass and rotary inertia, in the 

presence of multiple cracks. Furthermore, they modeled concentrated damage as Dirac’s delta distributions capturing the 

effect of concentrated stiffness reduction with the help of mode shape and natural frequencies. A significant number of 

researchers used analytical, numerical and experimental approaches simultaneously. They quantified crack in a beam and 

used natural frequency as an input [11-18]. They observed the changes in natural frequency if the crack propagates. Changes 

in natural frequency were found insignificant in case of smaller cracks and hence entailed modification in methods based on 

natural frequency. These frequency-based approaches are ill-posed because cracks with different severity in two sets of 

different locations can produce identical changes at lower frequency modes. The incorporation of mode shape with natural 

frequency provides better results in damage prediction but it has few limitations. It requires many sensors on a structure to 

capture the actual change in the physical shapes. These limitations can be circumvented with the measurement of vibration 

amplitude. Frequency and amplitude can be measured from a single probe and hence effective in use as compared to mode 

shape. [19-24].  

Considering the coupled loading, Cheng et al. [25], used a thermal-acoustic load for testing dynamic response and sonic 

fatigue using Monte-Carlo theory. The effects of environmental conditions on modal behavior of different structures were 

presented by various researchers [26-30]. Ma et al. [31-32] proposed an analytical method (based on a transfer matrix) for 

modal analysis of a simply supported steel beam with multiple transverse open cracks under different temperatures. They 

modeled crack as a rotational spring and hence limited in damage quantification. Same approach was used by many other 

researchers [33-37] and they used change of natural frequency as critical input in the damage identification. 

An algorithm for structure health monitoring was presented by many researchers [38-40]. They developed an integrated 

monitoring system for durability and assessment of bridges and turbine rotor at elevated temperatures. Their practice was 

mainly based on the response of different sensors and visual inspections using enhanced realistic deterioration models. 

Similar research overview is also presented in our recently submitted review paper [41]. 

Various researchers worked on fatigue under thermo-mechanical loads. However, still, efforts are required to develop a 

robust operative tool for damage assessment. Development of this tool requires focused research which can take in-situ 

response parameters as input to quantify damage. All the aforementioned research is limited to a specific structure and 

disparity of dynamic response due to temperature was estimated. Variation in response parameters due to damage was not 

covered. Therefore, a robust tool, equally applicable to other metallic structure can be very useful particularly for Aluminum 

2024 which is a potential material used in aerospace applications.  

This paper investigates the interdependencies of the structure’s modal behavior, its dynamic response and crack growth 

based on analytical formulation, experimental data and empirical relations under thermo-mechanical loads. Dynamic 

response formulations are presented by Khorshidi [4] and Ostachowicz [6] for non-prismatic cantilever beam under dynamic 

loads only. Therefore, empirical correlations are formulated on a beam for the first time under thermomechanical loads to 

establish relation between dynamic response, temperature and crack parameters. In experimental validation, predicted crack 

growth obtained via these correlations is compared with the actual observations. A novel damage assessment tool is 

developed which takes frequency drop, amplitude difference, and temperature as an input to estimate damage during 

operational condition. This tool also covers the future of non-destructive testing by eliminating the requirement of contacting 

probes. Hence, it can be a useful contribution to the existing literature for damage assessment.   

2 Specimen preparation 

Aluminum (Al 2024) is the selected material of the specimen. All the dimensions of the particular shaped cantilever beam 

designed for dynamics response are shown in Figure 1. The thickness of the specimen is 3.0 mm and the length is 150 mm. 

These two dimensions are kept constant throughout the experiments for each specimen. Specimens with cracks have only 

one crack each.  These cracks are induced on three different locations with respect to the length of the beam (i.e. Crack at 

5% of total length, Crack at 10% of total length and Crack at 15% of total length). These locations are selected to get the 

maximum stress concentration at the fillet area of the specimen. Crack location is restricted to 15% of total length (25 mm 

from fixed end) because it is observed using a numerical simulation that after specific location of a crack from the fixed end 

the maximum stress concentration point moved from the crack position (desired location) to the fillet point. This shift in the 

location of stress concentration point will decrease the crack propagation rate to almost zero and lead to an endless motion 

of specimen without catastrophic failure.    

A pre-defined crack is induced in each configuration with a constant width of 0.2 mm. The variation of crack depth ranges 

from 0.5 mm to 2.5 mm with an increment of 0.5 mm. The value of 0.5 mm shows that the crack is in its initial phase. Its 

maximum value goes up to 2.5 mm signifies the point where the crack has traveled to a value to cause catastrophic failure. 

The specimens are manufactured by CNC wire cut to maintain the required dimensional accuracy. Three different samples 

of each combination of crack depth and location are used to reduce experimental errors. 
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Figure 1: Dimensions of the specimen (in mm), inset is showing the manufactured specimen. 

3 Experimental setup 

There are two phases of experimentation. One covers the initially seeded cracks ranges from 0.5 mm to 2.5 mm with an 

increment of 0.5 mm. The other is with the initial crack of 0.5 mm with natural propagation under load. Each configuration 

is tested for five different temperatures: Non-heating (room temperature), 50°C, 100°C, 150°C, and 200°C. To avoid the 

possibility of recrystallization, the maximum temperature is chosen well below half of the melting point of aluminum 2024.  

The whole experimental setup can be divided into four parts: a vibrating mechanism, a heating mechanism, data acquisition 

and propagation capture as shown in Figure 2. For the vibration mechanism, a power amplifier (modal LA-200), a signal 

generator (TENLEE 9200), and a modal exciter (MS-100) are used. The signal generator is used to provide a constant peak 

to peak value of 5 volts in a sine waveform, which consequently provides a constant displacement loading of ± 5 mm to the 

specimen with the help of the power amplifier. The beam specimens with pre-selected crack depth located at the same 

position are mounted on a modal exciter in fixed-free condition. An accelerometer is attached at the free end of the specimen 

to measure the dynamic response available in a frequency spectrum. The exciter and the specimen are firmly attached so any 

measured response can provide a cumulative amplitude of the dynamic response of the whole system which is largely 

dominated by the specimen displacement at the free end due to the resonance. 

For the heating mechanism, a temperature control unit, cartridge heater and K-type thermocouple are used. A temperature 

control unit is used to control and monitor the required temperature. A small cartridge heater is installed at the end of the 

specimen to heat and maintain the required temperature. Insulation is placed between the specimen and the shaker to protect 

it from damage due to heat. The specimens are heated in an open environment, but the temperature in the testing lab is 

controlled with thermostat. Moreover, the specimens are heated continuously until the temperature difference between the 

thermocouple location and the free end is reduced and maintained within 10oC. Once the required temperature is achieved, 

then the mechanical loads are applied using shaker on a selected fundamental frequency.  

Time domain measurements are obtained via a data acquisition card (NI-9174) and National Instrument© Signal Express. 

The analysis modules of ‘Power Spectrum’ and ‘Amplitude and Levels’ are selected in the Signal Express. The former is 

used to identify the actual response frequency value, while the latter is used to obtain the actual amplitude of the response 

frequency. The frequency drop is continuously observed. In the case of a frequency drop, the peak amplitude of the vibration 

spectrum is also reduced. A new lower frequency is set to the shaker so that the maximum amplitude can be achieved. A new 

fundamental frequency of the specimen is maintained till the next frequency drop. This procedure is repeated until the 

catastrophic failure of the specimen for propagating crack only. The failure of the specimen is defined as when it can no 

longer show amplitude at the free end. For each specimen, modal frequency and propagating crack depth are measured using 

a Dino-lite digital microscope with a magnification of 200x. Detailed experimental scheme for initially seeded and 

propagating crack is shown in Figure 3. 
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152 
Figure 2: Experimental setup with schematic. 153 

154 
Figure 3: Detailed experimental scheme 155 

4 Methodology 156 

157 

4.1   Analytical formulation under thermo-mechanical loads 158 

159 

In this section, an analytical formulation is presented which describes the effect of crack depth in terms of stiffness 160 

reduction of a model spring. Consequently, this change in stiffness will affect the overall dynamic response of the structure 161 

under an external load. This formulation was also presented in our recently published papers [42-43]. A cantilever beam is 162 

selected and the crack is modeled as a massless torsional spring as shown in Figure 4. The stiffness of torsional spring kt is 163 
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given by Ostachowicz et al. [6] as shown in Eq. (1). The relationship between the crack depth and dynamic response in terms 164 

of natural frequency is obtained using the Rayleigh quotient. 165 

166 

167 

168 
Figure 4: Cantilever beam with crack analyzed as mass less torsional spring. 169 �� =  

� � ���� � ������ (1) 170 

171 � ����� = 0.638 ������ − 1.035 ������ + 3.720 ������ − 5.177 ������ + 7.553 ������ − 7.332 ������ + 2.491 ������  (2) 172 

173 

where, B is width of the beam, H is height of the beam, tc is crack depth, E is modulus of elasticity and � ����� is crack 174 

function.  Free bending vibration of a beam is identified by a well-known differential equation as shown in Eq. (3). Applying 175 

boundary conditions �(0) = 0, ��|@��� = 0   and  ���|@��� = 0 to find mode shape as shown in Eq. (4) - Eq. (6). 176 

177 �� ������ + �� ������ = 0 (3) 178 

179 �(�) =  �� �1 − cos ������� (4) 180 

181 �� =  �� � ���� �sin ������� (5) 182 

183 ��� =  �� � ����� �cos ������� (6)  184 

185 

where x is the crack location from fixed end and �� is assumed mode shape deflection. The bending moment can be derived 186 

from beam curvature and flexural rigidity (EI) as shown in Eq. (7).  The total strain energy can be derived from direct strain 187 

and strain energy due to bending as shown in Eq. (8) - Eq. (9). The change in natural frequency and strain energy can be 188 

found out using Eq. (10) - Eq. (12), presented by Majid et. Al [44]. They calculated the natural frequency and the 189 

corresponding mode shape of cracked beam using the Generalized Differential Quadrature (GDQ) method. 190 

191 

192 � =  ����� (7) 193 194 

� =  
��� ∫ (���)��� �� (8) 195 

196 � =  
������ � ���� (��)� (9)197 

198 
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∆� =  
����� (10) 199 ∆��� =  

∆����� (11) 200 

201 ��� =   �� − ∆��� (12)202 

203 

where M is bending moment, u is strain energy, ∆u is change in strain energy, ��� is natural frequency of a cracked beam 204 

and ∆��� is difference between the natural frequencies of the uncracked and cracked beam. Eq. (3) - Eq. (12). can be merged 205 

to formulate a generalized equation for ��� as shown in Eq. (13). This equation summarizes all the variables used in the 206 

analytical formulation.  It can be inferred that the natural frequency of cracked beam is independent of initially assumed 207 

value of mode shape and material properties. However, it depends on the natural frequency of the uncracked beam (or at the 208 

previous crack depth), crack location and geometrical parameters of the specimen. An accelerometer is mounted at the end 209 

of the specimen to measure the dynamic response at different crack depths as shown in Figure 5. Therefore, the undamped 210 

natural frequency of the beam with end mass is given by Irvin [45] as shown in Eq. (14). 211 

212 

213 ��� =   �1 − ��� � � ���������� �cos 〈����〉���� �� (13)214 

215 

216 

217 

Figure 5: Schematic of cantilever beam with end mass 218 
219 ��� = � ���

(�.���������)�� (14) 220 

221 

where, ��� is the natural frequency of beam with end mass, �� is the mass per unit length and � is the end mass (mass 222 

of accelerometer).  223 

224 ��� =   �1 − ���� � ���������� �cos 〈����〉����� ���
(�.��������)�� (15) 225 

226 

Eq. (13) - Eq. (14) can be used to get Eq. (15), where E is the temperature depended modulus of elasticity of the beam. 227 

The variation in E can be used to find the cracked beam natural frequency under different temperatures. This modal frequency 228 

can be used to determine the crack depth using dynamic response under thermo-mechanical loads. The value of the change 229 

in stiffness parameter with temperature variation from none-heating to 200oC is shown in Table 1 [46]. 230 

231 
Table 1: Values of modulus of elasticity (E) with temperature [46] 232 

Temperature [°C] Modulus of elasticity [Gpa] 

Non-heating 73.0 

50 72.7 

100 70.4 

150 68.6 

200 66.3 

233 

4.2 Numerical simulation under thermo-mechanical loads 234 

235 

Dynamic response is estimated for both initially seeded and propagating crack using numerical simulations. In establishing 236 

a numerical relationship between fundamental frequency/amplitude and crack depth, the finite element modal analysis is 237 

carried out on the modeled specimens using ANSYS©v14.0 as shown in Figure 6. The modal and harmonic modules of 238 
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ANSYS© workbench are used to obtain the natural frequency and amplitude of the specimen at a crack depth ranging from 239 

0.5 mm to 2.5 mm with increments of 0.5 mm as shown in the inset of Figure 6. The geometry of the crack surface is 240 

considered as a rectangle with a constant width of 0.2 mm. 241 

242 

243 
Figure 6: ANSYS© model showing predefined crack and accelerometer with simulation results 244 

5  Results and discussion 245 

246 

5.1 Initially seeded crack with different crack depths 247 

248 
Four configurations (Uncracked, crack at 5% of L, crack at 10% of L and crack at 15% of L) are selected. A pre-defined 249 

crack is induced with depth ranges from 0.5 mm to 2.5 mm with an increment of 0.5 mm. In the start of each experiment, a 250 

fresh specimen with pre-defined crack depth is mounted on the test rig and the accelerometer is installed at the free end. The 251 

setup is capable of analyzing and recording the in-situ dynamic response of the specimen while vibrating at any frequency. 252 

An impact test is carried out to determine the fundamental frequency of a fresh specimen experimentally. The specimen is 253 

set to run at an operating frequency using the signal generator. Initially, this operating frequency is equal to the fundamental 254 

frequency obtained from the impact test. Simultaneously, the amplitude response of the acceleration is also monitored. The 255 

results of the experiments are compiled and plotted for each of the specimens with a predefined crack depth ratio at a selected 256 

temperature. The analytical, numerical and experimental results are plotted at a different temperature as shown in Figure 7. 257 

This figure is presented to establish the credibility of the experimental results. The results are found in good agreement with 258 

numerical and analytical calculations. The difference in results is within 10% error at all temperatures. Lower experimental 259 

values are observed compared to analytical/numerical approaches, which may be due to higher stiffness value taken for 260 

analytical and numerical simulation results.  261 

Natural frequency and amplitude are plotted in Figure 8 & Figure 9 for crack located at 5%, 10% and 15% of total length 262 

for temperature varies from non-heating to 200oC. The natural frequency is higher for crack located at 15% of total length 263 

for all temperature value, showing that the stiffness is less sensitive for crack located away from the fixed support. Crack 264 

located near fixed support makes the structure more elastic, thus, they have a lower value of structural damping. 265 

Subsequently, the structure having lower natural frequency has the higher value of amplitude response under same loading. 266 

It shows that the material damping is not affected by crack location. However, structural damping can change with crack 267 

location. This can also be validated with the response of the underdamped system that the reduction in damping and natural 268 

frequency will result in higher amplitude as shown in Eq. (16) [47]. 269 

270 � = � ������ (16) 271 

272 

where, � is the instantaneous amplitude, � is the damping and � is the time. 273 



8 

274 
Figure 7: Natural frequency VS crack depth ratio for initially seeded crack located at 5% of total length  275 

276 

277 
Figure 8: Experimental natural frequency VS crack depth ratio for initially seeded crack located at different positions. 278 
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279 
Figure 9: Experimental amplitude VS crack depth ratio for initially seeded crack located at different positions.  280 

 In order to perceive the effect of temperature variation, the frequency and amplitude response of initially seeded crack is 281 

plotted for temperature varying from non-heating to 200oC as shown in Figure 10. The natural frequency of the structure is 282 

reduced with increased temperature for the same amount of damage. Conversely, amplitude increases due to a reduction in 283 

structural damping. This shows that the temperature can increase the failure rate under thermo-mechanical loads. 284 

285 

286 
Figure 10: Experimental natural frequency & amplitude for initially seeded crack at different temperatures located at 5% of total length. 287 
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5.2   Propagating crack 288 

289 

 In the start of each experiment, a fresh specimen of crack depth 0.5 mm is mounted on a shaker at different temperatures. 290 

The specimen is set to run on its natural frequency and amplitude is measured. The amplitude drop is used as a sign of change 291 

in the natural frequency of the specimen. The impact test is carried out again with a light wooden mallet to find out the new 292 

modal frequency. This procedure is repeated until the catastrophic failure of the specimen. At the same instance, an image is 293 

captured using a microscope to measure crack depth as shown in Figure 11. Natural frequencies and its respective drops with 294 

respect to crack depth ratio are plotted as shown in Figure 12.  295 

    The value of natural frequency at 0.5 mm crack depth is the fundamental frequency of the specimen. This crack will start 296 

propagating once the load is applied and the specimen is forced to vibrate on its natural frequency. This propagation will 297 

reduce the stiffness ultimately causing a decrease in the natural frequency as depicted by the curves. The lowest value is 298 

achieved until its catastrophic failure. Additionally, the difference of amplitude response for propagating crack is measured 299 

with reference to initial crack depth as shown in Figure 13 for crack located at 5% of total length at defined temperature 300 

range. Due to a decrease in stiffness with propagating crack the response will increase against the same amount of loading. 301 

    The results for natural frequency and amplitude are similar to initially seeded crack in terms of trend. Crack located at 302 

15% of total length has the highest value of natural frequency and lowest amplitude at the same amount of damage. An 303 

important phenomenon is observed during crack propagation, that the natural frequency did not show any significant 304 

variation against subsurface cracking at a crack depth near 0.5 mm. Therefore, it was very difficult to predict the closest 305 

point when subsurface cracking has started. The microscope does not show any change in the initially seeded crack as shown 306 

in Figure 12. Conversely, a sharp drop in the amplitude at 0.5 mm shows that the subsurface crack propagation has started 307 

which can help in preventive maintenance as shown in Figure 13. Therefore, the amplitude response can be given extra 308 

importance under thermo-mechanical loads which can increase the crack propagation rate by reducing the structural stiffness. 309 

310 

311 

312 
Figure 11: The specimen showing the evolution of crack propagation. 313 
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314 
Figure 12: (a)Natural frequency VS crack depth for propagating crack located at 5% of total length, (b)Natural frequency drop VS crack 315 

depth ratio for propagating crack located at 5% of total length 316 

317 
Figure 13: (a)Amplitude VS crack depth for propagating crack located at 5% of total length, (b) Amplitude difference VS crack depth 318 

ratio for propagating crack located at 5% of total length 319 

5.3   Empirical correlations 320 
321 

 The proposed methodology can identify both crack depth and location which consists of an empirical relationship between 322 

the crack depth, crack location, temperature, natural frequency and amplitude of the selected beam. A significant number of 323 
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experiments are required to form an empirical relation. This empirical relation is expected to predict the crack depth using 324 

natural frequency drop, amplitude difference, and temperature. A criterion known as percentage replication (PR) is 325 

commonly used to define the percentage of reliability of the results based on experimental data as shown in Eq. (17) [48]. 326 

327 

PR =   100 �1 − ��� � (17)328 

329 

 where, �� is the number of varying parameters and � is the total number of experiments. In this work total three locations 330 

and five temperatures are considered. For each set of location and temperature, three specimens are tested. This will make 331 

the reliability of data set of 82%, and suggest that the predicted results based on these empirical correlations will have an 332 

accuracy of 82%. 333 

 In the proposed methodology, the response and temperature are taken as input. Using the available data, interpolation is 334 

performed to find out three combinations of crack depth and location for frequency drop and amplitude difference separately. 335 

These three combinations are pragmatic because of the fact that the same frequency drop and amplitude difference can be 336 

achieved at three different combinations of crack location and depth. Later the difference of each set of crack depth at specific 337 

location obtained by frequency drop and amplitude difference is taken. The minimum difference in predicted values based 338 

on frequency drop and amplitude difference will suggest the most accurate crack depth and location. A detailed schematic 339 

of predicting crack depth and location is shown in Figure 14. 340 

341 

342 

343 
Figure 14: Schematic for predicting crack depth and location 344 

There will be six global correlations for three locations based on specific response parameter. From these correlations six 345 

crack depths are evaluated from six global correlations, three by using the natural frequency difference and three by amplitude 346 

difference. One set of value of crack depth represents one location. Therefore, the difference of these crack depths belongs 347 

to one location which will help in deciding the final crack location. The position where the crack depth difference is minimum 348 

is the actual physical location of crack.  These empirical correlations can be used to get the crack propagation from initiation 349 

to failure. The visually measured crack depth values are compared with the values obtained from Eq. (15) and are found in 350 

good agreement. 351 

A polynomial curve fitting is performed on available data to obtain a global empirical equation which can accommodate 352 

a range of frequency and length of the specimen as shown in Eq. (18-20). Eq. (19) and Eq. (20) are formulated based on 353 

frequency drop, amplitude difference and temperature. Therefore, first matrix is for polynomial coefficient and the other is 354 

based on corresponding value of dynamic response parameters and temperature. Crack depth is plotted as a function of 355 

frequency drop, amplitude difference, and temperature as shown in Figure 15 & Figure 16. This polynomial curve fit can 356 

accommodate most of the available data point. However, few of are still not covered the prediction percentage will be higher 357 

in the vicinity of these points. 358 
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359 
Figure 15: Experimental and surface fit data for empirical correlation based on frequency drop for crack located at 5% of L360 

361 

362 
Figure 16: Experimental & surface fit data for empirical correlation based on amplitude difference for crack located at 5% of L363 
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Experimental results are plotted with the results obtained via a global empirical equation, and found in good agreement. 364 

The global empirical relation can be used to predict around 82% of available date for validation within 10% of error. The 365 

presence of a crack can change the material properties of the specimen which ultimately cause the drop in its natural 366 

frequency and amplitude variation till catastrophic failure. Mathematically, empirical correlations can be obtained from these 367 

trends which can be used to estimate the crack depth and location, if the frequency drop/amplitude difference and temperature 368 

are known. This equation can be a very useful for in-situ damage assessment of metallic structures. These empirical 369 

correlations can be used as a very effective damage assessment tool in in-situ condition. The accuracy of damage prediction 370 

is excellent at higher frequency drop and amplitude difference.  371 

372 �� =  �(∆���  , ∆�, �) (18) 373 

374 ��� = �� +   ��∆��� +  �� � + ��∆���� +  ��∆��� �+  ���� + ��∆���� +  ��∆���� � + ��∆��� � � (19)375 

376 ��� = �� +   ��∆� +  �� � + ��∆�� +  ��∆� �+   ���� + ��∆�� +  ��∆�� � +   ��∆� � �                              (20)377 

378 

379 

where, ��� is crack depth prediction based on natural frequency drop, ��� is crack depth prediction based on amplitude 380 

difference, ∆��� is natural frequency drop, ∆� is amplitude difference, � is selected temperature, �� ,�� ,�� ,�� ,�� ,�� ,�� ,381 �� are the coefficients of empirical correlation derived using frequency drop and temperature data for crack located at 5% of 382 

L, ��,�� ,�� ,�� ,�� ,�� ,�� , �� are the coefficients of empirical correlation as shown in Table 2.  383 

384 
Table 2: Coefficients of empirical correlations Eq. (18) 385 

Coefficients 
Crack location 

5 % of L 10 % of L 15 % of L�� 0.9367 0.8726 0.8574 �� 0.359 0.3701 0.3973 �� -0.01433 -0.01106 -0.008917 �� -0.01637 -0.01828 -0.02223 �� -0.001936 -0.002136 -0.002331 �� 0.0001338 0.00012 0.0001143 �� -0.000147 -5.192e-005 0.0001004 �� 0.0002067 0.0002018 0.0002062 �� -1.286e-005 -1.165e-005 -1.146e-005 �� 0.5348 -0.1923 -0.5979 �� 0.6342 0.3507 0.1834 �� 0.003625 0.02056 0.02765 �� 0.08744 0.0629 0.09089 �� -0.01193 -0.00784 -0.0004958 �� 1.201e-005 -4.185e-005 -5.088e-005 �� -0.01013 -0.008389 -0.002902 �� -0.001533 -0.00109 -0.000517 �� 2.413e-005 2.233e-005 1.016e-005 

386 
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6   Validation of empirical correlations  387 

6.1 Validation based on available data 388 

389 
Initially proposed empirical correlations are validated with the same experimental values which are used to develop these 390 

correlations using dynamic response and temperature values. These values are given as input to Eq. (19) and crack depth 391 

based on frequency and amplitude are calculated at known crack locations. Experimental results are plotted with the results 392 

obtained via a global empirical equation, and found in good agreement as shown in Figure 17 to Figure 22.. Mathematically, 393 

empirical correlations can be obtained from these trends which can be used to estimate the crack depth and location, if the 394 

frequency drop/amplitude difference and temperature are known.   395 

396 

397 
Figure 17: (a) Comparison of experimental and prediction results based on frequency drop (b) Comparison of experimental and 398 

prediction results based on amplitude difference for crack located at 5% of L at non-heating condition 399 
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400 
Figure 18: (a) Comparison of experimental and prediction results based on frequency drop (b) Comparison of experimental and 401 

prediction results based on amplitude difference for crack located at 10% of L at non-heating condition 402 

403 
Figure 19:  (a) Comparison of experimental and prediction results based on frequency drop (b) Comparison of experimental and 404 

prediction results based on amplitude difference for crack located at 15% of L at non-heating condition 405 
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406 
Figure 20: (a) Comparison of experimental and prediction results based on frequency drop (b) Comparison of experimental and 407 

prediction results based on amplitude difference for crack located at 5% of L at 200oC 408 

409 
Figure 21: (a) Comparison of experimental and prediction results based on frequency drop (b) Comparison of experimental and 410 

prediction results based on amplitude difference for crack located at 10% of L at 200oC 411 
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412 
Figure 22: (a) Comparison of experimental and prediction results based on frequency drop (b) Comparison of experimental and 413 

prediction results based on amplitude difference for crack located at 15% of L at 200oC 414 

Consistent results are obtained at all the temperature loads. Therefore, two extreme conditions are presented including 415 

non-heating and 200oC. The results show that the proposed tool is very useful for accurate damage assessment. The accuracy 416 

of the prediction is continuously improving with the increase in frequency drop and amplitude difference. This tool can be 417 

used with either of the response parameters and also valid near sub-surface cracking using amplitude difference. The basic 418 

limitation of prediction based on frequency drop is that the same reduction can be achieved with a different combination of 419 

crack depth and location. Therefore, the amplitude difference can be used in conjunction with a frequency drop to overcome 420 

this limitation. This tool is validated with ±10% prescribed range of crack depth prediction. 421 

6.2 Validation for arbitrary data 422 

423 
For general validation of empirical correlations, total nine samples are used for damage assessment at arbitrary input 424 

parameters. Out of nine, three for each location are considered for different response values and temperatures. The respective 425 

frequency drop and amplitude difference are measured as shown in Table 3. The prediction results using the proposed 426 

correlation are found very close to actual as shown in Table 4. Images for experimental validation are shown in Figure 23. 427 

The crack depth to thickness ration can be calculated as shown in Eq. (21). 428 

429 �� �⁄ =  F1 F2⁄ (21)430 

431 

where,�� is crack depth, � is specimen thickness, F1 is the crack measurement value on image and F2 is the thickness 432 

measurement value on image using MATLAB imtool.433 

434 
Table 3: Measured response of nine samples for validation 435 

Crack location (% of L) Temp. [Co] Freq drop [Hz] Amplitude difference [mm] 

5 75 8.44 -2.10 

5 110 10.24 -1.88 

5 125 8.41 -3.88 

10 175 9.11 -5.53 

10 190 16.21 -6.84 

10 90 5.20 -2.96 

15 60 7.59 -5.44 

15 135 8.48 -6.01 

15 165 11.88 -6.22 
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Table 4: Prediction using proposed empirical correlation436 

Temp. 

[Co] 

Crack depth / Thickness Crack location (% of L) 

Actual �� �⁄ Prediction ��� �⁄ % Error 
Prediction ��� �⁄ % Error Actual Prediction 

75 0.469 0.499 6.40 0.464 1.07 5 5 

110 0.544 0.561 3.13 0.519 4.60 5 5 

125 0.507 0.464 8.48 0.479 5.52 5 5 

175 0.516 0.487 5.62 0.532 3.10 10 10 

190 0.754 0.736 2.39 0.783 3.85 10 10 

90 0.314 0.325 3.50 0.337 7.32 10 10 

60 0.557 0.545 2.15 0.581 4.31 15 15 

135 0.574 0.533 7.14 0.59 2.79 15 15 

165 0.606 0.665 9.74 0.559 7.76 15 15 

437 

438 
Figure 23: Images of specimens for experimental validation 439 

7 Conclusion 440 

441 
A methodology is proposed to predict the crack depth in an Aluminum 2024 cantilever beam, operating at a modal 442 

frequency by its dynamic response values including frequency drop and amplitude difference due to stiffness variation. The 443 

methodology is based on in-situ operating condition to predict the depth of a propagating crack under thermo-mechanical 444 

loads. Experimental data for increasing crack depth at different locations and temperatures is gathered.  Based on the 445 

comprehensive results, a trend is obtained to establish relationships among crack depth, location and temperature for the first 446 

time for a cantilever beam operating under thermo-mechanical loads. Higher temperature reduces stiffness consequently 447 

frequency is also reduced. This will cause to vibrate the specimen at higher amplitude under same loading. The similar 448 

phenomenon is observed for crack located away from the fixed support. Distinguish results are obtained for amplitude 449 

response in which the subsurface cracking is evident without showing any increase in crack propagating. A detailed 450 
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schematic is established to predict crack location and depth. Empirical relations based on global curve fit are presented using 451 

dynamic response and temperature to formulate a robust tool. This tool is validated with available as well as arbitrary data.  452 

The predicted results are well within 10% of prediction range using frequency drop for all configurations. Further, this 453 

procedure can also be used to analyze the crack propagation path and its rates without dismantling the structural element 454 

from its routine operations. 455 

456 
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