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A joint network design and multi-echelon inventory optimisation

approach for supply chain segmentation

Abstract

Segmenting large supply chains into lean and agile segments has become a powerful strategy

allowing companies to manage different market demands effectively. A current stream of

research into supply chain segmentation proposes demand volume and variability as the key

segmentation criteria. This literature adequately justifies these criteria and analyses the

benefits of segmentation. However, current work fails to provide approaches for allocating

products to segments which go beyond simple rules of thumb, such as 80-20 Pareto rules. We

propose a joint network and safety stock optimisation model which optimally allocates Stock

Keeping Units (SKUs) to segments. We use this model, populated both with synthetic data

and data from a real case study and demonstrate that this approach significantly improves

cost when compared to using simple rules of thumb alone.

Keywords: Supply chain segmentation, network optimisation, inventory optimisation,

guaranteed service approach

1. Introduction1

Supply chain segmentation has emerged as a strategic tool by which a supply chain is2

categorised (segmented) to create multiple supply chains. The aim is to establish individual,3

operationally efficient, and profitable supply chains which are designed to meet specific4

service, cost or risk objectives (cf. to McKinsey and Company, 2008).5

The traditional approach to segmentation is to use predefined rules to categorise prod-6

ucts, markets, customers and so forth, and build tailored sub-supply chains for each category.7

For example, Fisher (1997) encourages companies to consider the nature of demand for their8

products noting two generic types - fashion products and commodities. The two product9
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types respond to different market requirements and therefore require different supply chain10

approaches. A functional product, typically with stable demand should be served by an11

efficient supply chain, whereas an innovative product, subject to greater uncertainty re-12

quires a responsive supply chain. Lee (2002) goes further, incorporating the idea of demand13

and supply uncertainty into the segmentation; this becomes increasingly relevant as supply14

chains lengthen to encompass global operations (Peck and Jüttner, 2002). Lee (2002) iden-15

tifies four supply chains each assigned to a combination of demand and supply uncertainty.16

Recent work finds demand volume and variability to be common segmentation criteria (see,17

for example, Godsell et al., 2011). The majority of these segmentation approaches are either18

explicitly or by implication grounded in the lean and agile paradigms.19

A common issue with previous work is that it does not provide robust solutions for de-20

termining the parameters of segmentation rules. The supply chain segmentation literature21

focuses on proposing segmentation criteria (e.g. volume and variability) but does not elabo-22

rate on how to determine the parameters of these criteria. It follows then that we currently23

do not know the impact of setting the parameters of the segmentation criteria on supply24

chain performance. This study demonstrates, through a numerical study, that the use of25

suboptimal parameters for the volume and variability criteria of a particular segmentation26

has a significant impact on total supply chain cost.27

We propose a combined network and inventory optimisation model to analyse the impact28

of segmentation on total cost. More specifically, as safety stocks are often used to hedge29

against demand uncertainty in make-to-stock (MTS) environments, we optimise the safety30

stock in the supply chain. Supply chain segmentation often considers the volume and the31

variability of demand (e.g. Godsell et al., 2011). The inclusion of safety stocks enables32

us to model the impact of variability explicitly. Our model assesses volume-based costs,33

such as manufacturing, transport and cross-docking, in addition to the cost of demand34

variability through holding cost. Based on our preliminary analysis, the combined network35

and inventory optimisation model achieves a cost reduction 10% greater than the network36

model alone.37

The main contribution of this paper is a combined network and inventory model. This38
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model is capable of finding the optimal supply chain network and inventory solution for an39

organisation operating a segmented supply chain strategy. Our approach provides insights40

into how segmented strategies can be realised and quantifies the cost benefits. Specifi-41

cally, we evaluate the impact of segmentation on three distinct supply chain configurations:42

i) a traditional, unsegmented supply chain network optimised for lean or agile operation43

(Type I); ii) a segmented supply chain network optimised using predefined rules (Type II);44

iii) a segmented supply chain, where segmentation and configuration are optimised jointly45

(Type III). To aid granularity, we define a set of Type II scenarios, which test the impact46

of predefined volume and variability limits on total cost assuming a customer service level.47

The three configurations are compared to determine to what extent a segmented supply48

chain can be optimised. We also quantify the suboptimality of the predefined segmented49

supply chain configurations. Finally, we use sensitivity analysis to determine how system50

parameters (fixed and variable manufacturing cost and inventory holding cost) affect the51

optimal segmentation. In this way, we inform the discussion on how supply chains can be52

segmented using rules based on volume and variability.53

We find that in addition to volume and variability, additional criteria are relevant when54

allocating products or markets to specific supply chain segments. For example, a supply55

chain comprises three segments, one of which is constrained by available capacity. This56

capacity constraint is preserved, by allocating some products whose volume and variabil-57

ity characteristics would naturally place them in the capacity constrained segment to an58

alternative segment.59

Our research follows the tradition of empirical, analytical modelling as proposed by60

Bertrand and Fransoo (2002). We use empirical data for the numerical analysis supplied61

by a large, global FMCG (Fast Moving Consumer Goods) company. Thus allowing us to62

test our model using real-world demand and lead time data, along with manufacturing and63

transport costs. The paper proceeds as follows. Section 2 reviews relevant literature on64

supply chain segmentation and network modelling. Based on this we propose an inventory65

and network optimisation model for segmented supply chains in Section 3. Our analysis66

uses real data from a case company which has implemented and tested a volume/variability67

3



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

based segmentation approach in their global supply chain. Section 4 describes the data,68

the construction of the numerical analysis and presents the results. Section 5 concludes the69

paper.70

2. Literature71

Skinner (1969) observes that the manufacturing capability of a firm is critical to its com-72

petitiveness and that diverse customer requirements require distinct manufacturing strate-73

gies. With the evolution of the supply chain, the requirement for differentiated strategies,74

not only for manufacturing but across the whole supply chain became apparent. Fuller et al.75

(1993) extend the concept to logistics, while Fisher (1997) notes explicitly that the source76

of differentiation should move backwards and embrace the supply chain perspective. The77

literature contains a variety of approaches to differentiate the supply chain. The majority78

take either a product or customer-based perspective.79

Product based segmentation often follows the lean and agile paradigms. Lean thinking80

embraces the elimination of all wastes; activities that consume resources but generate no81

redeeming value in the eyes of the customer (Womack and Jones, 1996). While the agile82

paradigm emphasises flexible, timely action in response to rapidly changing demand en-83

vironments. It is common to cite the lean and agile paradigms as opposing philosophies;84

however, they share a common objective, to meet customer demand at the least cost. It is85

in the nature of the demand and the basis for meeting that demand that the two processes86

differ (Goldsby et al., 2006). The idea that the two paradigms may be combined, resulting87

in a single supply chain having both lean and agile elements leads to the idea that the sup-88

ply chain might be designed or be adapted based on segmentation principles (Christopher89

and Towill, 2002; Christopher, 2000). The theory of focused demand chains is based on the90

premise that in the complex real world context no one demand chain strategy can service91

all requirements. A focus is required, to ensure that demand chains are engineered to match92

customer requirements, enabled by segmentation via product characteristics (Childerhouse93

et al., 2002). A classification approach allows the segmentation of products into groups94

based on market demand, followed by the development of alternative strategies for each seg-95
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ment to maximise competitive objectives. Naylor et al. (1999) use product characteristics96

of demand variability and variety to determine when companies should aim at agility and97

when at leanness. They combine the proliferation of variants in production (variety) with98

changing customer requirements (variability), echoing the work of Slack (1998) who uses99

demand variability and variety to segment manufacturing processes. Later, Christopher and100

Towill (2000) propose a classification system to codify the selection of value streams accord-101

ing to lean and agile principles - DWV3 - Duration of the product lifecycle, time Window,102

Volume, Variety and Variability. Several studies have applied this system. For example,103

Childerhouse et al. (2002) find that the priority ranking of the five variables depends on the104

level of sophistication used to segment the demand chains within an organisation, i.e. the105

extent to which the chains are focused.106

While product-centric approaches provide useful insights for fulfilling product demand,107

they lack a customer perspective. Customers are increasingly sophisticated with highly dif-108

ferentiated preferences leading to a proliferation of Stock Keeping Units (SKUs) and the109

continuous customisation of products and services (Godsell et al., 2011). A behavioural110

segmentation of customers by buying behaviour allows the segmentation of a supply chain111

by understanding the customer that it serves. A corresponding supply chain strategy is then112

developed, seeking to select a supply chain type (lean, agile, fully flexible and continuous113

improvement) which will respond most appropriately to the major demand patterns in each114

segment. Gattorna et al. (1991) propose this as the idea of alignments. Some studies investi-115

gate segmentation of the supply chain into customer groups, supplying different products or116

services to the identified groups. In most cases, these studies propose analytical or game the-117

oretic analyses which identify whether it is more profitable for the company to operate a dual118

channel strategy as opposed to a single channel. Examples from this stream include Coskun119

et al. (2016), Seifbarghy et al. (2015), Chen and Bell (2012), and Khouja et al. (2010). In all120

cases, the results of the modelling reveal that there exist circumstances in which customer121

segmentation is a profit enhancing activity, but that in each case it depends on the costs of122

the particular context. Godsell et al. (2011) argue that supply chain solutions, which aim123

to achieve a differentiated supply chain strategy, are not only affected by the needs of the124

5



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

customer but also reflect the characteristics of the product. In particular, the volume and125

the variability of the demand. The challenge is then, to ensure that supply chain capability126

combines market segment and product characteristic considerations. Gunasekaran et al.127

(2007) also find that demand uncertainty and variability are inherent to most operations128

and can require different types of responsiveness and different internal capabilities. Simchi-129

Levi et al. (2013) reiterate the importance of demand variability. They determine supply130

chain segments by focusing on demand uncertainty and customer relationships where each131

segment requires a different supply chain strategy.132

Supply chain segmentation implies the ability to manage the supply chain at a more133

granular level. However, although the lean and agile paradigms dominate the literature,134

there exists no standardised way to segment the supply chain, with most of the discussion135

remaining on a qualitative level. In practice, many supply chain management (SCM) is-136

sues faced by companies involve operational decisions rooted in quantitative analysis; how137

to design and operate a segmented supply chain is no exception. Supply chain network138

design, where the number, size, location and interrelation of facilities within a network are139

determined, is no doubt one of these decisions (Farahani et al., 2014). The area of net-140

work design has a long pedigree with many published reviews, evaluating a large number141

of models and frameworks. The interested reader is referred to Melo et al. (2009) (for the142

facility location problem and SCM), Mangiaracina et al. (2015) (for distribution network143

design), Farahani et al. (2014) (for techniques applied in supply chain network design), and144

Farahani et al. (2015) (for modelling of the location-inventory problem). The existing litera-145

ture demonstrates that the factors that drive network configuration decisions are divergent,146

including the number of echelons, selection of segments, the number of facilities, proximity147

to customers or suppliers, inventory required, and degree of centralisation. Despite this148

diversity, the factors can be classified using three dimensions: facility location, inventory,149

and transportation (Perl and Sirisoponsilp, 1988). Mangiaracina et al. (2015) identify 42150

different factors from 126 reviewed papers and propose a framework based on a classifica-151

tion of these factors into five major groups based on their common characteristics: product152

characteristics, service requirements, demand features, supply characteristics, and economic153
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variables. They find that factors relating to demand, such as volatility and volume, receive154

the most attention, as they have the widest influence. This dimension has been incorporated155

into many mathematical models, mainly to incorporate the impact of demand uncertainty.156

Mangiaracina et al. (2015) find the second most prevalent factor group to be service require-157

ments, often measured by item fill rate, delivery frequency, and lead time. The remaining158

three groups (product, supply and economic factors) have received less attention to date,159

but have the potential to have a significant impact on the design of a network. Aligned160

with the three dimensions of Perl and Sirisoponsilp (1988), recent studies have focused on161

tactical decisions such as detailed inventory planning and decisions related to transport,162

production and procurement. Consideration of tactical problems inevitably leads to much163

more complex models, due to the large size of the problems that may result (Melo et al.,164

2009).165

Network related approaches to implementing segmentation strategies include postpone-166

ment (Goldsby et al., 2006), assemble-to-order, make-to-order, lead time reduction, trans-167

shipments (Herer et al., 2002) and consumer segmentation related to green issues (Coskun168

et al., 2016). These approaches link to a question: where is the stock held in the supply169

chain? The inventory decision is a key factor in determining the leanness and agility of a170

supply chain network and is widely studied. Extant work, however, remains predominantly171

conceptual. Quantitative literature in this area takes an aggregated approach to evaluating172

the objectives and constraints defined in supply chain segmentation. There is very little lit-173

erature which formally presents network design models which explicitly incorporate strategic174

supply chain segmentation criteria in a disaggregated sense; particularly if we focus on mod-175

els which incorporate inventory planning (location inventory problem). The paper of Purvis176

et al. (2014) is an exception, it illustrates the formation of the lean/agile/leagile network177

from the perspective of supply flexibility, but they do not develop any mathematical mod-178

els. Ameknassi et al. (2016)’s closed-loop supply chain network model captures the customer179

segmentation concept but with a tactical focus on transport and warehousing rather than180

inventory planning. Goldsby et al. (2006) develop comparative models of lean, agile and181

leagile networks but do not consider inventory.182
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In summary, aligning supply chain strategy to the demands of the customer and the183

product group has the potential to improve performance across the supply chain. When184

designing or optimising a supply chain network the consideration of different factor groups185

or requirements leads to different optimal network configurations. The logical extension186

of this is that a company may not have a single supply chain but a set of focused supply187

chains each of which with a unique network. The physical supply chain, by which a product188

is made and delivered, depends both on product and customer characteristics. There is189

very little literature which formally addresses this problem quantitatively, particularly when190

considering the location inventory model. A key contribution of this paper is, therefore, the191

presentation of such a model.192

3. Mathematical formulation193

A previous supply chain segmentation study with a large global FMCG company inspired194

this study. The company’s supply chain segmentation strategy is designed around the leagile195

paradigm, using volume-variability based demand profiling.196

A specific characteristic of the underlying case is that every end-market has individual197

packaging requirements; hence, every SKU is specific to a market and cannot be transshipped198

or supplied to another market. Applying a postponement strategy is not practical due to199

the highly integrated manufacturing and packaging process. This case study motivates the200

setting and the model assumptions. However, our model is general enough to apply to many201

different make-to-stock FMCG supply chains with a large number of products, particularly202

those subject to regulation such as wine, spirits and pharmaceuticals.203

Following segmentation into lean and agile segments, each factory is designed to operate204

in a specific segment s, which can be either lean (s = 1) or agile (s = 2). Fixed and vari-205

able manufacturing costs and lead times are factory specific and depend on the production206

segment. Lean factories operate at higher fixed costs, lower variable costs and higher lead207

times than the more reactive, agile factories. Before the implementation of the segmentation208

strategy, all factories operated in a mixed configuration; this did not take advantage of either209

the economies of scale of a lean design or the responsiveness of an agile design.210
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F1Factories i={1,..,6}

Cons.centres j={1,..,3}

F2 F6

CC1 CC2 CC3

Markets {1,..,43} M1 M2 M43

P1 P2
P3 P4 P5

P1
P2P5

P4
P3

Figure 1: Three-stage serial supply chain

Our model considers a three-echelon supply chain, as depicted in Figure 1, which can211

accommodate any number of supply chain segments. However, we limit our analysis to212

two segments, one lean and one agile. Similar to the underlying case we assume that each213

SKU is sold in only one specific market. We further assume for simplicity that each SKU is214

produced in one factory and shipped through one consolidation centre. Hence, this implies215

a serial supply chain for every SKU, with each SKU allocated to a specific supply chain216

segment, operating in segment s. This allocation affects not only manufacturing cost and217

lead time but also distribution cost and transport time. The relevant costs and lead times218

differ according to the assigned segment. The notation is presented below.219

Sets/Indices

N set of factories indexed by i

R set of consolidation centre (CCs) indexed by j

S set of s segments available; where s = 1 . . . lean, s = 2 . . . agile segment

P set of products indexed by p

Parameters

λp service factor for product p

µp mean of demand of product p per month

σp standard deviation of demand of product p per month

9
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fis fixed cost per lot at factory i in segment s

cfacis variable cost of per unit at factory i in segment s

c̄isp average cost of per unit at factory i in segment s

Qp production lot size of product p

cupijs transport cost per unit from factory i to CC j in segment s

cdnjsp transport cost per unit from CC j to the market of product p in segment s

h stock holding cost rate in %

rj throughput cost per unit at CC j

tfacis production lead time at factory i in segment s

tupijs transport time from factory i to CC j in segment s

tdnjsp transport time from CC j to the market of product p in segment s

Sfac
isp guaranteed service time at factory i in production segment s for product p

Scc
jsp guaranteed service time at CC j in transport segment s for product p

SSC fac
isp safety stock cost at factory i in segment s, for product p

SSCcc
ijsp safety stock cost at CC j in segment s for product p, shipped from factory i

SSCwh
ijsp safety stock cost at the market for product p in segment s, shipped from factory

i through CC j

SSC∗ijsp optimal safety stock cost in the system, i.e. at factory i, CC j, and the market

for product p in segment s

Decision variables

Xijsp 1 if product p is from factory i through CC j in segment s, and 0 otherwise

Auxiliary variables

Zis 1 if segment s is chosen in factory i, and 0 otherwise

3.1. Network model220

The objective is to minimise total cost TC by solving the optimization problem

TC = min
Xijsp

∑
p∈P

∑
s∈S

∑
i∈N

∑
j∈R

Xijsp

(
SSC∗ijsp +

µp
Qp

fis + µpc
fac
is + µpc

up
ijs + µpc

dn
jsp + µprj

)
(1)
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subject to the following constraints221 ∑
i∈N

∑
j∈R

∑
s∈S

Xijsp = 1 ∀p (2)

222

Xijsp ≤ Zis ∀i, j, s, p (3)
223 ∑

s∈S

Zis = 1 ∀i. (4)

The model optimises the allocation of products to factories and consolidation centres and224

determines the segment to which the product belongs. The first cost term in the objective225

function corresponds to the inventory holding cost for all echelons; this is estimated using the226

guaranteed service model. These costs can be pre-calculated very efficiently before solving227

(1) because the optimal inventory control parameters in a serial supply chain for such a228

model have been shown to be border solutions. See Section 3.2 for a detailed discussion.229

The second cost term refers to the fixed manufacturing cost per batch, where Qp is the230

batch size. Note that we will assume in the following numerical analysis Qp = µp, i.e. every231

product is produced in exactly one batch per month. The third term refers to the variable232

manufacturing cost. Terms four and five capture the transport cost from the factory to the233

consolidation centre and from the consolidation centre to the end-market, respectively. Note234

that inventory holding cost for pipeline inventory is included in the parameters cupijs and cdnjsp.235

The last term refers to the throughput cost at the consolidation centres.236

Constraint (2) establishes the allocation of every product p, to exactly one supply chain237

segment, one factory and one consolidation centre. Constraint (3) ensures that a product238

can be allocated to a factory i, if and only if the factory belongs to the same supply chain239

segment. Finally, constraint (4) ensures that each factory operates in only one segment s.240

3.2. The guaranteed service model241

The complexity of location-inventory models lies in their nonlinear nature, inherited242

from inventory models. The degree of complexity increases with the number of stages, as243

these models seek to optimise inventory levels across all stages, by determining the optimal244

numbers of stocking locations and associated amount of stock (Shu et al., 2005; Daskin et al.,245
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2002; Melo et al., 2009). The guaranteed service model (GSM) and the stochastic service246

model (SSM) are the two main approaches for modelling multi-echelon inventory systems.247

These approaches are distinct from characteristics such as demand propagation, material248

flow, and the resulting service time and are widely researched (Eruguz et al., 2012, 2016).249

Studies related to SSM focus on basic network topologies, as the approach requires exact250

system understanding. Whereas, the adaptability of GSM allowing it to handle a range of251

network structures permits its use in a wide variety of industrial applications. Examples252

include Hewlett-Packard in Billington et al. (2004), Procter and Gamble in Farasyn et al.253

(2011), and Cisco in Hua and Willems (2016a). Eruguz et al. (2016) provide a summary254

of the applications of GSM in real-life cases from 10 different industries. In addition, the255

demand-related assumptions of GSM are reasonably justifiable from managerial experience256

(Graves and Willems, 2000). Thus, we adopt GSM as the inventory control framework in257

our study.258

GSM derives from the algorithm proposed by Simpson (1958) based on a serial production259

system. Graves and Willems (2000) develop and generalise the model to accommodate260

placement of safety stock in different network structures and Graves and Willems (2003)261

show how it can be used to formulate a supply chain configuration problem. Later work by262

You and Grossmann (2008) proposes a more complete location-inventory model using GSM263

along with a number of approaches for linearising the integrated model. Hua and Willems264

(2016b) analyse a two-stage serial supply chain for a single product considering alternative265

sourcing options with different cost and lead time parameters. Part of the problem is to266

select the optimal solution from these alternatives. They show that it is preferable to employ267

the same type of alternatives, low-cost long lead time or high-cost short lead time, in both268

stages.269

In GSM, the supply chain follows a network structure where nodes are facilities and270

arcs denote flows of goods. The nodes operate under a periodic review base-stock policy.271

Note that in our setting the network for each product can be modelled as an independent272

three-echelon serial supply chain. Demand is assumed normally distributed with mean µ273

and standard deviation σ, bounded over a consecutive period. The demand bound can be274

12
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formulated as D(t) = t · µ + λ · σ ·
√
t, where λ is the service factor. Note that this model275

does not imply that demand never exceeds the bound. Instead, it represents the limit up to276

which demand nodes aim to satisfy demand directly from their safety stock. We assume that277

demand beyond the upper bound must be handled by extraordinary methods, e.g. expedited278

shipment.279

Each node n in the network commits to a service time Sn within which it guarantees280

to fulfil the demand from the downstream nodes. In other words, for orders observed at281

review period, time t, node n must be ready to fulfil them by time t+Sn. These guaranteed282

service times are decision variables to be optimised, except for those at nodes facing external283

end-customer demand (in our model called end-markets). The outbound service time to end-284

customers in MTS environments is assumed to be zero to permit an immediate service to285

external customers. The lead time Tn which consists of transport time from the upstream286

node n + 1 and processing time at node n is an exogenous input variable. Under this287

setting, the time span required to cover demand variation using safety stock at node n288

is Sn+1 + Tn − Sn. We can then easily find that safety stock at node n equals SSn =289

λ ·σ ·
√
Sn+1 + Tn − Sn. Using this model we derive the safety stock levels and corresponding290

holding costs for a given supply chain configuration.291

In our setting with multiple products, the per unit holding cost for product p in factory292

i is h · c̄isp, where we define c̄isp =
fis
Qp

+ cfacis and h as the annual stock holding cost rate293

for each echelon, added to the accumulated cost for the lower echelons. Let the guaranteed294

service time for product p from factory i to any consolidation centre be Sfac
isp, then the total295

inventory holding cost for the factory can be written as296

SSC fac
isp

(
Sfac
isp

)
= h · c̄ispλσp

√
tfacis − Sfac

isp. (5)

Similarly, let the guaranteed service time from consolidation centre j be Scc
jsp, then the total297

inventory holding cost for the consolidation centre is298

SSCcc
ijsp

(
Sfac
isp, S

cc
jsp

)
= h ·

(
c̄isp + cupijs + rj

)
λσp

√
Sfac
isp + tupijs − Scc

jsp. (6)
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Finally, for the market warehouse, we can write299

SSCwh
ijsp

(
Scc
jsp

)
= h ·

(
c̄isp + cupijs + cdnjsp + rj

)
λσp

√
Scc
jsp + tdnjsp. (7)

This formulation results in the following optimal total safety stock cost for product p for a300

given configuration (i, j, s)301

SSC∗ijsp = min
Sfac
isp,S

cc
jsp

[
SSC fac

isp

(
Sfac
isp

)
+ SSCcc

ijsp

(
Sfac
isp, S

cc
jsp

)
+ SSCwh

ijsp

(
Scc
jsp

)]
, (8)

subject to the following constraints302

0 ≤ Sfac
isp ≤ tfacis ∀i, s, p (9)

303

0 ≤ Scc
jsp ≤ Sfac

isp + tupijs ∀i, j, s, p. (10)

GSM is distinct from SSM in the treatment of excessive demand. Leading to differences304

in three characteristics: demand propagation, material flow and service time. Unlike GSM,305

SSM does not fulfil demand from safety stock. If it is not possible to fulfil demand, it waits306

until the next period. Therefore, the availability of items in the system affects the service307

time and back-ordering, yielding a stochastic replenishment time. In contrast, GSM assumes308

excessive demand will be fulfilled using external methods, with no backorders allowed. This309

assumption gives a deterministic replenishment time and allows identification of the proper-310

ties of the optimal solutions for GSM, significantly reducing the complexity of the nonlinear311

nature embedded in the inventory model. One important example for our study, Simpson312

(1958) proves that applying GSM in serial supply chains leads to corner solutions. There-313

fore, in our model, the possible solutions are limited to one of the four combinations defined314

by (9) and (10). The optimisation of (8) can be executed very efficiently by evaluating the315

four corners. The runtime for the full case setting described in the following section, written316

in Python code, on our laptop, a standard Intel i5 dual-core processor with 4GB RAM, is317

less than 10 minutes.318

14



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

4. Data319

The numerical analyses presented in this paper are based in part on real data. The anal-320

ysis of these data reveals the main effects, discussed in the following subsections. However,321

to isolate certain effects from noise, the cost and lead time parameters of the real data set322

were replaced by synthetic data. In particular, costs and lead times between nodes in the323

network vary significantly due to different market regions and the geographic distribution324

of sites. The synthetic data set consists of equal parameter values at arcs and nodes of325

the same type in the network. See Table 2 for full details of the parameters used in the326

numerical analysis. Please note that a dash “–” in the synthetic data column means that327

we use the real data for that item. The only two parameters not included in the case data328

are h and λp. Therefore, we assume commonly used values, which are the same both for the329

real and the synthetic settings.330

The original company sourced data set consists of 4-years’ worth of monthly sales data331

from end-markets. The data set includes relevant costs, lead time information for facilities332

and transport flows in each echelon (i.e. between factories, consolidation centres, and end-333

markets). New product introductions and end-of-life products are filtered out in the first334

stage. Product demand data includes monthly sales which are used to compute averages335

and coefficient of variations (cv) of monthly sales, see Figure 2. The production batch size336

is defined as average monthly sales, as the company’s current policy is to manufacture every337

SKU once per month.338

Due to the confidential nature of the data, we cannot disclose all of the data as part of339

this paper. Table 2, however, shows ranges of cost and lead time parameters. A normalised340

data set can be made available upon request by email from the corresponding author.341

5. Numerical analysis342

Figure 3 presents the optimal segmentation policy suggested by model (1), i.e. Type III,343

based on the real data. The red coloured points correspond to the products assigned to344

the agile supply chain segment, and the blue points represent those assigned to the lean345
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Table 2: Values used in the numerical analysis

Notation Real case values Synthetic values

Set

N 6 locations –

R 3 locations –

S 2 segments –

P 6,013 products –

Demand parameters

µp [100, 200M] units –

σp [260, 107M] units –

cv [0.005, 5] –

Cost

fi1 [60, 750]e/lot 400e/lot

fi2 [12, 148]e/lot 40e/lot

cfaci1 [4.8, 12.3]e/10k units 10e/10k units

cfaci2 [4.3, 12.1]e/10k units 25e/10k units

cupij1 [0.01, 1.04]e/10k units 0.015e/10k units

cupij2 [0.07, 2.48]e/10k units 0.05e/10k units

cdnj1p [0.001, 3.94]e/10k units –

cdnj2p [0.007, 12.2]e/10k units –

Lead time

tfaci1 1 month –

tfaci2 0.2 month –

tupij1 [0.015, 0.08] months 0.25 month

tupij2 [0.02, 0.5] months 0.1 month

tdnj1p [0.0036, 0.04] months 0.22 month

tdnj2p [0.0018, 0.04] months 0.08 month

Other parameters

h – 0.25

λp – 3

segment.346

Figure 3a shows, using real data that the separation of SKUs into lean and agile supply347

chain segments is not explained completely by a volume-variability function. However,348

the figure shows two clouds, one of which is dominated by each strategy, and there is a349

discernible pattern which allows the division of the SKUs into two groups based on volume350

and variability. Nevertheless, we observe a significant region of overlap which implies that351

the optimal allocation of SKUs to segments is affected by factors other than the volume352
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Figure 2: Volume vs. variability for sales data for approximately 6,000 SKUs

and variability of demand. Geographic dispersion means that transport legs have different353

cost and lead time parameters. This means that certain SKUs are allocated to non-optimal354

supply chain segments due to the geographic location of factories and end-markets. In these355

cases, actual transport cost outweighs the benefits of the optimal supply chain segment. The356

area of overlap captures the extent to which these factors influence the allocation.

0

0.5

1

1.5

2

2.5

0 500000 1000000 1500000 2000000 2500000 3000000

C
V

 o
f 

m
o

n
th

ly
 s

al
es

Average monthly volume

Lean Agile

(a) Real data
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(b) Synthetic data

Figure 3: Segmentation of SKUs into lean and agile segments for the base parameter set.

357

Figure 3b shows that, when using synthetic data, the optimal allocation of SKUs to358

supply chain segments can be described exactly by a function of the volume and variability359

(cv) of demand. To allow us to carry out sensitivity analysis, in the following subsections,360

we continue to use the synthetic data set. This allows us to understand exactly the changes361
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which occur on the lean-agile border of the volume-variability plane.362

5.1. Comparison of Type I, II and III segmented supply chains363

As briefly discussed in the introduction, we classify segmented supply chains into three364

types: Type I, II and III segmented supply chains as shown in Table 3. In this section,365

we compare the performance improvement achieved by using, a) a Type III supply chain366

compared to a Type I, and b) a Type III supply chain compared to a Type II.367

Table 3: Classification scheme for segmented supply chains

TYPE I This supply chain is not segmented. It follows a “one size fits all”

approach and handles all SKUs using the same strategy.

TYPE II This supply chain is segmented. The allocation of SKUs (and fa-

cilities) is made using rules-of-thumb. For example, a supply chain

may be segmented into lean and agile segments using the Pareto

80-20 rule.

TYPE III This supply chain is segmented. The allocation of SKUs and facil-

ities to a given set of segments is achieved using quantitative op-

timisation techniques. For example, in this paper, a mixed-integer

optimisation model on total cost is used.

In our analysis, we assume two sub-types of unsegmented configurations: a lean supply368

chain and an agile supply chain. A lean supply chain operates entirely in a lean mode while369

an agile supply chain operates in a fully agile mode. As shown in Table 4, based on our370

simulation study, the performance gain of adopting a Type III segmentation strategy lies371

somewhere between 1 and 22%. We note that the two configurations shown in Table 4372

are ideal configurations whereas in practice supply chains are often configured somewhere373

between these two extremes. These results suggest that a significant cost improvement is374

realistic, depending on the strategy applied. A comparison based on the synthetic data375
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Table 4: Increase in total cost for Type I supply chains compared to the Type III supply chain

Type I Type III

Lean Agile

Synthetic Cost 23,647,011 40,615,093 22,565,905

data % increase 4.8% 80.0%

Real Cost 15,532,849 12,859,485 12,747,245

data % increase 21.85% 0.88%

yields even higher improvement potentials. However, it is likely that noise in imperfect real376

world settings reduces the actual performance gains achieved through optimisation.377

When adopting a Type II segmented supply chain, i.e. segments are classified using378

predefined volume and variability criteria, it is critical to define the volume and variability379

parameters for separating the two segments. For example, Christopher and Towill (2002)380

suggest a Pareto based segmentation, e.g. an 80-20 rule, which states that the lean segment381

should contain approximately 20% of all SKUs which typically generate 80% of the volume.382

To understand the impact of such a decision, we apply this 80-20 rule to segment the SKUs383

in our model and given this product segmentation we determine the optimal network design.384

The model will still make optimal decisions in the allocation of factories to segments, the385

allocation of SKUs to factories, and the optimal routes to the end-markets, but the allocation386

of SKUs to segments is done using the Pareto rule.387

Table 5 shows the cost differences between the optimal segmentation policy and three388

predefined segmentation policies based on the 80-20 rule. A product is defined as agile if it’s389

average monthly volume is lower than the limit, or if the cv is higher than the corresponding390

limit. Although in all cases, the rule allocates 20% of the SKUs to the lean segment and 80%391

to the agile segment, we demonstrate that the parameters used to define the segmentation392

have a considerable impact on the total cost. Table 5 also shows that the least favourable393

cut-off limits increase the cost by nearly twice as much as the most favourable cut-off limits394

when compared to the cost achieved by the Type III segmented supply chain. In all cases,395
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Table 5: Increase in total cost for Type II supply chains with predefined segmentation based on the 80-20

rule, compared to the Type III supply chain

Type II Type III

Volume 100k 500k 1,000k

cv 0.40 0.58 0.80

Synthetic Cost 35,453,735 30,988,408 28,771,910 22,565,905

data % increase 36.4% 23.8% 17.5%

Real Cost 13,337,438 13,794,287 14,043,770 12,747,245

data % increase 4.63% 8.21% 10.17%

using a Type II segmented supply chain results in a cost which is 5 to 10% higher than the396

Type III segmented supply chain. When we use the synthetic data set, we find the difference397

to be between 17 and 36% which, again, can be explained by the idealised network setting.398

Profitability is another segmentation criteria, often cited in the literature. In our setting,399

we do not consider the impact of the selling price of individual SKUs; though the cost per400

unit is a potential proxy for profitability. Note, however, that cost per unit is a consequence401

of the operational decisions made and is not known a priori. The opportunity to define402

a third dimension which would allow a perfect segmentation remains open (see Li and403

O’Brien (2001) for a similar discussion). Nevertheless, Figure 3a and Table 5 show that a404

segmentation based on volume and variability has the potential to provide a sound basis for405

designing the supply chain.406

5.2. Impact of cost parameters407

In this section, we analyse the impact of holding and manufacturing costs on the optimal408

segmentation and network design. Although we conduct our analysis using both synthetic409

and real data, our presentation here focuses mainly on the outcomes of the analysis using410

synthetic data. By doing so, we present the change in the optimal segmentation of SKUs by411

exclusively examining the volume and variability of demand characteristics under different412

cost parameters.413
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(a) Optimal segmentation, h = 0 (b) Change in the agile segment

Figure 4: Comparison of SKU lean/agile segmentation at different holding cost (synthetic data)

We start by studying the impact of holding cost, by comparing the segmentation under414

four holding cost rate scenarios h = {0, 0.25, 0.50, 1}. Figure 4a shows the result when h = 0,415

i.e. we omit inventory decisions from the network design phase. A vertical cut-off limit,416

corresponding to a volume of 209,000 units, separates the two segments, this means that in417

this case, 39% of SKUs belong to the agile segment. Figure 4b displays how the agile segment418

changes as h increases. The red dots are products allocated to the agile segment when h = 0,419

while the pink, green and light green dots represent additional products allocated to the agile420

segment as h increases. Figure 4b illustrates how the segmentation boundaries evolve. The421

percentage of SKUs in the agile segment rises from 39% when h = 0, to 45%, 50%, and 56%422

as h increases.423

The main advantage of an agile supply chain is its ability to react to changes in demand,424

reducing the need to hold safety stocks. As the holding cost increases the gains from agile425

operations also increase, resulting in a larger number of products assigned to this segment.426

When h = 0, a significant number of products remain assigned to this segment due to the427

lower manufacturing fixed costs of agile facilities. For values of cv around zero, the cut-off428

limits for different h values in the volume dimension are approximately equal. However, as429

cv increases, the slope of the boundary between the two segments changes, and it becomes430

non-linear. The real case shows the same pattern although the relationship is less clear.431

Next, we compare the optimal policy under different manufacturing costs for the agile432

segment, with inventory holding cost rate set to the base case value, h = 25%. As in the433
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discussion above, Figure 5 demonstrates how the product allocations to the agile segment434

change for the scenarios where the agile variable manufacturing cost reduces by 20% and435

40% and the agile fixed manufacturing cost increases by 40%. The red dots in Figures 5a436

and 5b represent the optimal agile allocation using the base values for the manufacturing437

costs for the agile segment. The pink, green, and light green dots represent additional438

products allocated to the agile segment as the agile manufacturing costs change.439

(a) Change in the agile segment for different

agile variable manufacturing cost

(b) Change in the agile segment for different

agile fixed manufacturing cost

Figure 5: Sensitivity of manufacturing costs in the agile segment using synthetic parameters

As shown in both figures, when the variable or fixed cost changes the line separating the440

two segments moves in the volume dimension even when cv is almost zero. Demonstrating441

the impact of cv on the trade-off between variable and fixed costs for the lean and agile442

segments. However, the slope of the dividing line remains the same for a change in the fixed443

cost while it significantly decreases for a decrease in the variable cost. In the total cost444

calculation, the variable manufacturing cost impacts on both the mean and cv of demand,445

a change in the fixed cost affects only the mean demand. The reason for this difference is446

the way that holding cost is charged. The inventory holding cost is calculated based on447

the accumulated variable costs up to the stock holding node, see Equations (6) and (7).448

Therefore, as the variable manufacturing cost decreases, holding cost also decreases. We449

observe similar results for the analysis of the transport costs.450

In Figures 4 and 5 we observe the change in the agile segment as the cost parameters451

change, with the proportion of SKUs assigned to the agile segment differing significantly452
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based on these parameters. This implies that a predefined segmentation rule based on453

a proportional allocation of SKUs to segments, e.g. the 80-20 rule, cannot perform well454

without considering the economic parameters.455

5.3. Impact of integrating safety stock and network optimisation456

Finally, one question remains: Is it at all meaningful to integrate safety stock optimisation457

into the network design problem? As we follow the current literature on supply chain458

segmentation strategies, we use volume and variability as the allocation criteria of SKUs459

to either segment. However, in a purely deterministic network model without safety stock460

optimisation, the variability of demand would not have any impact. As is easily seen from461

Equation (1), the safety stock term SSC∗ijsp is the only term that contains σp. If removed,462

the remaining network model is purely deterministic.463

To quantify the impact on the cost of including safety stock optimisation in the model,

we modify the objective Equation (1) as follows

TC
′
= min

Xijsp

∑
p∈P

∑
s∈S

∑
i∈N

∑
j∈R

Xijsp

(
µp
Qp

fis + µpc
fac
is + µpc

up
ijs + µpc

dn
jsp + µprj

)
,

(11)

subject to the constraints Equations (2), (3) and (4). Optimal safety stocks SSC∗
′
ijsp for the464

network resulting from optimising Equation (11) are then added to the total cost TC
′
.465

We simulate the optimal policy using different holding cost rates in the range h =466

{0.25, 0.50, 1} and compare the results to the joint optimisation under each of the holding467

cost rates used in Section 5.2. Our results show that using the real data and jointly optimis-468

ing the network structure and safety stock levels, total costs can be decreased by between469

5% and 18%. Therefore, we find that it is important to include safety stock considerations470

when performing network optimisation for Type III segmented supply chains. Significant471

improvements are achieved by optimising inventory and network design simultaneously.472
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6. Conclusion473

To the best of our knowledge, this is the first study which proposes an optimal approach474

to the supply chain segmentation problem. The literature on supply chain segmentation475

to date uses rules of thumb to allocate SKUs to supply chain segments, for example, the476

well-known Pareto 80-20 rule. This paper contributes to the existing body of knowledge477

in two ways, i) by proposing a mathematical model to optimise the allocation of SKUs to478

supply chain segments and ii) by including safety stock optimisation as a joint optimisation479

problem. Our analysis shows that adopting a Type III supply chain leads to significant cost480

improvements compared to a Type II or an unsegmented supply chain. We further show that481

introducing the safety stock optimisation problem into the network problem and optimising482

both simultaneously, leads to significant cost benefits.483

Comparing Type II and Type III supply chains allows us to evaluate the impact of seg-484

mentation criteria. We establish a set of Type II scenarios based on a Pareto segmentation,485

i.e. 80-20 rule, and determine the optimal supply chain structure based on predefined SKU486

segments. The results show that such a two-step approach to supply chain segmentation has487

the potential to give good results and a volume-variability based categorisation is a viable488

basis for segmentation. However, the results highlight that the costs are sensitive to the489

parameters chosen for the segmentation rules, and these must be chosen carefully to avoid490

significant cost penalties. Adopting a Type III supply chain, however, avoids these issues491

and outperforms the Type II supply chain significantly.492

To model the impact of demand variability, we include inventory control decisions in our493

model in the design phase. Our results confirm that the inclusion of inventory holding costs494

can change the optimal supply chain design significantly. The supply chain configuration of495

the motivating case company, i.e. a serial supply chain system, forms the basis for our mod-496

elling. Such a setup applies to companies where the product, for reasons of manufacturing497

efficiency, product authenticity or market regulation is produced and packaged specifically498

for the local market at the source. This includes products such as tobacco and pharma-499

ceuticals. Obviously, the assumption of a serial supply chain restricts the applicability of500
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our approach, in particular, it is not possible to take advantage of inventory pooling in this501

context as each product is only sold in one market. However, the model has the potential502

to be generalised further.503

An immediate extension of our model could be to consider settings where inventory504

pooling comes into play. The main challenge in such a setting is to incorporate the pooling505

effect and solve the nonlinearity of the inventory control model. One might then consider506

expanding the model in the supply dimension, i.e. from a single sourcing setting to dual507

sourcing. Another research direction would be to model the manufacturing and transport508

processes in more detail. Currently, these are modelled at an aggregate level ignoring the509

interaction with the assignment of products. For example, the lead times and costs will510

differ based on the number and the demand characteristics of the products assigned to a511

factory. To see the detailed transport and manufacturing processes in such a complex system512

simulation modelling would be an appropriate approach.513
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