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Abstract 

The study evaluated the changes in bacterial numbers across a full-scale membrane 

bioreactor (MBR) blackwater reuse system. Flow cytometry was used to quantify total 

and intact bacterial concentrations across the treatment train and during distribution of 

the recycled water. Membrane passage reduced bacterial numbers by up to 5-log units 

resulting in coliform-free permeate. A 2-log increase in bacterial cell concentration was 

subsequently observed after the granular activated carbon unit followed by a reduction 

in intact cells after chlorination, which corresponds to an overall intact bacteria removal 

of 3.4-log units. In the distribution network, the proportion of intact cells greatly 

depended on the free chlorine residual, with decreasing residual enabling regrowth. An 

initial target of 0.5 mg L-1 free chlorine ensured sufficient suppression of intact cells for 

up to 14 days (setting the time intervals for system flushes at times of low water 

usage). Bacterial regrowth was only observed when the free chlorine concentration 
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was below 0.34 mg L-1. Such loss of residual chlorine mainly applied to distant points in 

the distribution network from the blackwater reuse treatment plant (BRTP). Flushing 

these network points for 5 mins did not substantially reduce cell numbers. At points 

closer to the BRTP, on the other hand, flushing reduced cell numbers by up to 1.5-log 

units concomitant with a decreasing proportion of intact cells. Intact cell concentrations 

did not correlate with DOC, total nitrogen, or soluble reactive phosphate, but it was 

shown that dead biomass could be efficiently converted into new biomass within seven 

days.  

 

Keywords: Blackwater reuse; water recycling; MBR; distribution system; chlorination; 

flow cytometry 

 

1 Introduction  

Mitigation measures to ensure water supply security are not limited to water-deficient 

areas, but are also increasingly applied in a growing number of countries that are not 

per se located in arid climatic regions. The reasons for this are related to rapidly 

expanding urban areas placing significant demands and stresses on local water 

resources, combined with changing weather patterns and longer lasting droughts 

(Angelakis and Gikas 2014). Water reuse is therefore increasingly on the political 

agenda and treatment technologies are being developed to ensure high water quality 

standards are met. Among different wastewater types, blackwater (or greywater 

containing a proportion of blackwater due to lack of separation) represents one the 

most available water sources whose use is increasingly sustainable (Hurlimann et al. 

2007). The majority of blackwater comes from households and contains a mixture of 

faecal material, urine and toilet paper with high amounts of organic matter, 

microorganisms, nitrogen and phosphate. When blackwater is reused, it is typically not 
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treated to potable water standards due to the belief that the public are not supportive of 

its direct reuse. However, recent studies contradict these assumptions and have 

demonstrated increasing acceptance (Smith et al. 2015; Goodwin et al. 2017). 

Presently the treatment of blackwater to a high quality water that meets (or exceeds) 

standards are typically used in cooling towers, irrigation systems and for toilet flushing. 

Membrane bioreactors (MBR) are very appropriate treatment systems in achieving high 

effluent qualities for chemical and microbiological parameters (Huang et al. 2016; Knerr 

et al. 2011). 

Whenever blackwater is reused, the treated water quality is carefully monitored to 

ensure its safety. Depending on water usage and regional legislation, treatment and 

monitoring requirements are different. Apart from monitoring the operating parameters 

of individual multi-barrier treatment steps, the minimal common denominator of water 

quality monitoring comprises measuring levels of faecal indicators, BOD, turbidity and 

conductivity in addition to ensuring a sufficient level of disinfection (US EPA, 2004; 

Quevauviller et al. 2007). One of the greatest challenges for microbiological water 

quality monitoring is the time needed to investigate the water safety. By the time 

analysis results are available, the water is in part already distributed and used (Højris 

et al. 2016). This problem especially applies to traditional cultivation-based analysis 

whose speed is inevitably determined by the growth rate of the microorganism to be 

counted. Rapid analytical methods are therefore much sought after to fully meet water 

safety requirements and to quickly determine with high sensitivity any potential fault in 

the treatment process or any quality deterioration during distribution.  

In this study flow cytometry (FCM) was applied as a rapid method for monitoring 

general microbiological water quality of distributed water (Prest et al. 2013 and 2016) 

and to evaluate disinfection efficiency (Berney et al. 2007; Ramseier et al. 2011). The 

technology has mainly been applied to monitor drinking water systems (Hammes et al. 
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2008 and 2012; Besmer et al. 2016) with only recent examples evaluating water reuse 

schemes (Huang et al. 2016). The aim of this study was to quantitatively assess the 

efficiency of bacterial removal in a full-scale MBR blackwater reuse treatment plant in 

the UK and the change in bacterial numbers during distribution throughout the 

dedicated distributed network. The work was performed at the Old Ford Water 

Recycling Plant, the UK’s largest water recycling plant (WRP). The plant abstracts raw 

municipal and light commercial wastewater from the Northern Outfall Sewer (Hill and 

James, 2014). The treated water serves for direct non-potable use (irrigation and toilet 

flushing) for the Queen Elizabeth Olympic Park which hosted the London Olympic 

Games in 2012.  

 

2 Materials and Methods 

2.1 Description of the Old Ford WRP and sampling procedure 

The Old Ford WRP is a multi-barrier treatment process, treating raw wastewater 

composed of domestic and light commercial sewage, including surface runoff, from a 

catchment of 360,000 PE. The source wastewater is abstracted from the Northern 

Outfall Sewer and treated to standards based on the USEPA guidelines for 

‘unrestricted urban reuse’ (US EPA, 2004) in addition to further water quality criteria 

specified by the venue operators located within the Olympic Park (Hill and James, 

2014). The Old Ford WRP is able to achieve an average treated flow of 574 m3 d-1, with 

the ability to meet an estimated peak day flow of 813 m3 d-1 through on-site storage 

(Knight et al. 2012). 

The Old Ford WRP multi-barrier treatment process consists of pre-treatment within 

underground septic tanks for the removal of rags and gross solids. The settled sewage 

then passes through a 1 mm screen for the removal of particulate matter (e.g. hair and 
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fibres) prior to treatment within the MBR with a designed hydraulic retention time (HRT) 

of 14.9 h, sludge retention time (SRT) of approximately 27 days and operational 

temperature range of 5 to 35oC (Hill and James, 2014). The MBR consists of two units: 

an externally located above-ground activated sludge tank, with segregated anoxic and 

aerobic zones, containing mixed liquor suspended solids (MLSS); and an internally 

located unit containing three racks of cross-flow ultrafiltration membranes (UF) of a 

nominal pore size of 0.04 µm. Membrane fouling is mitigated through pulsated air 

scouring and periodic cleaning in place (1,500 mg∙L-1 of NaOCL every 90 days for 6 to 

7 hours). In addition, maintenance washes of 300 mg∙L-1 NaOCL over a 45 minute 

period are undertaken every seven days (Hill and James, 2014). Treated MBR effluent 

undergoes post-treatment to remove remaining water colour and organic matter, 

through filtration and adsorption in granular activated carbon (GAC) vessels prior to a 

final disinfection step with sodium hypochlorite to provide a chlorine (Cl) residual 

ranging between 0.3 and 1.5 mg L-1 prior to storage and distribution (Figure 1). Further 

details of the Old Ford WRP can be found in Hill and James (2014).  

 

Figure 1. Diagrammatic representation of the treatment train at Old Ford WRP with 

sampling points identified. RAS: Return Activated Sludge, GAC: Granular Activated 

Carbon; MBR: Membrane Bioreactor. Triangles indicate where samples were taken. 

Grab samples were collected via designated continuously running sampling taps 

through the Old Ford WRP treatment train (Figure 1). The sampling was carried out 

every 1–3 months over the period from March 2015 to March 2016. Samples were 
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collected in 100 mL sterile sampling bottles (Aurora Scientific, UK). Bottles pre-dosed 

with thiosulfate were used for the collection of samples following the chlorination stage 

to eliminate any residual disinfectant. Samples were transported at 4oC and analysed 

by FCM within 24 hours of collection.  

2.2 Description of non-potable distribution network and sampling procedure 

Treated effluent from the Old Ford WRP is distributed throughout the Queen Elizabeth 

Olympic Park within a dedicated 3.65 km distribution network composed of 

polyethylene (PE) pipes with internal diameters of 63 mm to 180 mm (Hill and James, 

2014). Six points were sampled across the length of the network (Figure 2) supplying 

numerous venues and park facilities, varying in end point use (i.e. toilet flushing, 

irrigation, supplementing rainwater harvesting systems) and proximity to the Old Ford 

WRP (Table 1). Two further network points, which were not sampled during the project, 

but utilised during network flushing maintenance activities, are identified as Network 

Flush Point A and B within Figure 2, respectively.  

 

Figure 2. The non-potable distribution network sampling points and network flush 
points (diagram not drawn to scale). 
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Table 1. Non-potable distribution network details including approx. distance from WRP 
and approx. pipe volume.  

Network sample 
point 

Approx. pipe distance 
from Old Ford WRP (m) 

Approx. pipe 
volume (m

3
) 

Site 1 1,070 18.6 

Site 2 1,915 32.9 

Site 3 and Site 4 2,110 34.6 

Site 5 and Site 6  2,490 37.4 

2.2.1 Network tap flush and sampling procedure  

Grab samples for FCM analysis were collected at intervals of 1–6 months over the 

period from March 2015 to January 2016 (referred to as spring/summer for samples 

collected between March-August and autumn/winter for samples collected between 

September-January). Sampling the network at a consistent and regular frequency was 

hampered by the availability of network operators to supervise sampling and undertake 

network flushing activities. As such, conclusions drawn through the study are based on 

the best available information obtained during the period of the study.  

Samples were collected in sterile 100 mL sample bottles pre-dosed with thiosulfate 

(Aurora Scientific, UK) to eliminate residual chlorine (Cl). Samples were collected 

according to Thames Water Utilities Ltd in-house sampling methodology, with samples 

collected prior to and post flushing of the sample tap. Firstly, the tap was marginally 

opened and allowed to flush for 30 seconds before sampling the pre-flush sample. The 

tap was subsequently treated with concentrated sodium hypochlorite and fully opened 

to flush for a further 5 minutes before collecting a post-flush tap sample. Samples were 

transported at 4oC and analysed by FCM within 24 hours of collection.  

2.2.2 Network maintenance flush and sampling procedure 

The network maintenance flush protocols performed by Thames Water are tailored for 

the spring/summer and autumn/winter periods through the associated high and low 

demand of the non-potable distribution network. As such the autumn/winter network 
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flush is characterised by a high washout of approximately 20 m3 h-1 over a period of 

20–30 minutes in comparison to a milder spring/summer flush of approximately 5 m3 h-1 

for < 15 minutes.  

Network flushes are typically completed on the distal points of the network in order of 

Site 1, Network Flush Point A, Network Flush Point B, and Site 5 (Figure 2), however 

during the autumn/winter period the flushing protocol was completed on all sample 

points. Sampling of the network, with both pre-tap flush and post-tap flush samples 

were completed around these flushing events (Figure 3).  

 

Figure 3. Schematic representation of sampling scenarios for individual sample taps. 

2.3 Assessment of regrowth potential  

Additional samples were collected from the distribution network for the analysis of 

regrowth potential. Pre-treatment of 30 mL glass vials and PTFE faced rubber lined 

caps (Fisher Scientific, 11593532) were completed following the method of Hammes 

and Egli (2007) for the elimination of residual organic carbon. Vials were pre-dosed 

with 0.2 mL of 0.1 N sodium-thiosulfate (Acros Organics by Thermos Fischer Scientific, 

Geel, Belgium) to eliminate remaining Cl residual, then filled with approximately 15 mL 

of sample and transported to the laboratory at 4oC. Upon arrival, vials were capped 

with Parafilm® to allow gas exchange, and incubated at 22oC for seven days prior to 

FCM analysis.  
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2.4 Standard network parameters  

Free and total Cl residuals were measured at the time of sampling, using a ‘Compact 

Chlorometer Duo’ (Palintest, UK) following the manufacturers guidelines. Water use 

data reported as m3 d-1 was acquired from FUSION, an online database which collates 

water usage data received from the automated meter readings (AMR) associated to the 

individual network points. An estimate of water age was made by calculation from 

water use data and approximate pipe volumes (Table 1).  

2.5 Fluorescent staining and flow cytometry analysis 

Serial dilution of samples collected from the treatment train prior to ultrafiltration was 

undertaken prior to fluorescent staining due to high cell concentrations exceeding 106 

cells mL-1. Serial dilutions were made using 0.22 µm filtered mineral water (Evian, 

Evian-les-Bains, France) as a diluent. Serial dilutions of all other samples from the 

treatment train (after ultrafiltration) and the non-potable distribution network (except the 

ones after regrowth) were unnecessary as the cell concentration was much lower (103-

105 cells mL-1).  

Fluorescent staining protocols were similar to those of Gillespie et al. (2014) and 

Lipphaus et al. (2014). Staining for total cell concentration (TCC) was achieved through 

the fluorescent stain SYBR Green I (SG) (10,000 x stock) (Invitrogen™) diluted to a 

working stock concentration of 100x using dimethyl sulphoxide (DMSO) (Fisher 

Scientific). The SG working stock was frozen (-20oC) and concealed from light until 

use. To determine TCC values, 200 µL water samples were added to the wells of a 96 

well plate (Corning®, (prod.nr. CL S3795)) with pre-aliquoted 2 µL of the SG working 

stock followed by thorough mixing by pipetting up and down several times using a 

multichannel pipette. All samples were analysed at least in duplicate. To determine 

intact cell concentration (ICC) values, 200 µl of water was stained with 2.4 µl of a 

mixture of the working SG stock (100 x) and 1 mg mL-1 propidium iodide (PI) (Fisher 



10 

Scientific) in the ratio of 5:1. Preparation of fresh SG/PI dual stain mix was completed 

with the same staining procedure as described for TCC.   

After mixing water samples with fluorescent dyes, the 96 well plates were placed in an 

enclosed microplate thermoshaker (PHMP, Grant Bio ™) and incubated at 37oC for 13 

min with mild rotation at 600 rpm. Following the incubation period, samples were 

analysed using a BD Accuri C6® flow cytometer (Becton Dickinson, UK) equipped with 

a 488 nm solid state laser. Signals from bacteria were separated from instrument noise 

and background by using a single fixed gate described by Gatza et al. (2013). Green 

fluorescence was collected in the FL-1 channel at 533 nm and the red fluorescence in 

the FL-3 channel at 670 nm. The trigger was set on FL-1 with a threshold value of 

2,000 units. Samples volumes of 25 µL were analysed at a flow rate of 66 µL min-1. 

Generated data was processed using the Accuri C6® software. Regrowth potentials 

was measured by comparing ICC determined after incubating samples for 7 days at 22 

°C with ICC at time point zero (d = 0).  

Following determination of TCC and ICC concentrations, log reductions were 

calculated using Equation 1 upon averaging the data from repeated measurements for 

each sample point within the treatment train.  

𝐿𝑜𝑔 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = log10 (
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡 𝑐𝑒𝑙𝑙𝑠 ∙ 𝑚𝐿−1

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡 𝑐𝑒𝑙𝑙𝑠 ∙ 𝑚𝐿−1 
) Equation 1 

2.6 Standard microbiological and water quality analysis  

Standard microbiological analysis was completed by Thames Water Utilities Ltd in-

house accredited laboratories for the quantification of heterotrophic bacteria, including 

faecal coliforms such as E.coli, through heterotrophic plate counts (HPC) and most 

probable number (MPN) method. Water quality data was analysed for a wide range of 



11 

parameters, including but not limited to dissolved organic carbon (DOC), total organic 

carbon (TOC), total nitrogen (TN) and soluble reactive phosphorus (SRP). 

 

3 Results 

Overall microbiological water quality was assessed across the water treatment train 

and in the distribution network.  

3.1 Water recycling plant treatment performance  

Both TCC and ICC were determined after each step of the multi-barrier water treatment 

process. For the initial treatment steps, where samples comprised the liquid phase and 

no flocs, both TCC and ICC were around 108 cells mL-1 (Figure 4). Neither mild 

sonication to disaggregate potentially any small clumps nor extension of the applied 

FCM gate produced greater cell numbers although it cannot be excluded that further 

sample processing might have made more cells available for analysis. Physical 

removal of biomass by membrane passage resulted in a large decrease in cell 

concentrations by up to 5-log units. The E. coli concentration in the raw sewage 

reached an average concentration of 5×104 CFU mL-1, however none of these bacteria 

were found in the permeate. The permeate was also free of other coliforms (data not 

shown). Subsequent treatment through the GAC led to a 2-log increase in TCC and 

ICC. Total cell concentrations remained stable during disinfection (average residual Cl 

concentration of 0.3–1.5 mg L-1 with a contact time of 30 mins), whereas the ICC 

dropped and remained low in the reclaimed water tank. The relative proportion of ICC 

was on average 5% and 9% directly after disinfection or in reclaimed water tank, 

respectively. Relative proportions of ICC prior to disinfection ranged from 49% (in raw 

sewage) to 100% (in aerobic activated sludge). 
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 Average intact cell concentration % 

 49 65 72 66 100 56 88 5 9 

 

Figure 4. Mean total and intact cell concentrations (as measured by FCM) and E. coli 

CFU concentrations. Error bars show standard deviations for 5 measurements.  

Apart from changes in absolute microbial numbers, flow cytometric density plots and 

corresponding FL-1 histograms were subject to significant variations along the 

treatment train as shown for selected samples (Figure 5A and B). Compared to raw 

sewage, microbial signals in gated areas from anoxic tank samples shifted strongly to 

the left along the FL-1 axis. Although not shown in the typical FL-1 vs. side scatter 

diagram, these populations correspond to the high nucleic acid (HNA) and low nucleic 

acid (LNA) signal clusters typically seen for many water types. Whereas HNA 

dominated in raw sewage, LNA became dominant in the anoxic tank. After being 

stripped by the membrane the microbial composition was shaped by the biological 

GAC filter, with both LNA and HNA populations being present in comparable 

proportions. The fact that different treatment steps induced substantial shifts in staining 
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patterns indicates that the microbial community composition and physiological states 

underwent profound changes. Distributed reclaimed water had an average of 2.9 x 105 

total and 1.0 x 104 intact cells per mL in spring/summer and 1.5 x 105 total and 1.4 x 

104 intact cells per mL in winter.  
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A     

a) Raw sewage(10
3 

dilution) b) Anoxic (10
3 

dilution) c) Post MBR d) Post GAC e) Reclaimed water tank 

 

B     

a) ICC  b) TCC  
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Figure 5. Flow cytometric profiles for selected samples along the treatment train after staining with SGPI (A) and corresponding FL-1 
histograms (B). (A) Representative density blots of samples at different appropriate dilutions are shown with signals of intact bacteria 
being located in the gated areas within the dotted lines. Plotting FL-3 (red fluorescence) vs. FL-1 (green fluorescence) enables 
distinction of different bacterial sub-populations.(B) The change in bacterial clusters is further corroborated by  FL-1 histograms 
(counts vs. green fluorescence) of microbial signals within the gated areas. These histograms are fingerprints that represent shifts in 
bacterial clusters along the treatment train.  To allow comparisons of profiles from samples with very different cell concentrations, the 
FL-1 histograms are shown only for the first 2,000 events (partial data displayed). 
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3.2 Distribution network  

Changes of microbiological water quality in the distribution system were assessed 

mainly over the summer months (when there was high water demand) with sporadic 

sampling also in the winter months (with less water demand). Intact cell concentrations 

were found to generally increase in the network with increasing distance from the Old 

Ford WRP. Table 2 shows typical ICC values for spring/summer and autumn/winter 

obtained after tap-flushing, together with the reduction of intact cell concentrations by 

the tap flushing itself. The increase in ICC during distribution tended to be stronger in 

spring/summer (average regrowth of 76-fold) than in autumn/winter (average regrowth 

of 47-fold). Tap flushing brought the most noticeable difference at sampling sites in 

close proximity to the Old Ford WRP, with less effect observed at distal sampling sites.  

Table 2. Typical intact cell concentrations in the distribution network in post-tap flush 
samples in spring/summer and autumn/winter (± Std dev). Numbers are based on two 

independent measurements for spring/summer and two independent measurements in 
autumn/winter. Values refer to the situation prior to flushing events of the entire 
network. Regrowth factors were calculated from the highest ICC concentrations at 
distant points compared to works final water. 

Network 
sampling 
location 

Spring/summer Autumn/winter 

Average ICC 
post-tap-flush  

(cells mL
-1

) 

Average 
reduction 

post-tap flush 
(%) 

Average ICC 
post-tap-flush  

(cells mL
-1

) 

Average 
reduction 

post-tap-flush 
(%) 

Reclaimed water 
tank prior to 
distribution 

1.0 x10
4
 1.4 x10

4
 

Site 1 2.2 x10
4 

(1.1 x10
4
) 95 1.2 x10

4 
(6.8 x10

3
) 73 

Site 2 4.9 x10
4 

(3.8 x10
4
) 91 2.7 x10

4 
(2.3 x10

4
) 81 

Site 3 1.6 x10
4 

(5.7 x10
3
) 89 8.2 x10

4 
(6.7 x10

4
) 80 

Site 4 1.7 x10
4 

(3.2 x10
3
) 94 1.0 x10

5 
(1.2 x10

5
) 65 

Site 5 2.5 x10
5 

(3.3 x10
5
) 91 2.4 x10

5 
(2.8 x10

5
) 40 

Site 6  6.5 x10
5 

(1.8 x10
5
) 23 3.5 x10

5 
(4.7 x10

5
) 35 

Average regrowth 

factor 
76-fold 47-fold 
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To minimise the effect of regrowth in the distribution system, the entire network was 

subjected to flushing events (up to 20 m3 h-1 for 20 – 30 min in winter) on a regular 

basis with sampling performed before and after network flushing events. The network 

flushing effect could decrease absolute ICC numbers by up to 96.9%, but was more 

noticeable for proximal sampling points than for distal points. The effect of network 

flushing on relative proportions of intact and damaged bacteria is shown for the 

spring/summer (Figure 6a) and autumn/winter (Figure 6b) sampling events. Network 

flushing induced a rise in the proportion of membrane-compromised bacteria for all 

sites. The more intense flushing regime in autumn/winter was reflected in a stronger 

shift in proportions of intact and damaged bacteria.  

A 
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B 

 

Figure 6. Change in relative proportions of intact and damaged cells induced by 
network flush events during (A) spring/summer and (B) autumn/winter. Data is shown 
for samples taken without prior tap-flush. 

Independent of seasonal influences, standard microbiological analysis confirmed the 

absence of faecal coliforms such as E.coli throughout the distribution network, both 

prior to and post network flush, during the period of the study (data not shown). 

3.3 Water quality parameters and impact of ICC 

To identify factors determining ICC in the distribution system, ICC values were plotted 

against selected corresponding water quality parameters and Cl concentrations. No 

relationships were found between ICC and DOC, TN or SRP (Figure 7A, B and C). A 

strong relationship existed on the other hand between ICC levels and residual free Cl 

(Figure 8). Loss of free Cl led to an increase in intact cell concentrations. A free Cl 

concentration of 0.34 mg L-1 was found necessary to suppress ICC values to the 

average level of the final treated water from the Old Ford WRP. Elevated ICC values 



19 

found in samples with less Cl suggested that regrowth could occur when free Cl 

concentrations fell below this level.  

 

Figure 7. Intact cell concentrations versus (A) DOC, (B) TN and (C) SRP 
concentrations within the non-potable distribution network. The dashed line (--) 
indicates the average ICC concentration within the reclaimed water tank prior to 
distribution. 
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Figure 8. Relationships between free Cl residual and intact cell concentrations within 

the distribution network.  

3.4 Conversion of dead bacteria into new biomass 

Bacteria in the samples were analysed by FCM on the day of sampling and, following 

dechlorination, after seven days of incubation at 22oC to assess the extent of possible 

regrowth. Depending on the initial free Cl concentrations, FCM patterns initially showed 

variable proportions of membrane-damaged cells. An example of a sample with low 

intact cell numbers is shown in Figure 9. At day 0 most bacteria were stained with PI 

indicating a large proportion of membrane-damaged cells. At day 7 this fraction of 

damaged bacteria had disappeared with nearly all bacterial signals now being located 

in the gated region for intact cells after double staining with SG/PI. Results suggest that 

following dechlorination and storage, the dead biomass was converted into new 

biomass. Whereas no AOC concentrations were measured in this study, and therefore 

no nutrient source of regrowth was determined, the example illustrates that dead 

biomass might be converted into new biomass with high efficiency.  
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 Day 0 Day 7 

Intact 

cells 

(stained 

with SG/PI) 

  

Total cells 

(stained 

with SG 

only) 

  

Figure 9 Example of re-growth observed for a dechlorinated network sample (post tap-
flush). Flow cytometric patterns are shown on the day of sampling (day 0) and after 7 
days incubation at 22 ˚C in AOC-free glassware. After double staining with SG/PI the 
gated regions contain only intact cells. After staining with SG the gated regions contain 
total cells (intact and damaged). Damaged bacteria are dominant at day 0, whereas 
intact bacteria prevail after 7 days. 

4 Discussion 

4.1 Treatment process monitoring.  

Monitoring of the multi-barrier treatment train showed substantial changes in the water 

microbiology. As expected, the greatest change in bacterial numbers occurred across 

the membrane resulting in a reduction of > 4 log units. Considering that background 

signals tend to generate a base of approx. 200 signals per ml in flow cytometric 
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measurements, this removal rate is rather an underestimation of actual membrane 

performance (indeed Huang et al. 2016 reported bacterial numbers in MBR effluent 

below the limit of detection when studying a water reuse system in Southern 

California). Similar reductions were measured both in summer and winter (data not 

shown) with higher strength sewage in summer in comparison to winter. Subsequent 

filtration using GAC on the other hand induced an increase in bacterial numbers. The 

GAC filter in the plant can be assumed to have a stable microbial community as the 

carbon dates back to 2012 and at the time of the study was yet to be regenerated or 

replaced. This observation is consistent with that seen for biologically operated GAC 

processes used in drinking water treatment (Hammes et al. 2008, Velten et al. 2011, 

Ho et al. 2012).  

Compared to raw sewage, the water treatment process overall reduced the numbers of 

intact (and potentially ‘alive’) microorganisms within the raw sewage by 3-4 log units 

with repeatable performance throughout the sampling period. Considering initial 

bacterial concentrations of approximately 108 cells mL-1, the reduction might appear 

moderate at first glance, however the microbiology of the distributed water can be 

considered ‘exchanged’. Apart from pure numeric analysis, flow cytometric profiles 

indicated large changes in the microbiological population especially in the biological 

steps of the MBR process and after GAC filtration (Figure 5A). The comparison of the 

fluorescence distribution of SG saturated samples present a simple means for 

microbiological profiling (Prest et al. 2013), with changes in fluorescence patterns 

reflecting shifts in the microbial community composition (Prest et al. 2014). These 

changes are in line with examples from drinking water treatment where passage 

through GAC resulted in substantially different fluorescence fingerprints (Hammes et al. 

2008). Biological filtration processes were found to shape the bacterial communities 

(Pinto et al. 2013). An exchange of the microbial population can be considered 
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essential considering a potentially high load of microbial pathogens in untreated 

blackwater. Another indication of efficient removal of microorganisms originally present 

in the sewage across the MBR process comes from the fact both E. coli (as a strong 

indicator of faecal contamination) and coliforms (data not shown) were not detected in 

the treated water following membrane treatment. The efficient removal of bacterial 

faecal indicators is in agreement with other studies assessing the efficiency of MBR 

technology for wastewater recycling. Zanetti et al. (2010) reported a 7 log reduction of 

faecal coliforms and Purnell et al. (2016), examining the same wastewater system as 

this study, reported very low bacterial concentrations in the MBR permeate (< 0.3 

CFU/100 mL). Branch et al. (2016) reported that MBR systems could consistently 

achieve a 4 log removal (5th percentile) for bacterial indicators and MBR performance 

was resilient to a number of hazardous events. Overall results suggest that the used 

MBR technology is capable of meeting high treatment standards (Hai et al. 2014) which 

is desired for the treatment of wastewater effluents for water reuse. The water stripped 

of its initial, hygienically risky microbial population, was subsequently enriched with 

microbes from the GAC. Chlorination eventually reduced the percentage of membrane-

intact (and thus potentially viable) bacteria to approx. 5 %, which is comparable to the 

2-5 % reported for the final works water from three drinking water plants in Riga using 

chlorination (Nescerecka et al. 2014). The proportion of intact cells increased slightly to 

9 % in the storage tank prior to distribution. 

4.2  Distribution network monitoring.  

Concentrations of intact bacteria in the distribution network increased with increasing 

distance from the plant. Results suggested that the main factor determining cell 

numbers in a chlorinated system is not the abundance of DOC, SRP or TN, but the 

concentration of residual free Cl. This is in agreement with previous culture-based 

studies reporting the disinfectant residual to be the most important factor determining 
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the levels of HPCs (Zhang and DiGiano 2002). Unlike in non-chlorinated distribution 

systems, the presence of the disinfectant restrains the consumption of AOC and 

prevents the conversion of available AOC into microbial biomass (Liu et al. 2015), thus 

the water is not biologically stable once the Cl is depleted. Increases in intact cell 

numbers have also been reported for the chlorinated drinking water distribution system 

of Riga, Latvia (Nescerecka et al. 2014, 2018). At one particular sampling point in Riga 

(water age of 32-50 hours, Nescerecka et al. 2018) an increase in intact cell 

concentration of approximately 4.6-9.0-fold was reported. Whereas no maximal 

increases at the most distant points of the distribution system were reported in the case 

of Riga, overall increases of up to approx. 40-80-fold could be measured in this study 

at the points furthest from the WWTWs. As for our system, the reason for regrowth in 

the Riga network was also explained by the loss of Cl residual (apart from temperature 

effects and nutrient availability, Nescerecka et al. 2018). Free Cl residual at the three 

drinking water works feeding the distribution system in Riga ranged between 0.42 to 

0.51 mg L-1. Increases in ICC were possible when the residual fell below 0.2 mg L-1 

(Nescerecka et al. 2018). Other studies (using culturability as a diagnostic basis) have 

reported bacterial regrowth at Cl concentrations lower than 0.1 mg L-1 (Niquette et al. 

2001) or 0.07 mg L-1 (Francisque et al. 2009). It should be noted that the presence of 

intact bacteria does not necessarily entail the presence of culturable cells, as bacterial 

integrity is a more conservative viability parameter than the ability to form colonies. In a 

drinking water system in Scotland (using flow cytometry like in the study in Riga), the 

critical free Cl concentration was determined to be approximately 0.5 mg L-1 (Gillespie 

et al. 2015). This value was somewhat higher than the 0.34 mg L-1 reported here. 

Disinfectant levels above these thresholds were always associated with low proportions 

of intact cells, whereas a drop below this threshold could (but did not have to) result in 

substantially higher percentages of intact cells. The exact thresholds can be assumed 

to depend on a complex interaction of biological, chemical and physical water 
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parameters (Zhang & DiGiano 2002). Also different microbial communities in different 

distribution systems might show variations in their susceptibilities to Cl as not all the 

microbes respond equally (Nocker et al. 2017). The composition of the bacterial 

population in the recycled water distribution system of this study remains to be 

assessed as well as the extent to which it undergoes change, as seen for potable 

distribution systems (Pinto et al. 2014; Prest et al. 2014). When comparing the 

reclaimed water distribution system assessed here with drinking water distribution 

systems, the networks can be considered to be very distinct. For example, the 

persistence of disinfectant residual, differences in nutrient levels and the composition of 

the AOC pool, water consumption, resulting residence time and consumption evenness 

throughout the network can be assumed to be very different. Other factors might 

include differences in water temperatures (influenced by pipe depths and climatic 

factors). 

4.3 Dead biomass as potential contributor to regrowth. 

Once free Cl is depleted, the extent of regrowth is typically determined by the given 

temperature and available nutrients whose levels would depend on the underlying 

water treatment process and the source water quality (Nescerecka et al. 2018). In the 

drinking water distribution system of Brussels that is fed by treated surface water and 

various groundwaters, it was shown that the parts of the system with groundwaters 

were less susceptible to bacterial regrowth (Niquette et al. 2001). It was recently, 

however, reported that in a non-chlorinated potable distribution system, cell 

concentrations in the network and AOC levels in the plant effluent were inversely 

related (Prest et al. 2016). Underlying a carbon mass balance, carbon was either fixed 

in AOC or in the bacterial biomass with the conversion rate mainly governed by 

temperature. An attractive field of research in the future might be in determining how 

much dead biomass contributes to the available AOC pool. Dead biomass is abundant 
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in disinfected water and contains nutrients in exactly the composition that is required by 

the new biomass. Dead biomass might be more accessible as a nutrient source, when 

present in a membrane-damaged form, compared to UV-disinfection that does not 

impact bacterial membranes in the applied dose range. The situation resembles a 

position identified in dental biofilm research, where the use of antimicrobial agents 

embedded in toothpastes and mouth rinses was reported to result in an ‘oral microbial 

massacre with high amounts of dead bacteria in close proximity to few surviving 

bacteria’ (Herrero et al. 2017). In water systems, necrotrophic feeding has so far been 

described for Legionella pneumophila (Temmerman et al. 2006), however new 

discoveries in this field are very likely.  

 

5 Conclusions  

This study on the treatment of blackwater showed that the technology of MBR 

combined with GAC and subsequent disinfection  is capable of a strong overall 

reduction of intact bacteria compared to raw sewage. Bacterial removal furthermore 

went along with profound changes in flow cytometric microbial profiles indicating an 

exchange of the hygienically critical bacterial community. The MBR resulted in >4 log 

reduction in bacterial numbers and an E.coli and coliform free permeate. In the water 

distribution network intact cell concentrations typically increased towards the distal 

parts of the network. A strong correlation between intact cell numbers and free residual 

Cl was observed. A free Cl residual of >0.34 mg L-1 was identified as necessary for this 

particular distribution system for suppression of regrowth. Biweekly system flushing 

was confirmed to be an efficient means to maintain the Cl residual and to keep 

regrowth low. Cannibalistic conversion of dead biomass into new biomass was seen 

during regrowth. Overall FCM was helpful for characterisation of the treatment process 

and network hygiene and enabled informed maintenance/operation strategies.  
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