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Abstract 

Screw feeders are widely used in powder processes to provide an accurate and consistent 

flow rate of particles. However this flow rate is rarely measured or controlled. This 

investigation explores the use of generalised norms and moments from structural-borne 

acoustic emission (AE) measurements as key statistics indicators for the estimation of powder 

mass flow rate in a screw feeder.  

Experimental work was carried out acquiring AE measurements from an industrial screw 

feeder working with four different types of material at different dispensation rates.  Signal 

enveloping was used in first place to eliminate high frequency components while retaining 

essential information such as peaks or bursts caused by particle impacts. Secondly a set of 

generalised norms and moments is extracted from the signal, and their correlation with mass 

flow rate was studied and assessed. Finally a general model able to estimate mass flow rate 

for the four different types of powders tested was developed. 
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1. Introduction 

Screw feeders are widely used in industries such as mining, metallurgy, food processing, 

pharmaceutical and consumer goods to draw bulk materials from storage containers and 

transfer them over a short distance [1]. In most cases it is critical to feed powders consistently 

and accurately into subsequent unit operations of the process line, as feeding is typically the 

first unit operation [2]. Real time process and product quality control is nowadays essential in 

any modern production line. The early detection of quality deviations enables a more efficient 

and dynamic process management, enhancing efficiency and final product quality. Measuring 

the amount of material (raw materials, additives, finished product) travelling through a 

specific process section can provide vital information. If this information is accurate and 

provided on-line in real time, it can be fed back into the process to control process parameters 

affecting the final quality of the product. However this is not an easy task when dealing with 

bulk materials such as fine powders composed of particles of different shapes, sizes, densities 

and chemical composition. 

The measurement of particle mass flow rate has been addressed using different types of 

sensing technologies [3] based on measurements of electrostatic charge [4,5], microwaves 

[6], radiological emissions [7] or tomography [8,9]. In addition acoustic emission (AE) has 

been used in many previous research studies [10–14] with great results. The main benefits of 

AE compared to other sensing technologies include its non-intrusive nature [13], high 

sensitivity to particle impact in the vicinities of the sensor, and robustness against noise and 

other disturbances from the system when using high-frequency ultrasonic sensors [15]. On 

the other hand the high sampling rates required and the expertise for handling and processing 

heavy datasets are the main drawbacks of this technique. 

In [11] a model was presented that explains how particle-wall collisions and friction generate 

AE, and the model was validated with experimental results. A signal decomposition based 

method allowed the authors to estimate mass flow rate. Albion et al. [13] presented a method 
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for determining flow regime in horizontal pneumatic transport using microphones. This 

method proved to be successful, but the use of acoustic measurements in the audible range 

makes it potentially prone to signal contamination from other sound sources [15] in an 

industrial environment, and the use of wavelet decomposition makes it computationally 

heavy. This problem was also studied in [12] where mass flow rate in abrasive jets using 

acoustic emission was estimated using two different methods. The first method was based on 

peak count with a dynamic threshold while the second approach estimated mass flow rate as a 

function of the power spectrum density of the signal. Both methods proved to be successful, 

but the peak count based method is only applicable when the frequency of the particles 

hitting the surface is much smaller than the plate ringing frequency. The relationship between 

signal power and the average number of particles impinging on a surface per unit of time was 

modelled in [10], and the accuracy of the model was corroborated with experimental data. A 

similar approach was presented in [15], where mass flow rate in an air conveyed horizontal 

pipe was correlated with the RMS value of AE signals. 

 

Measuring particle flow rate in an industrial screw feeder presents additional challenges, as 

the AE activity is not mainly produced by individual particles hitting a surface but by the 

friction generated by a large group of particles with different characteristics being dragged by 

the screw over a surface at the same time. Additionally the estimation of mass flow rate in 

powders with a wide particle size distribution can be difficult due to the large differences in 

the acoustic activity generated by these particles. The development of a flow rate estimation 

method valid for powders with different compositions and physical properties is complicated 

for the same reasons. These were the main challenges faced in this investigation. 

 

The data processing method proposed in this paper aims to deepen in the concept presented in 

[10,15] of stablishing a relationship between particle flow rate and general signal 
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characteristics (such as RMS) that can be obtained with very limited computational cost. In 

first place the envelope of the signal is calculated to eliminate fast oscillations while retaining 

a smooth curve outlining its extremes, which contains essential information such as the 

presence of peaks or bursts caused by particle impacts. This smooth curve without very high 

frequency components does not require a sampling rate as high as the original signal to be 

accurately represented. This step allows an enormous reduction in the size of the data set to 

be analysed subsequently and makes it more suitable for real time estimations. Secondly, 

basic time-domain features such as generalised norms and moments are extracted from the 

signal, which can be correlated with physical parameters such as flow rate.  This method was 

tested and assessed using experimental data acquired from a screw feeder working at 

different speeds and with powders of different physical characteristics, generating a general 

data-based model able to estimate mass flow rate for different powders according to their 

bulk density. 

 

The rest of the paper is structured as follows: section 2 explains in detail the signal processing 

methodology proposed. The experimental set up is described in section 3, including 

information about the experimental rig and the experiments carried out. The results obtained 

are presented and discussed in section 4. Finally the work is concluded in section 5.  

 

2. Methodology 

 

Acoustic emission is defined as transient elastic waves generated by the sudden release of 

energy from localised sources within a material [16]. Plastic deformation, crack propagation, 

erosion, corrosion, impacts and leakage are the most common sources of AE. These waves 

are characterised generally by a very high frequency and low amplitude signal. Piezo-ceramic 

sensors are widely used because of their high sensitivity and robustness. The mechanical 

resonance of the detecting element in the sensor is used to obtain high sensitivity to these 
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weak waves, although in some cases a damping element is bonded around the detecting 

element to generate a flatter frequency response [17]. 

 

The signals produced by particle interactions generate a series of high-frequency bursts in the 

captured signals as resonance frequencies are excited by particle impacts. Although the signal 

is dominated by the resonance frequencies excited, the relevant information is contained in 

the characteristics of these bursts such as their amplitude, duration, the number of event 

repetitions, etc. For that reason, in this investigation the AE signals acquired were first 

demodulated to obtain the envelope and remove the resonant components of the signal. 

Secondly the characteristics of the envelope were analysed to study the correlation between 

powder flow rate and AE.  

 

2.1 Signal Enveloping 

High frequency bursts in an AE signal can be modelled as an amplitude modulation of a 

carrier signal at the resonance frequency by a series of exponential pulses. The signal 

envelope can be extracted by amplitude demodulation to reveal the overall characteristics of 

these bursts. The envelope can be extracted using the Hilbert transform as a resonance 

demodulator. It can also be estimated by integrating the absolute value of the signal over a 

period of time or calculating the moving maximum of the signal over a sliding window. In 

these cases, the time constant can be chosen by the analyst according to the requirements 

allowing a more flexible analysis. Long time-constants can reveal long-term trends of the 

overall level of AE activity, while for short time-constants the output will be a dynamic 

representation of the variations in the AE signal magnitude. Fig. 1 shows an example of these 

methods where the original signal is compared to its envelopes obtained using the Hilbert 

transform and a moving maximum sliding window of 25 data points. 
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From Fig. 1 it can be seen how both enveloping methods are capable of reproducing the 

overall amplitude variations in the original signal while ignoring the high frequency 

oscillations. In this investigation the “moving max” method with a window length of 25 data 

points was used due to its ability to represent more accurately the amplitude of sharp signal 

bursts, such as the burst starting after 2 ms in Fig. 1. 

 

 

2.2 Extraction of basic statistical signal features: generalised norms and moments 

Statistical analysis provides various features for the signals: norms and moments are 

commonly used in developing time-domain based features [18]. Absolute mean and root 

mean square (RMS) are examples of commonly used norms. Normalised (dimensionless) 

moments around the mean skewness and kurtosis are special cases corresponding to orders 

three and four respectively, and are commonly used in vibration analysis [18]. 

 

Higher order norms and moments can be more sensitive to impact-like phenomena as the 

high exponent magnifies large signal values against “carpet level” values. Higher order 

derivatives provide additional methods for vibration analysis [18]. As an example, the first 

time derivative of acceleration, known as jerk, has been used for assessing the comfort of 

travelling, for example in designing lifts, and for slowly rotating rolling bearings [19]. These 

characteristics are very interesting for this particular case study, which aims to characterise 

the bursts produced in AE signals due to particle impact and find a correlation with powder 

mass flow rate. 

 

For a discrete random variable X, having possible values xi , i = 1,…,N, the probability of 

each value is defined by a probability function P(X = xi). A signal x(t) is a sample with a 

length of T from a continuous variable X. Values are selected from the signal with an equal-
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sized time interval T/(N–1). The probability of each value is defined by a density function 

f(x), ie P(X = xi) = f(xi), and the expectation of  X is defined by:  
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 where p ≠ 0 and  represents the norm order and α represents the derivation order. It has same 

dimensions as the corresponding signals x
(α)

.  

 

The mean is the first moment about the origin. Higher moments M
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The generalised central absolute moment about c = 𝑥
𝛼

  can be normalised by means of the 

standard deviation σα  of the signal x
(α)

 to make it dimensionless. 

 

This procedure described in detail in [18] was used in this investigation to compute a range of 

norms and moments of the acquired AE signals and their derivatives. The correlation between 

these individual features and the measured mass flow rate was studied in order to obtain the 

model that best estimates flow rate from the AE signal characteristics. 

 

3. Experimental set up 

 

3.1 Testing hardware and instrumentation 
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An Ajax screw feeder size 75 (diameter 75mm) was used for the experiment (Fig. 2). It 

consist of a hopper where the powder is stored and a screw driven by a motor and a gearbox 

which displaces the material towards the discharge. This machine is used in different 

industrial applications to provide a consistent flow rate of powder. However it is not 

equipped with any kind of sensor to measure this flow rate in real time. The machine is 

equipped with a variable speed drive to adjust the flow rate provided. The nominal speed of 

the motor is 1360 rpm at 50 Hz, and it is attached to a gearbox with a reduction ratio of 47:1.  

A Physical Acoustics D9241A differential sensor was attached to the outside of the screw’s 

cover (Fig. 3). Dow Corning 3140 RTV coating was used as a couplant to maximise signal 

transfer to the sensor without modifying or damaging the surface. This sensor has an 

operating bandwidth of 10-100KHz. The AE signal from the sensor was preamplified 40 dB 

before being digitised using a PicoScope 4224-11 oscilloscope at a sampling rate of 1 MHz. 

 

3.2 Summary of tests carried out 

The proposed approach was tested with AE signals acquired from the feeder. Four types of 

powders with different compositions and densities (see Table 1) were used during the tests. 

These powders are raw materials (sodium sulphate) or intermediate products (blown powder 

produced in a drying tower) in the washing powder production. The objective is to assess the 

capabilities of the algorithm for different types of powder. Fig. 4 shows the particle size 

distribution of the four powders tested. These particle size distributions were obtained by 

sieving the powder with 10 sieves of different sizes.  

The experiments were carried out at four different speed set-points, selected by changing the 

frequency of the current fed to the motor. AE signals sampled at 1MHz were acquired for 

every possible combination of powder and speed. Each of these tests was repeated 10 times to 

produce a significant amount of data and cope with measurement uncertainties (see Table 2). 
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Fig. 5 shows an example of the signals acquired for powders 1 and 3 (highest and lowest 

densities tested) with flow rates 1 and 4 (lowest and highest speeds tested). These examples 

show how the signal peak amplitude is higher for powders with higher density and higher 

speeds. It can also be seen how for powder 1 the fluctuations produced by the screw blade 

passing over the sensor location at 20 Hz and 50 Hz, but these fluctuations are not visible for 

powder 3.  

 
 4. Results 

 

4.1 Flow rate measurement 

The mass of powder coming out of the feeder was measured over periods of around 90 

seconds to determine the mass per unit of time delivered by the feeder. These measurements 

were undertaken several times for each combination of powder and speed tested. Although 

short time flow rate fluctuations due to the effect of the screw’s blades were observed for 

Powder 1, the overall flow rate measured over a longer time span was constant and 

repeatable. Additionally, there is a linear correlation between the speed and the mass flow 

rate for each one of the powders tested. This was an expected result as the volume displaced 

per screw revolution can be considered constant. The results obtained are summarised in 

Table 3, and will be used to calibrate the method proposed, trying to find a correlation 

between AE signal features and actual flow rate.  

 

4.2 Selection of data set length 

The original 20 s observations were split in smaller sections in order to observe how the 

length of the data set acquired affects the accuracy of the method, and select the minimum 

sample size possible without compromising it. This step also generates a richer data set, 

increasing the number of observations and the reliability of the model fitted. The procedure 

described in section 2.2 was used to obtain generalised norms and moments of enveloped 
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signals of different sizes for this analysis. The features obtained were correlated with the 

measured flow rates, and a linear model was fitted through the data points, in an attempt to 

correlate AE features and mass flow rate. The accuracy of the model was evaluated using the 

mean prediction error, calculated as the average absolute differences between observed 

values and model estimations, expressed as percentages of the observed value. Fig. 6 shows 

the evolution of the prediction error of the first norm (p=1) of the original signal (α=0). 

The results presented in Fig. 6 show that the prediction error decreases as the sample size 

increases, until a certain point where the model reaches maximum accuracy and the addition 

of observations has no effect in the prediction error. The minimum error achievable is lower 

for powders 1 and 4 (between 2 % and 3 %) and slightly higher for powders 2 and 3 (around 

5%). The prediction error levels out for powder 2, 3 and 4 with observations of around 

10.000 samples. Powder 1 however requires a higher number of samples per observation to 

achieve maximum accuracy, around 2x10
6
 samples. This is attributed to the big fluctuations 

observed in the AE signal for powder 1 due to the screw blade effect (see Fig. 5), requiring a 

number of samples that covers at least one of this oscillations to produce repeatable results. 

Similar results were obtained for other norms and derivative orders. In practical terms, a 

sample length of 2 s was selected as a result of this analysis.  

The original 20 s signals acquired were split in sections of 2 s (2x10
6
 samples at 1MHz) for 

all the powders and speeds tested, generating 400 observations for each type of powder. Even 

numbered observations were used for algorithm training, fitting a linear curve through these 

points. Odd observations were used to assess the accuracy of the model by looking at the 

prediction error of these observations for each case studied. 

 

4.3 Estimation of powder flow rate through generalised norms. 

The procedure described in section 2.2 was used to obtain generalised norms for all the 

enveloped AE observations, up to norm order 6 (p=6) and derivation order 5 (α=5). Fig. 7 
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shows an example of the results obtained for generalised norms up to order 3 and derivation 

order 2 for powder 1. This figure shows the samples used for training (blue) as well as the 

monitoring samples (red), and the estimations provided by a linear model in each case 

(green). 

These results show how the features obtained from different norms and derivative orders 

have a relative high correlation with mass flow rate, producing estimation errors in the order 

of 2%. Performing the analysis on high order derivatives seems to have a negative effect on 

the correlation, as the prediction error increases slightly with the derivation order in most 

cases. However higher norm orders tend to reduce the estimation error, improving the 

accuracy of the method. These results can also be observed in the other powders tested. 

Tables 4 to 7 summarise the estimation error obtained for all the norms studied in the 4 

powders tested. 

4.4 Estimation of powder flow rate through generalised moments 

The same analysis used in the previous section was performed using generalised moments up 

to moment order 8 (the first moment considered was order 3) and up to derivation order 5 

(α=5). Fig. 8 shows an example of the results obtained for generalised moments up to order 5 

and derivation order 2 for powder 1. This figure shows the samples used for training (blue) as 

well as the monitoring samples (red), and the estimations provided by a linear model in each 

case (green).  

These results show how the features obtained from different moments and derivative orders 

have a poor correlation with powder flow rate in most cases, and in those cases where 

correlation exists it is not as good as it was for generalised norms. Quadratic and exponential 

models were also used in addition the linear model shown here, but the error rates obtained 

were not massively improved due to the large scatter on the data points. Tables 8 to 11 

summarise the estimation error obtained for all the moments studied in the 4 powders tested. 
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Performing the analysis on high order derivatives had different effects for the different 

powders tested. In most cases increasing the derivation order did not improve the model 

accuracy, but for powders 2 and 3 the 2
nd

 and 4
th

 derivation orders seem to produce slightly 

better results among the moments studied. Increasing the moments’ order did not have a 

general benefit over the model accuracy in general. The lowest estimation errors are normally 

found for the 3
rd

 or 4
th

 moments. High order moments tend to magnify in excess samples 

containing relatively high values, reducing the accuracy of the linear curve fitting on the 

training samples. 

4.5 Density-dependant model for all powders 

During the analysis of the results obtained from generalised norms it was noted that the 

coefficients of the linear curves fitted changed accordingly with the density of the powders 

tested. In an attempt to produce a general model for any kind of powder as a function of its 

density, the coefficients of the linear curves fitted on the training data were plotted against the 

density of the powders studied. For simplicity and repeatability, the coefficients obtained 

from the first norm of the original enveloped signals (derivative order 0) were used. Fig. 9 

shows the evolution of the linear and independent terms against the powder density for each 

of the 4 powders studied. 

These results were used to produce a general model able to estimate mass flow rate for 

different types of powders using the powder density as an input. Fig. 10 shows the results 

obtained for mass flow rate estimation using this density-based model.  

In terms of model accuracy, the results obtained with the density-based model are quite 

similar for powders 1 and 2 to the best possible fit across the data points. For powders 3 and 4 

the average estimation error is slightly higher (around 1 %) with the density based model, but 

still produces quite accurate results. The use of this model allows the estimation of powder 
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flow rate in a screw feeder when powders of different densities are used once the model is 

trained, using only bulk density as an input for the model. 

 

 

 

 

 

5. Conclusion 

In this investigation work a set of generalised norms and moments was extracted from 

enveloped AE signals to determine if there is a correlation between these features and powder 

flow rate in a screw feeder. The results show that norms extracted from enveloped signals of 

2s of length or more are highly correlated with the mass flow rate for different types of 

powders. This correlation allows the estimation of powder flow rate from AE signals. 

Increasing the norms’ order improves the accuracy of the model by between 0.3 % and 1.4 %, 

but applying the method on high order derivatives had poorer accuracy. On the other hand the 

correlation between generalised moments and mass flow rated proved to be much weaker 

than for generalised norms. Although in some cases the accuracy of the model was 

acceptable, such as moments 3 and 4 for the original signals from powder 4, most of the 

features studied shown poor correlation with estimation errors up to 35%. In addition there is 

no clear benefit on using high order moments, the minimum errors were found for moments 3 

and 4 in most of the cases studied.  

Finally, the correlation between the coefficients of the linear models found for generalised 

norms and powder density was studied, and a general model for different types of powders 

was implemented using density as an input. The results showed that this density-based model 

is slightly less accurate than individual models for each powder with an average 0.54% 

increase in the prediction error, but the estimations are still acceptable. The use of this model 
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is hugely beneficial, as it allows the estimation of mass flow rate of different powders based 

on AE measurements using powder density as an input. 

The methodology presented in this investigation work demonstrates how powder mass flow 

rate can be measured in a screw feeder using AE, a non-intrusive technology, applying a 

basic and computationally efficient algorithm. The results showed that high order norms can 

produce more accurate estimations than RMS using AE measurements of 2 s. The accurate 

flow rate estimation results obtained from generalised norms of AE signals fulfil the 

objectives of this research work.  

Additionally, the development of a general model based on AE features and powder density 

provided a flexible flow rate estimation tool for different types of materials. In a real 

application the signal enveloping used here prior to the data analysis can be done before data 

collection using an analogue enveloper, allowing for a much lower sampling rate. With this 

approach it will be possible to measure powder flow rate on-line and in real time, which 

potentially allows the use of these flow rate estimations for real time process monitoring and 

control. 
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Fig. 1: Comparison of different enveloping methods 
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Fig. 2: Ajax screw feeder (left) and diagram (right)  
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Fig. 3: Sensor installation detail 
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Powder 1 Powder 2 Powder 3 Powder 4 

 
Fig. 4: Particle size distributions 
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Fig. 5: Examples of signals acquired for powders 1 (left) and 3 (right) at 20Hz (top) and 50Hz (bottom) 
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Fig. 6: Evolution of prediction error vs sample size for 1st norm, derivative order 0 
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Fig. 7: Generalised norms vs flow rate for powder 1 
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Fig. 8: Generalised moments vs flow rate for powder 1 
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Fig. 9: Evolution of the linear term (left) and independent term (right) against powder density 
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Fig. 10: Flow rate estimations using density-based model 
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Table 1: Density of powders tested 

Powder ID number Material Bulk density (g/L) 

1 Sodium sulphate 1449.0 

2 Blown powder-high density 648.4 

3 Blown powder-low density 561.2 

4 Anionic agglomerate 731.8 
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Table 2: Experiment matrix 

 Flow rate1  

(20Hz) 

Flow rate2    

  (30 Hz) 

Flow rate3 

 (40 Hz) 

Flow rate4 

(50 Hz) 

Powder 1 10x20s 10x20s 10x20s 10x20s 

Powder 2 10x20s 10x20s 10x20s 10x20s 

Powder 3 10x20s 10x20s 10x20s 10x20s 

Powder 4 10x20s 10x20s 10x20s 10x20s 
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Table 3: Mass flow rates provided by the feeder (kg/h) 

 Flow rate1  

(20Hz) 

Flow rate2    

  (30 Hz) 

Flow rate3 

 (40 Hz) 

Flow rate4 

(50 Hz) 

Powder 1 429.3 656.0 882.7 1109.4 

Powder 2 202.4 309.3 416.3 523.2 

Powder 3 163.9 246.2 328.6 410.9 

Powder 4 249.0 370.7 492.4 614.1 
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Table 4: Estimation error for generalised norms in powder 1 (%) 

 Der. 0 Der. 1 Der. 2 Der. 3 Der. 4 Der. 5 

Norm 1 2.1 2.0 2.1 2.2 2.2 2.2 

Norm 2 1.9 1.9 2.0 2.0 2.1 2.1 

Norm 3 1.9 1.9 1.9 2.0 2.0 2.0 

Norm 4 1.8 1.9 1.9 1.9 1.9 2.0 

Norm 5 1.8 1.9 1.9 1.9 2.0 2.0 

Norm 6 1.8 1.9 2.0 2.0 2.0 2.0 
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Table 5: Estimation error for generalised norms in powder 2 (%) 

 Der. 0 Der. 1 Der. 2 Der. 3 Der. 4 Der. 5 

Norm 1 4.5 4.6 4.8 4.9 5.0 5.0 

Norm 2 4.2 4.2 4.5 4.6 4.7 4.7 

Norm 3 3.9 3.9 4.2 4.3 4.3 4.4 

Norm 4 3.6 3.7 3.9 4.1 4.1 4.2 

Norm 5 3.5 3.6 3.8 3.9 3.9 3.9 

Norm 6 3.3 3.5 3.6 3.7 3.8 3.8 
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Table 6: Estimation error for generalised norms in powder 3 (%) 

 Der. 0 Der. 1 Der. 2 Der. 3 Der. 4 Der. 5 

Norm 1 5.1 5.6 5.9 5.9 6.0 6.0 

Norm 2 4.9 5.2 5.4 5.5 5.6 5.6 

Norm 3 4.6 4.8 5.0 5.2 5.2 5.3 

Norm 4 4.3 4.5 4.7 4.8 4.9 4.9 

Norm 5 4.0 4.3 4.5 4.6 4.6 4.6 

Norm 6 3.7 4.1 4.3 4.4 4.4 4.4 
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Table 7: Estimation error for generalised norms in powder 4 (%) 

 Der. 0 Der. 1 Der. 2 Der. 3 Der. 4 Der. 5 

Norm 1 2.3 2.0 2.1 2.2 2.2 2.2 

Norm 2 2.0 1.7 1.8 1.9 1.9 1.9 

Norm 3 1.8 1.5 1.6 1.7 1.7 1.7 

Norm 4 1.6 1.4 1.4 1.5 1.5 1.5 

Norm 5 1.4 1.2 1.3 1.4 1.4 1.4 

Norm 6 1.3 1.2 1.2 1.3 1.3 1.3 
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Table 8: Estimation error for generalised moments in powder 1 (%) 

 Der. 0 Der. 1 Der. 2 Der. 3 Der. 4 Der. 5 

Moment 3 8.9 33.5 34.8 33.4 25.3 31.9 

Moment 4 12.8 10.6 10.5 10.2 10.2 10.2 

Moment 5 13.1 31.5 30.8 33.7 33.9 32.1 

Moment 6 15.0 13.6 13.6 13.2 13.4 13.7 

Moment 7 17.0 31.9 27.0 33.8 35.1 32.8 

Moment 8 19.2 17.7 17.7 17.4 17.7 18.0 
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Table 9: Estimation error for generalised norms in powder 2 (%) 

 Der. 0 Der. 1 Der. 2 Der. 3 Der. 4 Der. 5 

Moment 3 28.7 35.1 14.4 35.1 13.2 34.4 

Moment 4 8.5 15.5 19.9 19.9 20.4 20.8 

Moment 5 13.1 34.3 20.2 34.9 18.2 34.8 

Moment 6 22.9 15.1 21.2 19.6 20.5 20.8 

Moment 7 32.2 35.3 35.1 35.3 34.5 35.3 

Moment 8 34.7 29.4 32.2 30.7 30.3 29.9 
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Table 10: Estimation error for generalised norms in powder 3 (%) 

 Der. 0 Der. 1 Der. 2 Der. 3 Der. 4 Der. 5 

Moment 3 29.9 21.3 12.6 25.6 11.0 32.4 

Moment 4 29.1 33.7 33.3 33.3 33.1 33.0 

Moment 5 31.9 28.8 14.9 33.5 13.2 32.0 

Moment 6 30.8 32.6 33.5 33.4 33.7 33.7 

Moment 7 37.4 33.5 26.7 33.7 25.1 32.8 

Moment 8 44.2 34.7 35.0 32.9 33.2 33.5 
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Table 11: Estimation error for generalised norms in powder 4 (%) 

 Der. 0 Der. 1 Der. 2 Der. 3 Der. 4 Der. 5 

Moment 3 9.1 26.8 18.3 32.2 15.9 33.0 

Moment 4 7.3 6.0 7.3 7.7 8.3 8.9 

Moment 5 9.0 27.1 32.9 33.1 30.0 33.3 

Moment 6 11.7 8.7 10.3 10.9 11.8 12.5 

Moment 7 14.9 30.1 26.1 33.0 31.4 32.8 

Moment 8 18.0 15.0 16.8 16.7 17.7 18.5 

 

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

37 
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Highlights 

 

 Generalised norms and moments from AE signals is proposed for flow rate 

estimation 

 Signal enveloping is used to simplify data analysis 

 The approach was tested on a screw feeder with different powders 

 High order norms improve flow rate estimation accuracy 

 A general density-based model is able to estimate flow rate of different 

powders 
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