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Abstract

Z-pin through-thickness reinforcement is used to improve the impact resistance of

composite structures; however, the effect of loading rate on Z-pin behaviour is not well

understood. The dynamic response of Z-pins in mode I and II delamination of quasi-

isotropic IM7/8552 laminates was characterized experimentally in this work. Z-pinned

samples were loaded at both quasi-static and dynamic rates, up to a separation velocity of

12m/s. The efficiency of Z-pins in mode I delamination decreased with loading rate,

which was mainly due to the change in the pin misalignment, the failure surface

morphology and to inertia. The Z-pins failed at small displacements in the mode II loading

experiments, resulting in much lower energy dissipation in comparison with the mode I

case. The total energy dissipation decreased with increasing loading rate, while enhanced

interfacial friction due to failed pins may be largely responsible for the higher energy

dissipation in quasi-static experiments.
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Introduction

Carbon fibre reinforced polymer matrix composites are extensively used in the

aerospace industry, due to their high in-plane strength, stiffness and low weight. However,

the absence of reinforcement in the through-thickness direction has led to delamination

becoming one of the dominating failure modes for composite laminates[1, 2]. Z-pinning

has been developed as a cost-effective method to improve the resistance to delamination

growth, using metallic or carbon fibre rods inserted into the lay-up before curing [3, 4].

The Z-pins are very effective in increasing the delamination toughness in quasi-static

tests [5-8], and they have shown superior performance in mode I delamination compared

with mode II case [9-11]. In mode I delamination, the Z-pins are normally pulled out, and

considerable energy is dissipated during the frictional pull-out process [5, 12]. In contrast,

the Z-pins tend to split and rupture when loaded in shear, offering only relatively low

energy dissipation [6, 9, 10, 13]. The bridging responses of Z-pins, i.e. the evolution of

bridging force with the relative displacement of the delamination surface, is essential for

analysing the failure of Z-pinned composites [14, 15].

The failure mechanisms of a Z-pin also heavily depend on the topology of its

surroundings. The layup of composite laminates [10], the insertion angle of Z-pins [9]

and also the insertion length [12] have significant influence on the failure modes and

energy dissipation of Z-pins. The Z-pins are surrounded by resin pocket in laminates [3],

and the resin may get deformed and damaged due to lateral deformation of the pins [16].

The resin material [17], and the composite laminate [18] are both very sensitive to strain
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rate, and their strength increases considerably with loading rate. Accordingly, the

mechanical performance of the pins can be expected to show some dependency on the

loading rate.

Composite structures may experience various impact threats during service, and

extensive delamination may be introduced as a result[19, 20]. Z-pins are therefore used

to prevent extensive delamination and thus overall catastrophic failure [21, 22] in

structures exposed to impact threats. Despite comprehensive studies on the Z-pin

behaviour in quasi-static rate, very few works addressing the dynamic performance of Z-

pins exist in open literature. The mode I delamination of Z-pinned laminated was tested

in [23] at two different velocities: 1mm/min and 100 mm/min. The efficiency of Z-

pinning increased with loading rate for large pins because of enhanced interfacial friction,

whilst it decreased for small diameter pins as pins ruptured at increased loading rate; this

study indicated a noticeable dependency of the Z-pin response on loading rate. A much

higher loading rate was achieved by loading Z-pinned Double Cantilever Beam (DCB)

samples with a flying wedge [24, 25]; the delamination toughness was found to decrease

with increased loading rate ranging from quasi-static to 40m/s, while it started to increase

again at a still higher rate (50m/s). The contribution of Z-pins to delamination resistance

is challenging to quantify in these tests as kinetic energy may dominate the fracture

process of the DCB samples if the crack velocity is high[26].

The dynamic bridging response of Z-pins is essential for the design, analysis and

certification of composite structures threatened with impact loading[27]. The aim of the

work presented in this paper has been to experimentally characterize the mechanical

response of Z-pins, and understand their failure mechanisms at different loading rate. This

will contribute to the ability to better design impact resistant structures with Z-pin
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reinforcement and also create a comprehensive experimental database for the

development and validation of predictive numerical analysis tools. Z-pins embedded in

pre-delaminated laminates were tested at a variety of loading rates from 0.01mm/s to

12m/s, and for the first time the dynamic performance of Z-pins was characterized using

the split Hopkinson bar apparatus, allowing accurate traction-displacement curve

extraction.

2. Experiments

2.1. Specimen configuration

Z-pins of 0.28mm diameter made from T300/BMI material were used to reinforce

quasi-isotropic laminates. The laminates were made from Hexcel’s IM7/8552 pre-preg

material. A layer of PTFE film was inserted at the mid-plane of the layups, to create a

pre-existing delamination and ensure that the measured bridging force was purely from

the Z-pins. The layup in the top half was [0/45/90/-45]4S, and the bottom half was

[90/-45/0/45]4S. This quasi-isotropic layup was chosen to represent the multi-directional

laminates commonly used in industrial applications and has a 90° interface at the mid-

plane to avoid nesting of the plies. Non unidirectional stacking sequences have been

shown to have strong influence on altering the Z-pin bridging response, relative to

unidirectional laminates [10].

The pull-out force exerted by a single pin is relatively low [10], and quite challenging

to measure in a dynamic test. To overcome this, an array of 4×4 pins was inserted in each

specimen in this investigation. An averaged force was then calculated to represent the

properties of a single pin. Specimens were machined from the pinned laminates, to make
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10x10mm blocks, with thickness of 8mm. A 2% Z-pin areal density was used in the

pinning process, and the distribution of Z-pins over the specimen is shown in Fig.1.

The Z-pins were not perfectly vertical to the laminate plane due to the limits of

manufacturing capability. As illustrated in Fig.1, all pins were misaligned predominantly

in the same direction giving a uniform misalignment angle. The average misalignment

angle of 4×4 pins in each specimen was measured as around 9±3°for all samples. The

shear failure of Z-pins may be sensitive to the misalignment angle, and the Z-pins were

loaded with the nap[10] in all shear tests.

2.2 Test setup

Aluminium fixtures were designed to apply tension and shear displacement load to

the z-pinned samples, as presented in Fig.2. The M6 thread on one end of these fixtures

was screwed directly on to the testing machines. 3M Scotch-Weld DP490 adhesive was

used to bond the samples to the aluminium blocks. The mode II specimens were

constrained within a brass sleeve to avoid lateral opening displacements, which in turn

ensured pure mode II delamination behaviour. Quasi-static tests were performed using a

Zwick testing machine with loading rate of 0.01mm/s. A split Hopkinson tension bar

system was used for the dynamic tests, with the striker velocity reaching up to 12 m/s in

this investigation. The failure process was monitored with high speed cameras as

illustrated in Fig.3. The specimen surface was painted with black speckles on a white

back ground, enabling the digital image correlation (DIC) method to be used to track the

opening and shear displacement of the specimen.

The failure process tends to be unstable in quasi-static shear tests, and the sharp drop

in load of the Z-pin response was not able to be captured at the acquisition rate of the
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built in load cell connected to the screw-driven machine. To overcome this limitation, in

the quasi-static experiment, an instrumented low mechanical impedance aluminium tube,

with a strain gauge mounted on its surface for measurement, was connected between the

loading cell and the sample. The tube was 0.9m long, to ensure that the entire drop of the

bridging force could be measured before the reflected wave from the load cell end reached

the strain gauge. The strain gauge on this tube was connected to the signal conditioners

and oscilloscopes and was used to measure the strain wave during the unstable failure

process at an acquisition rate of 5MHz, allowing the measurement of the bridging force.

A high-speed camera was triggered at the initiation of damage, to record the displacement

during the unstable failure event.

The split Hopkinson tensile bar system used in dynamic tests is illustrated in Fig.3b.

Detailed information on the apparatus can be found in [28]. The long projectile can

generate stress pulse with duration of 1 ms, allowing the Z-pin to be completely pulled

out in a single pulse at modest velocity. The strain gauge attached on bars were used to

measure the strain during the test, and then used to calculate the force and displacement

of the samples.

3. Numerical model for inertia effect

The force measured with strain gauges on the Hopkinson bars is valid for calculating

the force on the sample only if there is no inertia effect from the samples [29, 30].

Dynamic equilibrium conditions are difficult to achieve during dynamic shear tests, as

failure occurs at very small displacements. Besides, a relatively heavy fixture is used;

introducing a considerable inertia effect into the measured force. In the quasi-static mode

II tests, the Z-pin failed very rapidly once damage initiated, and the sharp drop of bridging



7

force may result in acceleration of the aluminium fixture. Consequently, the effect of

inertia should also be considered.

A linear elastic model was built in Abaqus 6.14, to evaluate the influence of inertia,

and to explore a method for calibrating the experimental results. The aluminium tube

output bar used in experiments was modelled as shown in Fig.4, with the attached

aluminium fixture and half of the laminated sample. The bridging force of Z-pins was

modelled with surface traction stress on the laminates in this simulation. As shown in

Fig.4, the response of Z-pins in dynamic simulation was assumed to be bilinear, with the

linear descending behaviour of the Z-pins after damage initiation in quasi-static tests.

The strain on an element 200mm from the end of the bar, representing the measured

strain from strain gauge in experiments, was used to calculate the force carried by the

specimen, representing the force measurement in experiments:

mF Eε ψ= (1)

where E is the Young’s modulus of Aluminium, ε is the longitudinal elastic strain of the

bar, and ψ is the cross-sectional area of the tube.

The Abaqus/Explicit analysis was used in the simulation of dynamic tests, and the

force calculated with Eq(1) was then compared against the input shown in Fig.4. For the

simulation of quasi-static configuration, the Abaqus/Standard analysis step was

conducted first to achieve equilibrium of stress distribution within the whole system. In

the following Abaqus/Explicit step, the bridging force descended to zero within 0.1 ms,

and the strain history on the aluminium tube was used to calculate the force with Eq(1).

The acceleration of the fixture during the fracture event was output, and the inertia

force for accelerating the aluminium fixture and the specimen was calculated as:
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(2)

where m is the mass of the aluminium block and half of the specimen (6.5g in total),

assuming them as concentrated mass. The acceleration A of the fixture and half specimen

is assumed to be uniform across it and is obtained directly as output from the FEM

package. The actual force acting on the Z-pinned interface was then corrected with:

(3)

where is the force evaluated from the strain signal on the bar.

4. Results and discussions

4.1 Inertia effect

The force measured in the finite element analysis from the strain on the bar and the

actual force applied to the sample in the numerical simulations is plotted in Fig.5. The

force measurement using strain on the bar underestimated the force of the raising edge,

while overestimated the falling edge due to the inertia effect shifting the curve to the right.

This force was corrected with the inertia force from the fixture, and good correlation was

achieved with the input data. This numerical study confirmed that the inertia effect may

influence the measurement of force, and proper correction should be considered in

dynamic tests. The area under the load-displacement curves, namely the energy

dissipation of the Z-pins in experiments, was not noticeably affected by the inertia effect

in dynamic tests, while was significantly raised in quasi-static tests. The amount of extra

energy in original measurements was mainly caused by the kinetic energy of the fixture,

as confirmed in Fig.5b.

kF Am=

m kF F F= +

mF
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4.2 Mode I behaviour

4.2.1 Bridging response

The failure process was recorded with high-speed imaging for all tests. All Z-pins

were pulled out from laminates regardless of the loading rate, as shown in Fig.6. The

bridging force, the velocity and the displacement of Z-pinned samples in dynamic mode

I tests were calculated via unidimensional stress wave analysis[28]. As shown in Fig.7a,

the bridging force raised to its peak in the first 0.1ms when the displacement was still

increasing in nonlinear manner, indicating the inertia effect at this stage should be

considered. The energy dissipation within this stage was small due to the small

displacement, which was not influenced noticeably by the inertia effect either, as proven

in Fig.5a. The Z-pins were pulled out at an almost constant rate after 0.1ms, until the

complete failure.

The mode I bridging forces at three different loading rates are plotted in Fig.7b as a

function of opening displacement. The bridging forces first increased with displacement

until their maxima, and then followed with sharp drops. The force drop brings in inertia

effect in both dynamic and quasi-static experiments. However, it is very challenging to

estimate this inertia effect in dynamic tests, as it requires very high frame rate to capture

the inertia effect due to the force drop, while then the whole failure process would require

more frames than that our current camera could provide. Since the energy dissipation

during this pin- matrix failure stage is much smaller than that in the frictional pulling out

stage, the inertia effect in mode I tests is neglected in this work. The peak bridging force

in dynamic tests was slightly higher than that in quasi-static tests, although considerable

scatter was noticed. Considering the fact that the peak forces in dynamic tests were



10

underestimated due to inertia effect, the maximum bridging forces may increase with

loading rate more significantly than shown in Fig.7b. The sharp drop after peak force is

indicative of the fracture of the pin-composite bond, and the significant rate dependence

of matrix dominated shear strength [31] is likely to be responsible for the higher of peak

bridging force in dynamic tests. All Z-pins were pulled out gradually after this interfacial

failure. During this pull-out, the Z-pins experienced a nonlinear increase in the bridging

force in quasi-static tests, while the bridging force decreased almost linearly with

displacement in dynamic tests. The mode I samples featured higher bridging force for

initiation compared with previous work [10], indicating the bonding between Z-pin and

laminates has improved [32].

4.2.2 Failure mechanisms

All Z-pins were pulled out during the mode I tests, while their bridging response

showed significant rate dependency. The Z-pins were investigated with scanning electron

microscopy (SEM) after being pulled out, and their failure surfaces were compared with

original Z-pins in Fig.8. A smooth surface similar to that of original pins was observed

for all pins pulled out at different rates, indicating the debonding of Z-pins with

surrounding laminates. There was however some additional inter-fibre failure and fibre

rupture within the tested Z-pins from all experiments, which were not present in the

untested pins. There were no obvious characteristics of the surface condition of the Z-

pins that could be said to have been significantly influenced by loading rate.

After crack formation at the pin-laminate interface or within pins, the Z-pins were

pulled out gradually from laminates. The bridging force during this stage is mainly

attributed to the frictional shear stress at the interface between Z-pin and laminates [33].
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It experienced a significant nonlinear increase in quasi-static tests as shown in Fig.7. The

increase of bridging force was less significant in dynamic tests, and followed by linear

decrease with displacement. As sketched in Fig.9a, the Z-pins were not perfectly

perpendicular to the laminates in the specimens used here. During the pull-out process,

the Z-pins may get bent, which results in extra pressure on the crack surface. Accordingly,

enhanced frictional stress can form [10, 11, 16], which in turn increase the bridging force

during the pulling out process.

The holes vacated by Z-pins were studied to reveal the surface condition after the

pull-out process, as shown in Fig.9a. The middle section of the hole (in blue rectangle) is

most representative for the frictional pull-out process, as the interaction between the Z-

pin and the surrounding matrix can be clearly identified. In our study, two distinct zones

around the circumference of the hole were defined: the opening side where the Z-pin may

moves away from the surface, and the plough side where the Z-pins applied extra pressure.

The original fracture surface on the opening side was better maintained than that in

the plough side, because of less frictional sliding with the pin. As shown in Fig.9b, the

open side features distributed cusps as consequence of the shear dominated fracture. On

the plough side, the cusps have been rubbed off, with only a smooth imprint left by the

sliding of carbon fibres, suggesting heavy friction during pull-out process in this

enhanced friction zone. The fracture surface in dynamic tests was less rough than that in

quasi-static ones, because of the reduced ductility of epoxy with increase in strain rate.

Micro cracks on the failure plane tend to be more closely spaced during dynamic fracture,

and the size of shear cusps decreases due to the limited volume between neighbouring

cracks[31]. This relatively smooth fracture surface may result in less frictional resistance

at the pin-laminate interface. The surface morphology on both the opening and plough
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sides of the dynamic test were very similar to each other, suggesting not significant

influence from enhanced friction zone. There is limit on the maximum frictional stress at

the interface[34], and this maximum frictional stress may be dependent on the roughness

of crack surface and the strain rate sensitivity of matrix material. The smooth surface in

dynamic test may bring down this maximum frictional stress, and making the influence

of this enhanced friction zone less significant in dynamic cases. The enhanced friction

zone was considered to be responsible for the nonlinear bridging force in the quasi-static

tests, and its absence in the dynamic tests may be the reason for the linear decrease of

bridging force with pull-out displacement.

The mode I bridging response was influenced by several factors as presented in this

section. As the fracture surface showed dependence on loading rate in Fig.9, the frictional

stress at interface may vary. The lateral compression of the Z-pins on surrounding

laminates, especially on the plough side as shown in Fig.9, will be dependent on the pin

misalignment and loading rate. It is these factors that were thought to be responsible for

the negative rate dependence of Z-pin efficiency in resisting mode I delamination.

4.3 Mode II behaviour

The failure process of Z-pinned laminates loaded in mode II was monitored with high

speed video cameras, and presented in Fig.10. A brass sleeve was used during these tests

to prevent induced bending and ensure pure shear loading on the Z-pins. The measured

opening displacement of the Z-pinned interface was less than 0.01mm before complete

failure of the Z-pins, much less than the shear component. The relative displacement of

both sides of the Z-pinned laminate was obtained by means of DIC analysis of the

recorded images. It worth noting that there is a lateral force between the brass sleeve and

cylindrical fixture, and additional frictional force may thus be involved in the measured
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Z-pin response. Since the frictional coefficient between the brass sleeve and aluminium

fixture is low, this friction effect was not considered in this study.

The bridging force in quasi-static tests was recorded using two separate data

acquisition systems as illustrated in Fig.3. A typical quasi-static mode II test result is

shown in Fig.11a, the rising edge of the Z-pin response was captured by the Zwick testing

machine load cell, whilst the falling edge was captured with the strain gauge on the bar

and oscilloscope at a high sampling rate. The Z-pins experienced an almost linear rise of

bridging force with shear displacement until about 0.15mm; the bridging force started to

decrease nonlinearly after damage. The bridging force decreased to zero at a displacement

of around 0.6mm. The inertia effect in quasi-static tests should also be considered, as the

sample and attached fixture was accelerated when the bridging force dropped to zero

within less than 1ms. The acceleration history during the fracture event could not be

accurately determined due to the limited number of images recorded during the failure

process, and the true bridging force after damage initiation was not possible to be

produced. However, the number of recorded images was sufficient for an accurate

compensation of the kinetic energy. The energy dissipation was calculated by integrating

of area under the bridging force-displacement curve, and the kinetic energy of the

aluminium fixture was corrected accordingly. The energy dissipation of Z-pins will be

presented in Section 4.4.

The images taken during dynamic mode II tests were used to analyse the displacement

of the aluminium fixtures attached to the input and output bars. Knowing the time interval

between each image, the velocity can then be calculated and plotted as in Fig.11b. Both

fixtures were accelerated as the stress wave propagated from the input bar to the output

bar. The relative velocity between these two fixtures reached an almost constant value at
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around 0.06ms, starting to increase again at around 0.12ms when the Z-pins started to fail.

Although a relatively constant loading rate of about 1.5m/s was reached in these tests, the

velocity of these fixtures kept increasing, indicating that the inertia force has influenced

the original force measured by the Hopkinson bars. The acceleration of the sample and

fixture can be estimated from the velocity-time curves illustrated in Fig.11b. The force of

inertia, determined from the acceleration history, was then used to correct the force

measured by the bars. As shown in Fig.11c, the bridging force showed a steeper rising

edge after correction, and it reduced earlier than it appeared to in the original results.

The bridging response of the Z-pins at different loading rate is presented in Fig.11d.

The Z-pins in dynamic tests showed higher initial stiffness than quasi-static ones, while

the maximum bridging force was comparable at both loading rates. Accordingly, the

efficiency of Z-pins in improving the delamination initiation is not noticeably influenced

by loading rate. The Z-pins lost their loading capacity at about 0.2 mm displacement in

dynamic tests, while the quasi-static behaviour features a relatively long falling edge of

the bridging response, which could possibly be attributed to frictional forces at the

interface.

The Z-pin fracture surfaces from both the quasi-static and dynamic shear tests are

shown in Fig.12. All pins were ruptured near to the specimen mid-plane, with sparsely

distributed splitting cracks between fibres. The debonding of Z-pins from laminates was

observed, as well as the fibre-matrix failure within Z-pins. The fracture surface in

dynamic tests was much flatter and more uniform than that in quasi-static tests. The rough

fracture surface of Z-pins in the quasi-static tests, giving rise to frictional stress in addition

to the bridging force, may be responsible for the higher load capacity after failure

initiation than that in dynamic case.
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4.4 Energy dissipation

The energy dissipated during the pulling out process, which is the key property for

enhancing the delamination resistance of composite laminates, was calculated from

integration of the area under the bridging force-displacement curves. It is interesting to

notice in Fig.13 that the Mode I energy dissipation decreased with the increase in loading

rate. The nominal improvement to the mode I delamination toughness of an unpinned

composite laminate can be calculated by the energy dissipation of the Z-pins per unit

laminate area. For the volume fraction of 2% in the specimens tested here, there is one

pin per 1.75×1.75 mm2. The apparent delamination toughness improvement with Z-

pinning is 34.1 kJ/m2 at quasi-static rates, decreasing to 13.6 kJ/m2 at a loading rate of

12m/s. For the IM7/8552 material tested here, this represents a considerable increase from

the low mode I delamination resistance of ~0.2 kJ/m2 [35]. The Z-pins in dynamic mode

I delamination are thus still very effective, even though there is a reduction from the

quasi-static rate tests. The mode II results are presented both with and without the energy

absorbed after the peak load of the traction-displacement curve. The complete energy

dissipation in quasi-static experiments was considerably higher than that in the dynamic

case. The post-peak energy in quasi-static tests may be largely due to friction between the

interfaces, which was enhanced by the failed pins. If one excludes the contribution of post

peak energy, the Z-pinning mode II efficiency in terms of absorbed energy dropped

slightly with loading rate, but this rate dependence is notably less significant than that in

the mode I case. The mode II energy enhancement of Z-pins is also more modest in

comparison with the mode I performance, with the quasi-static value of 4.01 kJ/m2 (1.44

kJ/m2 without post-peak energy) and the dynamic value of 1.57 kJ/m2 for the 2% volume

fraction, comparing to the original mode II delamination toughness of ~0.8 kJ/m2 [36].
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The study here showed that high loading rate characterization is essential, as quasi-static

experiments are not necessarily a conservative estimation for the dynamic performance

in Z-pinned laminates.

5. Conclusions

The performance of Z-pins in resisting dynamic mode I and mode II delamination

has been investigated at a range of loading rates. A split Hopkinson bar system was used

for the application of high loading rate to Z-pinned laminates. For quasi-static tests a

universal testing machine was used. The unstable failure process in quasi-static tests was

captured with a high frequency data acquisition method.

The inertia effects in the dynamic tests and the unstable fracture of quasi-static mode

II tests were evaluated by means of finite element analysis. It was found that the inertia

force should be deducted from the force measured directly from test systems.

The Z-pin efficiency in resisting mode I delamination decreased with increasing

loading rate, which was caused by several factors: the friction force that is dependent on

fracture surface, pin misalignment and the inertia effect involved in Z-pin bending during

dynamic tests. The non-linear increase in bridging force during quasi-static pin pull-out

was attributed to the pin misalignment. This conclusion was supported by the analysis of

the failure surface of the holes vacated by pins after failure.

The Z-pin failed in a brittle manner during mode II tests. The maximum bridging

force was not significantly influenced by the loading rate. The energy dissipated in this

failure process was much lower than that in mode I tests, and decreased with increasing

loading rate. This influence of loading rate was not conclusive, due the strong influence

of frictional forces after pin rupture in the quasi-static tests.
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Figure captions

Fig.1 Z-pin distribution in each specimen

Fig. 2 Mode I and mode II test configuration

Fig.3. (a) quasi-static and (b) dynamic experimental configuration

Fig.4. Finite element model for evaluating the inertia effect

Fig.5 Correction of inertia effect in the numerical simulations of (a) dynamic test

configuration and (b) quasi-static test configuration

Fig.6 Failure process of Z-pins in mode I tests

Fig.7 (a) Bridging force and the displacement in dynamic test; (b) bridging-response

at different loading rate

Fig.8 Failure surface of Z-pins: (a) original Z-pin; (b) Z-pin after quasi-static test; (c)

Z-pin after dynamic test (5.5m/s)

Fig. 9. Failure surface of holes after pin pull-out: (a) illustration of pull-out of Z-pins;

(b) failure surface from quasi-static test; (c) failure surface from dynamic test (5.5m/s)

Fig.10. The failure modes in shear tests

Fig.11. (a) Bridging force and energy dissipation in quasi-static mode II test; (b)

velocity of fixtures measured with DIC in dynamic test; (c) original and corrected

bridging force in dynamic test; (d) comparison of Z-pin bridging response in both quasi-

static and dynamic tests

Fig.12. Failure modes of Z-pins in shear tests; (a) 0.01mm/s, (b) 1.5 m/s
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Fig.13 Energy dissipation in (a) mode I and (b) mode II failure of Z-pins
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