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Joint waveform and guidance control optimisation
for target rendezvous

Alessio Benavoli1, Alessio Balleri2 and Alfonso Farina3

Abstract—The algorithm developed in this paper jointly selects
the optimal transmitted waveform and the control input so that
a radar sensor on a moving platform with linear dynamics can
reach a target by minimising a predefined cost. The cost proposed
in this paper accounts for the energy of the transmitted radar
signal, the energy of the platform control input and the relative
position error between the platform and the target, which is a
function of the waveform design and control input. Similarly
to the Linear Quadratic Gaussian (LQG) control problem, we
demonstrate that the optimal solution satisfies the separation
principle between filtering and optimisation and, therefore, the
optimum can be found analytically. The performance of the
proposed solution is assessed with a set of simulations for a
pulsed Doppler radar transmitting linearly frequency modulated
chirps. Results show the effectiveness of the proposed approach
for optimal waveform design and optimal guidance control.

Index Terms—Cognitive rendezvous, adaptive waveform de-
sign, cognitive radar, Fisher Information Matrix (FIM), Cramér-
Rao Lower Bound (CRLB), Linear Quadratic Gaussian control
(LQG), Kalman Filter (KF).

I. INTRODUCTION

The improvement of technology and the pressing need for
sensors to become increasingly more flexible, adaptive, and
ultimately include some degree of cognition, is resulting in
radar systems that are becoming more and more capable to
adapt their parameters from scan to scan to optimise the sensor
performance.

Cognitive radar systems are radar that continuously learn
about the environment through active interactions with the en-
vironment itself and, as a result, continually update the receiver
and the transmitting parameters, in an intelligent manner, with
relevant information (the perception action cycle). The whole
radar system is a dynamic closed feedback loop between
the transmitter, environment and receiver. Cognition can be
achieved with the use of prior knowledge on the environment,
which represents the long-term memory of the receiver, and
the short-term memory developed by the receiver on the fly.

In recent years, there has been growing research interest to
develop solutions that can increase the level of cognition of
radar systems [1] [2]. The largest portion of research published
on cognitive radar presents solutions to adapt the transmitter
parameters in response to the surrounding environment under
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the tracking framework. A technique to select the radiated
waveform to improve target tracking performance was pre-
sented in [3]. The linear Kalman Filter (KF) is used in polar
coordinates to track a target illuminated with a sensor system
that measures the target range and radial velocity. The optimal
waveform is selected by minimising the mean square tracking
error and the volume of the tracking validation gate when
the measurement covariance matrix is the Cramér-Rao Lower
Bound (CRLB) of the joint estimation of range and velocity
under the narrowband approximation. Adaptive waveform se-
lection for a multistatic radar consisting of a transmitter and
multiple receivers was investigated in [4]. The measurements
of the relative bistatic target range, velocity and angle at each
receiver are used to model the covariance matrices of the mea-
surement noise in an Interacting Multiple Model - Extended
Kalman Filter (IMM-EKF) and waveform selection is accom-
plished by minimising the tracking mean square error. Signal
selection to improve tracking performance was studied in [5]
to demonstrate the inappropriateness of selecting waveforms
based on the accuracy of the measurements alone. Dynamic
waveform selection based on the minimum expected value of
the tracking Mean Square Error (MSE) was presented in [6]
and applied to Generalised Frequency Modulated (GFM) chirp
signals. A sequential Bayesian approach was proposed in [7]
to automatically adapt the waveform design with an antenna
array receiving multiple polarisations and in the presence of
non-Gaussian clutter. A suboptimal, but less computationally
expensive, algorithm was also proposed to select waveform
parameters. This work was further generalised in [8] by
separating the general principles of cognition from the specific
applications to provide a flexible framework applicable to
tracking problems. This was followed by a solution to design
cost functions for fully adaptive radar in [9]. A method based
on mutual information performance to select the waveform
design for target tracking was proposed in [10]. This method
accounts for realistic physical and statistical effects, including
the earth’s curvature and compound-Gaussian clutter, and was
applied to co-located Multiple-Input-Multiple-Output (MIMO)
radar transmitting wideband Orthogonal Frequency Division
Multiplexing (OFDM) waveforms. Cognitive target tracking
for Frequency Diverse Arrays (FDA) was presented in [11].
A solution to design a multibeam radar capable of adapting
the transmitting peak power of each beam was presented
in [12]. The transmit power of each beam is adapted by
using a performance metric based on the Bayesian CRLB
with Measurement Origin Uncertainty (MOU) which relies on
prior knowledge predicted with the tracking recursive cycle.
The algorithm works under the assumption that each beam
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tracks only a target at a time and includes the task of target
detection and false alarms. Cognition was applied to a particle
filter for tracking a manoeuvring target in [13]. The algorithm
selects dynamically the number of particle filters and the
transmitted waveform so to improve tracking accuracy and
tracking efficiency under the assumption of a linear Gaussian
system. Additional interesting references on these topics are
[14] [15]. Recent work on cognitive radar has also investigated
the problem of coexisting Orthogonal Frequency Division
Multiplexing (OFDM) radar and OFDM communication base
stations and proposed a solution to optimise the reduction of
radar transmitted power so to maintain a predefined Mutual
Information (MI) constraint [16].

Despite previous work on tracking by cognitive radar, very
little research has been focused on how radar cognition can be
applied to guidance control for target rendezvous. There has
been prior work on optimal path planning investigating the
optimal trajectories of multiple moving receivers, forming a
multistatic radar network with a single adaptive transmitter,
and tasked to track a moving target. The waveform and
trajectories were selected so to minimise the trace of the
covariance matrix of the KF [17]. However, in this work there
is no attempt to achieve guidance control and there are no
constraints on each receiving platform trajectory.

The key challenge of studying cognition applied to ren-
dezvous problems, as it is proposed in this paper, is the
requirement of optimal solutions that handle estimation theory
and platform guidance control jointly to ensure the trajectory
of the platform ends at the target. The ultimate goal is the
development of a radar platform which can emulate the be-
haviour of an echolocating bat that diversifies the echolocation
call parameters along its trajectory to successfully catch an
insect [18] [19] [20].

Optimal Waveform Diversity (WD) and platform control
for target rendezvous are techniques which have been mostly
researched separately in the past. The concept of duality be-
tween estimation and control was first investigated by Kalman
in [21]. One of the first papers on optimal guidance for
rendezvous investigated the case of a sensor on the ground
that delivered optimal guidance to the interceptor on the basis
of the estimated trajectories of the interceptor and the target to
reach [22]. The sensor transmitted a suitable waveform which,
however, did not change during the task.

An algorithm to automatically select the transmitted wave-
form design from scan to scan to guide an airborne platform
towards a target was presented in [23]. The fore-active control
technique proposed in [3] was used to select the transmitted
waveform, so to minimise the innovation matrix (or residual)
of the KF, and a standard Linear Quadratic Gaussian control
(LQG) technique was employed to guide the platform towards
the target. However, in this work, the fore-active technique and
LQG control were applied independently with no attempt to
demonstrate the existence and find the joint optimal solution.

The contribution of this paper is twofold. Firstly, the an-
alytical demonstrations presented in this paper represent an
important contribution to the linear KF theory with a gener-
alisation of the LQG control approach. Secondly, the paper
presents a new optimal solution to achieve joint optimal WD

and guidance control for rendezvous. The algorithm minimises
a cost function that depends on both the parameters of the
transmitted radar waveform and the input guidance control so
that the waveform and guidance control input selection, under
suitable assumptions, can be truly, jointly and simultaneously
optimised. We demonstrate for the first time that for a linear
Gaussian system, when the measurement noise is independent
of the state, the joint optimisation problem can be simplified
into two independent optimisations, one that depends only on
the waveform parameters and the other that depends solely
on the control input. The solution is found in a closed-form
and therefore the proposed algorithm has comparable compu-
tational complexity to existing cognitive solutions proposed
for tracking. The mathematical demonstrations in this paper
also rigorously prove that the algorithm presented in [23] is
suboptimal and provide a modified optimal solution.

II. LIST OF MAIN SYMBOLS

ek Nx x 1 State vector of relative dynamics
êk Nx x 1 Mean value of Kalman Filter
wk Nw x 1 State forcing noise
uk Nu x 1 Control input
zk Nz x 1 Measurement vector
νk Nz x 1 Additive noise for the measurement
Pk|k Nx x Nx State error covariance
Pk|k−1 Nx x Nx Prediction of state error covariance
Qk Nx x Nx Covariance of state forcing noise
Nk Nz x Nz Covariance of measurement noise
Fk Nx x Nx State transition matrix
Mk Nx x Nx Cost function matrix
Uk Nx x Nx Dynamic Riccati equation matrix
Sk Nz x Nz Residual covariance matrix
Hk Nz x Nx Measurement matrix
Kk Nx x Nz Kalman gain
Ek Nx x Nx Weight matrix of the cost function
Rk Nu x Nu Weight matrix of the cost function
Lk Nu x Nx Feedback gain matrix
Bk Nx x Nu Control transition matrix
θk Nθ x 1 Vector of waveform parameters
IN×N N x N Identity matrix

III. THEORETICAL FRAMEWORK

The goal of optimal control theory is to operate/regulate a
dynamic system at minimum cost. The case where the system
dynamics is linear and the cost is a quadratic function is
called the linear quadratic (LQ) control problem. When the
linear systems are driven by additive white Gaussian noise,
the problem is known as an LQG control problem. The goal
of this section is to extend the LQG control problem to
the case where, at each time instant, the parameters of the
measurement sensor can be regulated too. These parameters
may determine the accuracy, but also the energy consumption
of the sensor. Hence, we aim to jointly select the control
inputs and sensing parameters optimally, by minimizing the
LQG quadratic cost function together with an additive sensing
cost term that penalises the sensor.
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Consider a general linear system dynamics

ek = Fk−1ek−1 +Bk−1uk−1 +wk−1 (1)

where ek is the state vector, Fk−1 is the matrix dynamics and
wk−1 is a zero-mean Gaussian random perturbation with co-
variance matrix Qk−1. The term Bk−1uk−1 is the control action
at each step: the input vector control uk−1 is combined linearly
with a matrix Bk−1 before being applied to the dynamics
equations. At each time k a sensor senses the environment. The
accuracy of the sensor is defined by a vector of parameters θk
(e.g., for radar sensors, the parameters are duration, bandwidth
etc.), to obtain a linear measurement

zk = Hkek +νk(θk) (2)

of the state ek, as in [3]. The matrix that maps the state into
the measurement is Hk and νk(θk) is a zero-mean Gaussian
random process with covariance matrix N(θk) which depends
on the parameters θk. The goal of the platform is to minimise
a quadratic cost function

J(e0,u0:N−1,θ1:N) = E

(
N

∑
k=0

`(k,ek,uk,θk)

)
(3)

with respect to u0:N−1 = {u0, . . . ,uN−1} and θ1:N =
{θ1, . . . ,θN}, over the horizon N, with{

`(k,ek,uk,θk) = eT
k Ekek +uT

k Rkuk +αkΨs(θk) k < N
`(N,eN ,uN ,θN) = eT

NENeN +Tr(ENPN|N)+αNΨs(θN ) k = N
(4)

where
• E (. . .) denotes the expectation w.r.t. the initial state and

the sequence of measurement and process noises;
• Ek,Rk are suitable Positive Semi-Definite (PSD) matrices

that define the weights of the cost function: the control
effort is weighted by the matrices Rk, while the control
effectiveness by Ek;

• αk ≥ 0 are additional scalar weights of the cost function
that penalise an additional sensing cost term Ψs(θk)≥ 0;

• the meaning of term Tr(ENPN|N) will be clarified in the
next section. For the moment, we can just consider it as
a further additive term in the cost function;

The control goal is therefore to keep ek close to 0, especially,
at the final time N, using little control effort uk and little
sensing cost Ψs(θk).

Therefore, the dependence of the cost function on θ1:N
is twofold: (i) the sensing cost term Ψs(θk); (ii) the
measurement noise (νk(θk)) that contributes to the covariance
matrix of the joint multivariate Gaussian distribution w.r.t.
which the expectation in (3) is taken. For fixed sensor
parameters (fixed θ1:N) and αk = 0, the optimal control
problem in (3) coincides with the LQG regulator problem,
whose optimal solution is well-known, see for instance [24,
Ch.7]. Note in fact that, in this setting, the cost function
is quadratic in the state and control inputs. In this paper,
by introducing the additional optimisation variables θ1:N ,
we give the possibility to the interceptor to both control its
trajectory (through u0:N−1) and the sensor sensing parameters
generation (through θ1:N).

IV. THEOREM OF JOINT WAVEFORM AND GUIDANCE
CONTROL OPTIMISATION (JWGCO)

Consider the linear Gaussian system (1) and the quadratic
performance cost (3)-(4). Our goal in this section is to find
a joint sensing parameters selection and guidance control
sequence (u0:N−1,θ1:N) that minimizes the performance cost
(3). For fixed sensor parameters θ1:N , the optimal sequence
u0:N−1 can be found by solving the LQG control problem.1

In this case, an elegant solution can be obtained in closed-
form (see for instance [24, Ch.7]). In the following Theorem
1, we extend this known result to the case in which the sensor
parameters change and can be optimised with time.

Theorem 1. Under the assumption that the noises νk(θk),
wk and the initial state e0 are jointly independent for k =
0,1,2, . . . , the optimal solution of the problem (3)–(4) assum-
ing the dynamics (1) and the measurement equation (2) is
u∗i =−Liêi and θ∗i = argminθi Tr(MiPi|i)+αiΨs(θi) with

Mi =

{
SN , for i = N
(Ei +FT

i Si+1Fi−Si), for i = 1, . . . ,N−1 (5)

and

êi+1 = Fiêi +Biui +Ki+1 (zi+1−Hi+1(Fiêi +Biui)) (6)

with ê0 = E [e0]. The Kalman gain equals

Ki = Pi|i−1HT
i (HiPi|i−1HT

i +Ni(θi))
−1 (7)

where Pi|i is determined by the following Riccati matrix
difference equation that runs forward in time:

Pi|i = Pi|i−1−KiHiPi|i−1 (8)

where
Pi|i−1 = Fi−1Pi−1|i−1FT

i−1 +Qi−1 (9)

and P0|0 = E
(
(e0− ê0)(e0− ê0)

T
)

. The feedback gain matrix
equals

Li = (BT
i Si+1Bi +Ri)

−1BT
i Si+1Fi (10)

where Si is determined by the following Riccati matrix differ-
ence equation that runs backward in time:

Si = FT
i

(
Si+1−Si+1Bi

(
BT

i Si+1Bi +Ri
)−1 BT

i Si+1

)
Fi +Ei

(11)
with SN = EN . Finally the optimal cost is

min
u0:N−1,θ1:N

J(e0,u0:N−1,θ1:N) = E (eT
0 S0e0)+Tr(MNP∗N|N)

+αNΨs(θ
∗
N)+

N−1

∑
i=0

Tr(Si+1Qi)+Tr(MiP∗i|i)+αiΨs(θ
∗
i )

where P∗i|i is the value of the covariance matrix Pi|i when
computed with the optimal measurement noise covariance
Ni(θ

∗
i ).

A detailed proof of Theorem 1 can be found in Appendix
A, Appendix B and Appendix C.

1The difference w.r.t. the LQG problem is the term Tr(ENPN|N), that does
not depend on u1:N and, therefore, does not change the LQG solution. By
removing this last term and forcing αk = 0 for or k ≤ N and Ek = 0 for
k < N, the cost function corresponds to the LQG cost exploited in [23].
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It can be noticed that the optimal guidance control law
resembles the classic LQG regulation: the only difference is
that the covariance matrix of the KF depends on the optimal
sensor parameters. This is illustrated in the block diagram in
Figure 1. One of the remarkable properties of LQG regulation
is the separation principle: the filtering stage is not affected
by the regulation objective and conversely. This property is
kept by the current solution and this allows us to perform
the two optimizations (w.r.t. θ1:N and u0:N−1) independently.
However, this does not mean that the optimal values (resulting
from the optimisations) are independent. They both depend, in
a non-trivial way, on the mean and covariance of the KF and
on the matrices of the cost function. Moreover, the optimal
action and optimal sensing at time i change the trajectory of
the interceptor and the sensing accuracy at time i+1 leading
to a closed-loop system. This allows us to jointly trade-off
between the control effort, the control effectiveness and the
sensing cost in an optimal way.

In the LQG regulator an interesting topic is the analysis
of the limiting behaviour as the regulation N horizon goes to
infinity. For fixed sensor parameters (fixed θ1 =θ2 = · · ·=θN),
no energy term (αk = 0) and a time-invariant system (i.e.,
F,B,Q,H,N are time-invariant, also N = N(θi) being con-
stant), we recall the following result from LQG regulation
[24].

Proposition 1. Consider a time-invariant linear Gaussian
plant (1),(2) and the quadratic performance index (3)-(4)
with time-invariant weight matrices, fixed θ1 = θ2 = · · ·= θN
and no energy terms (αk = 0). Let (F,B) and (F,G) (with
G = Q1/2) be stabilisable and (F,H) be detectable. Then, as
N → ∞, the LQG optimal regulation law equals u∗i = −Lêi
where L is the constant-feedback matrix

L = (BTSB+R)−1BTSF (12)

where S is the solution of the ARE (Algebraic Riccati Equa-
tion):

S = FT
(

S−SB
(
BTSB+R

)−1 BTS
)

F+E (13)

Further, êi is generated by the steady-state KF with Kalman
gain:

K = PHT(HPHT +N)−1 (14)

where P is the solution of the ARE:

P = F
(
P−PHT (HPHT +N

)−1 HP
)

FT +Q (15)

In our case, even for time-invariant systems, the matrix
N(θi) is time-variant because of the dependence on the de-
cision variables θi. Therefore, the previous Proposition does
not hold. However, we can prove the following result.

Theorem 2. Consider the same assumptions as in Proposition
1 apart from that of fixed sensor parameters and assume
that α1 = · · · = αn = α . Then, as N → ∞, the LQG optimal
regulation law equals u∗i = −Lêi where L is the constant-
feedback matrix given by (12)–(13). Moreover, let M be the
weight matrix in (5) computed for Si = S and let us assume that

there exists a solution P∗ of the ARE (8) computed assuming
a constant N(θi) = N(θ∗) for i = 1,2, . . . and such that

argmin
θ

Tr(MP̃)+αΨs(θ) = θ∗ (16)

with P̃ = P∗ − P∗HT
i
(
HP∗HT +N(θ)

)−1 HP∗. Then (3)-(4)
admits a steady-state solution that coincides with that of the
LQG regulator computed for N = N(θ∗).

A detailed demonstration is given in Appendix D.
Theorem 2 proves that a steady solution may exist also for

the optimal joint sensing parameters selection and guidance
control problem. However, it is not guaranteed that the steady
solution is unique, since there may be different values of θ ∗

that satisfy (16).
Finally, it is worth noting that in this work, we are assuming

the sensor parameters can vary continuously (in intervals)
but, in practice, they may be constrained to only assuming
discrete values. In this case, the optimisation problem can
be formulated as a mixed integer-nonlinear programming, the
integer part being the optimisation of the waveform parameters
argminθi Tr(MiPi|i) + αiΨs(θi), that can be solved using
either a brute-force search or a branch-bound algorithm [25]
(depending on the number of points in the search space).

V. MEASUREMENT NOISE COVARIANCE MATRIX

We consider the case of a radar system that measures the
relative range, radial velocity and angle with respect to the
target in a polar coordinate system. The covariance matrix
of the measurement noise depends on the elements of the
vector θk that describes the parameters of the transmitted
waveform, such as duration, bandwidth and time-frequency
curvature. The mathematical expression of the elements of
θk and the vector length depend on the waveform design
taken under consideration. It is well known in the literature
that, when the sensor measures range and radial velocity,
the covariance matrix N̂(θk) corresponds to the CRLB of
the estimators of range and radial velocity [26] [27] [28].
The Fisher Information Matrix (FIM) for range r and radial
velocity ṙ in the presence of noise with mean power N0 can
be expressed as

J(r,ṙ) = J(τ,ν) ◦
( 4

c2
4

cλ
4

cλ

4
λ 2

)
(17)

with

J(τ,ν) =−SNR

(
1
2

∂ 2|χ(τ,ν ;θk)|2
∂τ2

1
2

∂ 2|χ(τ,ν ;θk)|2
∂τ∂ν

1
2

∂ 2|χ(τ,ν ;θk)|2
∂ν∂τ

1
2

∂ 2|χ(τ,ν ;θk)|2
∂ν2

)∣∣∣∣∣
τ,ν=0

(18)
where ◦ is the Hadamard product, c is the speed of prop-
agation, λ is the wavelength, SNR = 2ER/N0 is the Signal
to Noise Ratio at the receiver and χk(τ,ν) is the normalised
narrowband Complex Ambiguity Function (CAF) of the signal√

ERs(t;θk) of energy ER defined as

χ(τ,ν ;θk) =
∫

∞

−∞

s(t;θk)s∗(t + τ;θk)e j2πνtdt (19)

where τ and ν represent the time delay and the Doppler,
respectively. The covariance matrix of the measurement noise,
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Fig. 1: Block diagram of the proposed JWGCO algorithm. The two highlighted boxes represent the two optimised variables.

that is the CRLB, is therefore obtained by taking the inverse
of the FIM

N̂(θk) =
[
J(r,ṙ)

]−1
(20)

The radar measurement of target angle at narrowband is
assumed to be independent of the measurements of range and
velocity and therefore the final measurement noise covariance
matrix is

N(θk) =

(
N̂(θk) 0
02x2 σ2

θ

)
(21)

where σ2
θ

is the variance of the measurement of target angle
which, in general, is a function of SNR, antenna design (i.e.
beamshape) and beampointing. In this paper, we study the
case of a sensor that transmits a train of NP chirps with a
Gaussian envelope and with duration T = 2λG and bandwidth
B = 2bGλG/π of the form

sT (t;θk) =
√

Es
1√
NP

Np−1

∑
i=0

x(t− iPRI) (22)

with

x(t;θk) =

(
1

πλ 2
G

)1/4

e
− t2

2λ2
G e jbGt2

(23)

and ∫
|x(t;θk)|2dt = 1 (24)

With this signal model, and considering T << PRI, the trans-
mitted peak power is

Ppk =
Es

NP

√
πλ 2

G

(25)

and the total transmitted energy is Es. The received energy
depends on the waveform parameter λG and the range r as

ER =
Ppk

√
πλ 2

GG2σλ 2

(4π)3r4 NP (26)

where G is the antenna gain and σ is the target Radar Cross
Section (RCS). The power spectral density of the noise N0 is
only function of the receiver equivalent noise temperature Te
as N0 = kbTe, where kb is the Boltzmann constant.

It can be shown that for a train of Gaussian chirps with
T << PRI the FIM of time delay and Doppler can be approx-
imated as [3] [29]

J(τ,ν) = SNR

(
1

2λ 2
G
+2λ 2

Gb2
G 2πλ 2

GbG

2πλ 2
GbG 2π2λ 2

G + 1
3 π2PRI2(N2

p−1)

)
(27)

We study the case when the sensing cost term Ψs(k) is the
transmitted energy at each step Es. A number of strategies
can be employed to account for the SNR for the assessment
of performance.

1) The Signal to Noise ratio at each scan is obtained
with the radar range equation (as in (26)) under the
assumption that the transmitted peak power Ppk remains
constant at all times or that Ppk can be automatically
adapted to keep the energy of the transmitted signal
constant. Under this hypotheses, ER is a function of
the range r, which is a function of the state vector ek.
As a result, the measurement noise is a function of the
state and the solutions of the linear KF, which requires
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independent measurement noise, are no longer valid.
As a result, the proposed algorithm is not optimal. A
solution of this type has been implemented in previous
work (e.g. [3], [23] and [30]) and, as a result, the
tracking performance achieved in these papers with the
standard KF equations is also suboptimal.

2) The radar can automatically adapt certain parameters
(e.g. the transmitted peak power) so to ensure that the
received SNR at each scan remains constant. Under
these assumptions, because SNR remains constant, the
measurement noise covariance matrix does not depend
on the state and the transmitted energy at each step,
given a fixed range, does not depend on the waveform
parameters. However, under this strategy, the transmitted
energy

Es =
(4π)3ER

G2σλ 2 r4 (28)

becomes a function of r4 and therefore the assumption in
Theorem 1 that Ψs(k) is only a function of θk does not
hold. Though, with this strategy, the algorithm presented
in this paper remains optimal for αk = 0.
The assumption of constant SNR is commonly employed
to design modern radar systems that often have to per-
form multiple simultaneous tasks. Such a solution allows
a better allocation and use of the available resources as
well as the transmission of better Low Probability of
Intercept (LPI) waveforms when the range decreases.
In a practical application, the radar will select the
waveform parameters assuming constant SNR and will
use the prediction of the range or the predicted mean
value of the range to calculate the energy to transmit.
Although, the measurement noise becomes a function
of the estimate of the state, the robustness of the
algorithm can be assessed with respect to resulting SNR
fluctuations.

3) The radar can automatically adapt the transmitted peak
power so to ensure that the received signal energy does
not depend on range, i.e. that the ratio Ppk/r4 remains
constant. The energy of the received signal becomes

ER = γ

√
πλ 2

GG2σλ 2

(4π)3 NP (29)

with γ being a constant, and the covariance matrix of the
measurement noise does not depend on the state. Under
this assumption, the transmitted energy depends on the
waveform parameters and r4 and, as for the previous
strategy, the algorithm presented in this paper is optimal
only for αk = 0. The robustness of the algorithm with
respect to fluctuations in SNR can be assessed by using
the prediction or preticted mean value of the range as
outlined for the strategy at constant SNR.

VI. SIMULATION RESULTS

A moving airborne platform is considered that carries a
pulsed Doppler radar system operating at 10 GHz with the task
of reaching a target within 20 scans. The relative polar coor-
dinates between the platform and the target are represented by

the state vector e =
[
r ṙ θ θ̇

]T which consists of the relative
range r, relative radial velocity ṙ, relative angle θ and relative
angle rate θ̇ . The state equations are of the type used in [31]
and [32] and described by the matrices

F =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 Q =

(
Qr 0
0 Qθ

)
(30)

with

Qr = σ
2
1

(
T 3/3 T 2/2
T 2/2 T

)
Qθ = σ

2
2

(
T 3/3 T 2/2
T 2/2 T

)
(31)

σ2
1 = 0.01, σ2

2 = 0.02 and T = 1 s. The control input is applied
to all the elements of the state vector with

B = I4×4 (32)

and the radar measures the relative range, relative radial
velocity and relative angle to the target with

H =

 1 0 0 0
0 1 0 0
0 0 1 0

 (33)

It is assumed that the target has been positively detected and
that all measurements are the result of true target associations.
At each scan the radar transmits NP = 2 pulses with a PRI of
0.1 ms (PRF=10 kHz). The transmitting and receiving antenna
gain is G = 10 dB and the target RCS is 1 m2. The SNR
is updated at each scan after calculating the received energy
ER assuming a receiver temperature noise Te = 1000 K◦. The
SNR strategy at constant Ppk/r4 is employed to account for
energy variations due the signal parameters and the constant γ

is obtained by setting a reference SNR of 0 dB for a pulsewidth
of 1 µs. We also assume the transmitter and receiver employ
separate antennas that point at the target with σ2

θ
= 0.1 rad2

so that the radar can transmit and receive at all times with no
blind range. The initial covariance matrix is set to

P0|0 = I4×4 (34)

and the state vector at zero-time e0 is assumed known with
elements equal to 1 km, −1 m/s, 0 rad and 0 rad/s. Finally,
the weight αk = 2×106, the weight matrices are E = I4×4 and
R= 50×I4×4 and the matrix SN is initialised with the solution
of the ARE as in (13). The KF initial mean was set equal to
zero. Note that, since αk 6= 0, the solution of the algorithm is
suboptimal and because the SNR is time-variant the algorithm
solution is non-stationary. Despite being suboptimal, the strat-
egy offers anyway remarkable performance as shown in the
simulation results.

Results relative to the adaptive case of a train of linear
Gaussian chirps are compared with two other strategies:

MinN: minθ Tr(N(θ))
MinP: minθi Tr(EPi|i)

In the first, the waveform parameters are selected so to
minimize the trace of the measurement noise covariance matrix
N(θ), while, in the second, we minimise at each scan the
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Fig. 2: Estimated relative velocity versus range to target for
the three waveform selection strategies. The curves JWGCO
Sub, MinP Sub and MinN Sub have been obtained using the
prediction of the range.

trace of Pi|i weighted by the matrix E. The bandwidth and
pulsewidth of the chirp pulse at each scan are automatically
selected by the algorithm in the range between 10 MHz to 50
MHz and 1 µs to 10 µs, respectively. In order to investigate the
robustness of the algorithm with respect to SNR fluctuations,
simulation results are also presented for the case when the
radar uses the prediction of the range to calculate the peak
power and therefore the energy to transmit. Figure 2 shows
the estimated relative velocity versus the relative range to the
target for the three waveform selection strategies. Results have
been averaged over 500 Monte Carlo simulations. As expected,
the interceptor reaches the target within the predefined number
of scans for all cases. Figure 3 shows the optimal pulsewidth
selected by the three strategies at each scan. Results show
that the JWGCO algorithm selects the short pulsewidth at the
beginning of the trajectory to switch to the longest pulsewidth
in proximity of the target. The bandwidth remains fixed at all
scans indicating no variation in range resolution (see Figure
4). Similar waveform selection results are obtained when the
prediction of the range is used to calculate Ppk.

Figure 5 shows the corresponding ambiguity function of the
waveforms transmitted along the trajectory and how it rotates
from scan to scan for the JWGCO strategy. Results show the
Doppler resolution is lower at the beginning of the trajectory,
for the first six pulses, than that in proximity of the target. The
range resolution remains the same throughout the trajectory
as the transmitted bandwidth is constant. The range cut of
the ambiguity function, showing a range resolution of 3 m, is
presented in Figure 6. Figure 7 and Figure 8 show the Doppler
cuts of the AF for the first and last pulse of the transmitted
sequence. Results show that, as expected, at the end of the
sequence the Doppler resolution significantly improved and
this is a direct consequence of employing a longer pulse. The
key result is in Figure 9 which shows the averaged cumulative
cost, i.e. the incremental value of (3) as k→ N = 20 for the
last 10 pulses. As expected, the strategy JWGCO achieves
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Fig. 3: Pulsewidth of the resulting linear chirp for the three
waveform selection strategies at each scan.
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Fig. 5: Ambiguity Function of the resulting linear chirp for
the JWGCO strategy at each scan.
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Fig. 10: Average cumulative cost of the term associated with
the transmitted energy for the three strategies.

a lower final minimum cumulative cost with respect to the
other two strategies. This was the main goal of the proposed
algorithm. Results also show that performance is robust to
SNR fluctuations. The contribution to the total cost of the
transmitted energy, estimation errors and control input terms
are shown in Figure 10, Figure 11 and Figure 12, respectively.
Results show that the JWGCO results in a series of waveforms
with the lowest transmitted energy.

Figure 13, Figure 14 and Figure 15 show the Root Mean
square Error (RMSE) of the estimate of relative range, relative
radial velocity and relative angle, respectively. Results show
that the JWGCO algorithm allows for a larger RMSE of range
and velocity at the beginning of the trajectory but then reaches
similar values as those of the two other solutions in proximity
of the target. The RMSE relative to the estimate of the angle
is similar for all solutions.

VII. CONCLUSIONS

The algorithm presented in this paper jointly selects the
optimal transmitted waveform and the control input so that
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the estimator covariance matrix for the three strategies.
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a sensor on a moving platform can intercept a target by
minimising a cost function of the energy of the transmitted
radar signal, the energy of the control input and the position
error between the interceptor and the target. The solution
achieves joint optimal waveform diversity and control and
this is a contribution of this paper with respect to previous
work where the two tasks were optimised separately. A set of
simulations have been carried out to test the performance of
the algorithm for a moving platform carrying a radar system
operating at 10 GHz and that transmits linear chirps with
Gaussian envelopes.

Future work will investigate the extension of the algorithm
to more realistic cases for both sonar and radar applications.
The measurements of the target range and angle with respect
to the sensor are non-linear functions of the 3D Cartesian
coordinates of the target and this will be taken into account
in future work together with more realistic chased trajectory
escapes. In this case, since the optimal solution of waveform
and guidance problem cannot be computed analytically, we
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plan to follow a different approach based on Model Predictive
Control (receding horizon control). Although this approach
is in general not optimal, in practice it can work very well
[33] [24, Ch.9]. Extending the algorithm to account for non-
stationary and compound clutter is a further key extension
that, however, requires the development of a new theoretical
framework to address the estimation performance of the target
range and velocity in non-Gaussian clutter. The analysis of the
role of angle is another extension that will require much more
sophisticated state equations for the platform dynamics and
(especially for non-linear state equations) the application of
complex nonlinear dynamic programming. However, for linear
state equations, Direction Of Arrival (DOA) performance
can be taken into account with the JWGCO by introducing
additional variables to the CRLB element representing the
accuracy of the angle measurement. Eclipsing can be also
taken into account to study the case of pulsed sensor systems
[34]. The algorithm can also be extended to the wideband case
to investigate if results similar to those shown in [19] for the
case of an echolocating bat are obtainable. To do this, the study
must be extended to a variety of waveform designs, such as
hyperbolic chirps [29].

APPENDIX A
PROOF OF THEOREM 1

Let us consider the problem

min
u0:N−1,θ1:N

J(e0,u0:N−1,θ1:N) = min
u0:N−1,θ1:N

E

(
N

∑
k=0

`(k,ek,uk,θk)

)
(35)

In the proof, we will repeatedly exploit the following general
result

E (eT
k Ekek|z1:k,u0:k−1) = êT

k Ekêk +Tr(Ek Pk|k) (36)

where êk,Pk|k are the KF mean and covariance matrix. We
will also exploit the smoothing properties of conditional
expectations

E
(
E (`(k,ek,uk,θk)|z1:k,u0:k−1)

∣∣∣z1:k−1,u0:k−2

)
(37)

= E (`(k,ek,uk,θk)|z1:k−1,u0:k−2)

where z1:k = {z1, . . . ,zk} and u0:k−1 = {u0, . . . ,uk−1}.
Let us start from time N with

`(N,eN ,uN ,θN) = eT
NENeN +Tr(EN PN|N) (38)

= eT
NSNeN +Tr(SN PN|N)+αNΨs(θN)

where we have introduced the matrix SN = EN . From the
smoothing property, we have that

E (`(N−1,eN−1,uN−1,θN−1) (39)

+E (`(N,eN ,uN ,θN)|z1:N ,u0:N−1)
∣∣∣z1:N−1,u0:N−2

)
= E (`(N−1,eN−1,uN−1,θN−1)

+`(N,eN ,uN ,θN)|z1:N−1,u0:N−2)

and by exploiting (1), we can write

`(N,eN ,uN ,θN) (40)

= (FN−1eN−1 +BN−1uN−1 +wN−1)
T SN(FN−1eN−1

+BN−1uN−1 +wN−1)+Tr(SNPN|N)+αNΨs(θN)

The calculations start by expressing the sum of the values
of the cost function at time N and N−1 as

`(N−1,eN−1,uN−1,θN−1)+ `(N,eN ,uN ,θN) (41)

= eT
N−1EN−1eN−1 +uT

N−1RN−1uN−1

+(FN−1eN−1 +BN−1uN−1 +wN−1)
T SN

(FN−1eN−1 +BN−1uN−1 +wN−1)+Tr(SNPN|N)

+αNΨs(θN)+αN−1Ψs(θN−1)

followed by standard matrix algebraic operations and rear-
rangements to obtain

= eT
N−1(EN−1 +FT

N−1SNFN−1)eN−1 (42)

+uT
N−1(RN−1 +BT

N−1SNBN−1)uN−1 +αN−1Ψs(θN−1)

+ eT
N−1FT

N−1SNBN−1uN−1

+uT
N−1BT

N−1SNFN−1eN−1 +wT
N−1SNwN−1

+(uT
N−1BT

N−1 + eT
N−1FT

N−1)SNwN−1

+wT
N−1SN(BN−1uN−1 +FN−1eN−1)+Tr(SNPN|N)+αNΨs(θN)

The terms are 1× 1 matrices are transposed to find the final
expression becomes

= eT
N−1(EN−1 +FT

N−1SNFN−1)eN−1 (43)

+uT
N−1(RN−1 +BT

N−1SNBN−1)uN−1 +αN−1Ψs(θN−1)

+2uT
N−1BT

N−1SNFN−1eN−1 +wT
N−1SNwN−1

+2wT
N−1SN(FN−1eN−1 +BN−1uN−1)+Tr(SNPN|N)+αNΨs(θN)

The expectation of (43) is equal to

E (eT
N−1(EN−1 +FT

N−1SNFN−1)eN−1|z1:N−1,u0:N−2) (44)

+uT
N−1(RN−1 +BT

N−1SNBN−1)uN−1

+E (2uT
N−1BT

N−1SNFN−1eN−1|z1:N−1,u0:N−2)

+E (wT
N−1SNwN−1|z1:N−1,u0:N−2)

+E (2wT
N−1SN(FN−1eN−1 +BN−1uN−1)|z1:N−1,u0:N−2)

+Tr(SNPN|N)+αN−1Ψs(θN−1)+αNΨs(θN)

By observing that
E (wN−1|z1:N−1,u0:N−2) = 0
E (wT

N−1SNFN−1eN−1|z1:N−1,u0:N−2) = 0
E (eN−1|z1:N−1,u0:N−2) = êT

N−1
E (wk−1wT

k−1|z1:k−1,u0:k−2) = Qk

(45)

we finally obtain

= êT
N−1(EN−1 +FT

N−1SNFN−1)êN−1 (46)

+Tr((EN−1 +FT
N−1SNFN−1)PN−1|N−1)

+uT
N−1(RN−1 +BT

N−1SNBN−1)uN−1

+2uT
N−1BT

N−1SNFN−1êN−1 +Tr(SNQN−1)

+Tr(SNPN|N)+αN−1Ψs(θN−1)+αNΨs(θN)
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Now observe that

min
u0:N−1,θ1:N

J(e0,u0:N−1,θ1:N) (47)

= min
u0:N−1,θ1:N

E

(
N−2

∑
k=0

`(k,ek,uk,θk)

+E
(
`(N−1,eN−1,uN−1,θN−1)

+ `(N,eN ,uN ,θN)|z1:N−1,u0:N−2
))

= min
u0:N−2,θ1:N−1

E

(N−2

∑
k=0

`(k,ek,uk,θk)

+ min
uN−1,θN

E (`(N−1,eN−1,uN−1,θN−1)

+ `(N,eN ,uN ,θN)|z1:N−1,u0:N−2)

)

By considering the inner minimisation, we can perform the
minimisations w.r.t. uN−1,θN independently, since the only
quantity that depends on θN is PN|N . The optimal control input
u∗N−1 is obtained by taking the zero-point of the derivative
w.r.t. uN−1 (see Appendix B) and is equal to

u∗N−1 =−LN−1êN−1, (48)

and the minimum w.r.t. θN is

θ∗N = argmin
θN

Tr(SN PN|N)+αNΨs(θN). (49)

We can then verify the other steps by induction. The
calculation of the cost for the optimal parameters are given
in Appendix C.

APPENDIX B
CALCULATION OF THE OPTIMAL CONTROL INPUT

The optimal control input u∗N−1 is obtained by calculating
the zero-point of the derivative of (47) with respect to uN−1.
After forcing to zero all the terms that are not a function of
uN−1, this can be mathematically expressed as

∂uT
N−1(RN−1 +BT

N−1SNBN−1)uN−1

∂uN−1
(50)

+2
∂uT

N−1BT
N−1SNFN−1êN−1

∂uN−1
= 0

The properties of matrix differentiation, for which if x and y
are two vectors and A is a matrix then ∂xT Ax

∂x = 2xT A and
∂xT Ay

∂x = yT AT , are used to find the final expression

uN−1 =−(RN−1 +BT
N−1SNBN−1)

−1BT
N−1SNFN−1êN−1 (51)

APPENDIX C
CALCULATION OF THE COST FUNCTION FOR THE OPTIMAL

PARAMETERS

We replace u∗N−1 = −LN−1êN−1 and P∗N|N = PN|N(θ
∗
N) in

(46) to obtain

= êT
N−1(EN−1 +FT

N−1SNFN−1)êN−1 (52)

+Tr((EN−1 +FT
N−1SNFN−1)PN−1|N−1)

+ êT
N−1LT

N−1(RN−1 +BT
N−1SNBN−1)LN−1êN−1

−2êT
N−1LT

N−1BT
N−1SNFN−1êN−1

+Tr(SNQN−1)+Tr(SNP∗N|N)+αN−1Ψs(θN−1)+αNΨs(θ
∗
N)

which after some simple algebraic steps becomes

= êT
N−1(EN−1 +FT

N−1SNFN−1−FT
N−1SNBN−1 (53)

(BT
N−1SNBN−1 +RN−1)

−1BT
N−1SNFN−1)êN−1

+Tr((EN−1 +FT
N−1SNFN−1)PN−1|N−1)+Tr(SNP∗N|N)

+Tr(SNQN−1)+αN−1Ψs(θN−1)+αNΨs(θ
∗
N)

We define

SN−1 = EN−1 +FT
N−1SNFN−1−FT

N−1SNBN−1 (54)

× (BT
N−1SNBN−1 +RN−1)

−1BT
N−1SNFN−1

= FT
N−1

(
SN−SNBN−1(BT

N−1SNBN−1 +RN−1)
−1BT

N−1SN
)

×FN−1 +EN−1

to express the cost as

= E (eT
N−1SN−1eN−1|u0:N−1,z1:N−1) (55)

+Tr((EN−1 +FT
N−1SNFN−1−SN−1)PN−1|N−1)

+Tr(SNP∗N|N)+Tr(SNQN−1)+αN−1Ψs(θN−1)+αNΨs(θ
∗
N)

which equals

= E (eT
N−1SN−1eN−1|u0:N−1,z1:N−1) (56)

+Tr(MN−1PN−1|N−1)

+Tr(SNP∗N|N)+Tr(SNQN−1)+αN−1Ψs(θN−1)+αNΨs(θ
∗
N)

with
MN−1 = EN−1 +FT

N−1SNFN−1−SN−1 (57)

where the equality before the last follows from the property
in (36). We can then verify the other steps by induction.

APPENDIX D
PROOF OF THEOREM 2

The fact that u∗i =−Lêi where L is the constant-feedback
matrix is a consequence of Proposition 1 and Theorem 1. For
the second part, assume that such P∗ exists, then if P0 = P̃ we
have that the optimal θ will satisfy θ∗i = θ∗ for i = 1,2, . . .
and, therefore, Pi = P∗ for i = 1,2, . . . .
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