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We have mathematically explicated and experimentally demonstrated how a correlation and convolution filter can
dramatically suppress the noise that coexists with the scanned topographic signals of 2D gratings and lattices with
2-dimensional (2D) perspectives. To realize pitch evaluation, the true peaks’ coordinates have been precisely
acquired after detecting the local maxima from the filtered signal, followed by image processing. The combination
of 2D filtering, local-maxima detecting and image processing make up the pitch detection (PD) method. It is
elucidated that the pitch average, uniformity, rotation angle and orthogonal angle can be calculated using the PD-
method. This has been applied to the pitch evaluation of several 2D gratings and lattices, and the results are
compared with the results of using the CG- and FT-method. The differences of pitch averages which are produced
using the PD-, CG- and FT-methods are within 1.5 pixels. Moreover, the PD-method has also been applied to detect
the dense peaks of Si (111) 7×7 surface and the HOPG basal plane.© 2015 Optical Society of America

OCIS codes: (120.0120) Instrumentation, measurement, and metrology; (100.0110) Imaging processing; (070.6110) Spatial filtering; (180.0180)
Microscopy.
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NOMENCLATURE

CC Correlationand convolution; correlation or convolution
XYZ or XOY 3D or 2D coordinates system of samplesurface
xyz or xoy 3D/2D coordinates of measuring instrument, e.g. an SPM
ϕ x ,ϕ y The angles that XOY plane tilts relative to x- and y-axis of

xyz system
PX, PY Pitchesof a 2D grating or lattice, and periods of its

topographic signal f (X,Y) in XYZ system
Px, Py Projections of PX and PY in xoy plane: Px=PX⋅cosϕ x,

Py=PY⋅cosϕ y

∆x, ∆y Scanning stepsizes of an SPM in x- and y-axis
px, py Computer-sampled data numbers within Pxand Py

periods
Pq, Pr Periods of a half 2D sinusoidal waveform
∆q ,∆r Element intervals of a half 2D sinusoidal waveform
pq, pr Element numbers within Pqand Pr periods

1. INTRODUCTION
The pitch described in this paper is the distance between adjacent

similar structural features of one-dimensional (1D) and two-
dimensional (2D) gratings and lattices on surfaces. In nanometer
metrology and measurement, the International Organization for

Standardization (ISO) stipulates 1D and 2D gratings and lattices in
several documents to calibrate diverse microscopes and instruments
after metrologically verifying the pitch-related parameters, such as
pitch average, pitch uniformity, etc. Microscopes and instruments
include a family of scanning probe microscopes (SPM) [1], scanning
electron microscopes (SEM) [2,3], various optical microscopes and
contact stylus instruments that are used for areal surface roughness
measurement [4,5]. Usually, metrological atomic force microscopes
(AFM) and nano-measuring machines (NMM) [6-8] implement the
metrological verification. This typically includes two steps: acquiring
the three-coordinate topographic signal in raster-scan mode, and
afterwards evaluating the pitch-related parameters according to a
pitchevaluation method.

Beside the center-of-gravity (CG) method [9,10] and Fourier-
transform-based (FT) method [10], another pitch evaluation method
of 1D gratings based on a 1D correlation filter has been previously
published [11,12]. A half 1D sinusoidal waveform sequence with
period PT is taken as a correlation filter. When it cross-correlates with a
1D grating topographic signal with period P, the noise can be greatly
suppressed if PT ≈P. After correlation filtering, the distance between
any two adjacent waveform peaks, along the direction perpendicular
to 1D grating lines, is one pitch. The method was described as the peak
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detection (PD) method. The pitch average, uniformity and rotation
angle around z-axis can be calculated using the PD-method.

It has always been cumbersome to evaluate the pitches of 2D
gratings and lattices based on CG- and FT-methods. The 2D gratings
and lattices (defined by XOY plane) are mounted on the stage (defined
by xoy plane) of the measuring instrument to be subsequently raster-
scanned into images. When raster-scanning only a cluster of 2D grating
or lattice features into image, we will find that the grating and lattice
structures are always orientating an unknown θ angle around z-axis
relative to the xoy plane. The unknown θ angle, plus the accompanied
noise, will make the CG- and FT-method performance more
demanding and less correct. In order to avoid the θ angle, the strategy
is to make sure that the θ angle in the xoy plane is minimized to zero (θ
≈ 0°). To achieve this, the 2D grating or lattice that has been loaded
onto the xoy plane, needs to be located, orientated, image-scanned and
image-analyzed to determine if the raster-scan lines are parallel to any
assumed line that passes through a series of gravity centers of the 2D
grating or lattice. The above actions have to be iteratively repeated
until θ ≈ 0°. Regardless of the size, the raster-scan area is indispensable
[13] for metrologically verifying a 2D grating or lattice on a
metrological AFM or a NMM, as well as applying it as a standard
material to metrologically calibrate an SPM [14], and to map its errors
[15,16] in accordance with ISO standards [17]. Except for CG- and FT-
methods, there is an absence of literature addressing the problem in
2D pitch evaluation methods. Therefore, our intention is to apply the
PD-method to the pitch evaluation of 2D gratings and lattices by
suppressing the noise and making the θ angle known, so that the CD-
and FT-method can be precisely fulfilled with decreasingworkload.

Commercially available software [18] has taken a unit cell of
topographic signals from 2D gratings and lattices as the template to
calculate the 2D correlation average. In this paper, a half 2D sinusoidal
waveform is proposed as a template for all features of 2D gratings and
lattices. It can achieve the equivalent impact and high credibility for
analyzing the images and topographic signals containing repeated 3D
structural features. Furthermore, the template as a CC filter can
dramatically suppress the noise and greatly improve the signal-to-
noise-ratio (SNR), consequently the positions and orientations of 3D
features can be precisely characterized and measured.

For identifying positions and locations of the repeated structural
features on diverse surfaces [19-22], others have applied a grayscale
threshold segmentation to binarize images, and edge and centroid
detection to extract the borders and locate the centers. In contrast, we
will introduce the 2D CC filter and the peak detection based on local-
maxima detecting and image processing for identifying the peak
positions of 2D gratings and lattices. To the best of our knowledge, the
binary and ternary image reconstruction procedure presented in the
paper is unique. Finally, the mathematical explanation of the 2D CC
filtering, as well as the practical algorithm to determine the periods of a
2D half sinusoidal waveform template have been annexed.

2. 2D SINUSOIDAL GRATING

A. Topographic and coexisted signals

When an SPM or a scanning tunneling microscope (STM) raster-
scans a 2D sinusoidal grating along two orthogonal direction x and y at
the step size ∆x and ∆y, it crosses the X- and Y-pitches, PX and PY, of the
2D sinusoidal grating with an unknown θ angle. The raster-scanned
2D signal F(x,y) (in such physical units as length, voltage, current, etc.),
against the positions (x,y) can be decomposed as a 2D sinusoidal
topographic signal f(x,y), a nonlinear drift signal U(x,y) and a noise
signal W(x,y), i.e.

( ) ( ) ( ) ( ), , , ,F x y f x y U x y W x y= + + (1)

Coordinate x and y, signal F(x,y), f(x,y), U(x,y) and W(x,y) are all M ×N
matrices in a raster-scan range M∆x × N∆y. An example signal of a 2D
sinusoidal grating with 300 nm nominal pitches, F(x,y), is shown by a
2D intensity graph in Fig. 1(a).

It is supposed that the origin of XYZ coincides with that of xyz. Due to
the existence of a 2D nonlinear drift signal U(x,y), the XOY plane tilts a
ϕx angle relative to x-axis and ϕ y angle relative to y-axis. If the 2D
sinusoidal topographic signal, in XYZ system is defined by
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where, 1) X=(xcosθ−ysinθ)/cosϕ x and Y=(xsinθ+ycosθ)/cosϕ y means
that the coordinates first rotate-transform by an θ angle from the XOY
coordinates (of the 2D sinusoidal grating) to the xoy coordinates (of the
measurement instrument), subsequently rotate-transform by ϕx angle
around the x-axis and ϕy angle around the y-axis respectively; 2) The X-
and Y-axes are parallel to the direction of the X-pitch and Y-pitch, PX

and PY, respectively; 3) Px=PXcosϕ x and Py=PYcosϕ y mean the
projectionsof PXand PY in the xoy plane.

U(x,y), according to ISO/DIS 11952[17], is presumably caused by
piezo drift or creep in lateral or vertical direction; mechanical stresses
of the sample holders and its fixers; mechanical expansion of the
components such as measurement frame of an SPM. The diminishing
effect on the accurate pitch evaluation can be leveled by rotation-
transforming ϕx and ϕy angles around the x- and y-axis respectively, so
that U(X,Y) ≈0 in XYZ system, which means the drift signal theoretically
does not exist in XYZ system. Mathematically, it is expressed by a 2D
polynomial function in the xyz system whether it has been leveled or
unleveled:

1 1,( ) ( ) ( ) .TU
K

K Kx y c a x b y a x b yR = + + + + +L (4)

where, c=a0+b0 is the content item, ai and bi (i=1,2, …, K) are the
coefficients of the ith order item of variable x and y , respectively.

W(x,y) is given by the amplitude ax,y at any raster-scan position (x,y):

,( , ) .x yW x y a= (5)

B. 2D CC-filtered signals

A half 2D sinusoidal waveform template T(q, r) with Pq and Pr
periods is described by

2 2
( ) sin sin, .

q r

q r
T q B

P P
r

π π
= (6)

T(q,r) has a matrix of MT×NT elements against a matrix of MT×NT

positions (q,r) with intervals ∆q and ∆r.
The correlation or convolution between F(x,y) and T(q,r) is

expressed by

, , , ,( ) ( ) ( ) ( ).TF Tf TU TWR R R Rx y x y x y x y= + + (7)



(a) (b) (c)

Fig.1. (a),(b)and(c)shows 2D sinusoidal grating topographic signal F(x,y),correlation-filteredsignal RTF(x, y) andpeaksdetectionimage inintensity graphs, respectively.

Fig.2. Based on convolution operation, 3D plots of filtered topographic signalRTF(x,y) (without normalization) with periods Px=Py= 20 pixels; figure a, b, c, d, e and f are
corresponding to Pq=Pr= P/4,P/2,P, 2P,3Pand4P, respectively .

RTF(x,y), RTf(x,y), RTU(x,y) and RTW(x,y) are named as filtered signal,
filtered topographic signal, filtered nonlinear drift signal and noise
residue signal, respectively.

If correlation operator (+) and convolution operator (−) are
combined into one operator (±), RTf(x,y), RTU(x,y) and RTW(x,y) in xyz
system is developed as equation (8), (9) and (10), respectively. The
mathematical developments are listed in Annex A.
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where, C[Pq] and φ X[Pq] are concerned with Pq whilst D[Pr] and φ Y[Pr]
are related with Pr. They are defined by equation (A.3) ∼ (A.6) in the
Annex A. J is the constant item; J1, J2,⋅⋅⋅, JK are the weighted index of
monomial item, quadratic item, …, and Kth order item of the binary
polynomials, respectively. They are explained by equation (A.8)
∼ (A.10) in Annex A.

Compared with equation (3), equation (8) verifies that RTf (x,y)
remains a 2D sinusoidal signal. Its periods, Px and Py, are equal to the
periods of f(x,y), though the amplitude has changed to C[Pq]D[Pr] and
phases have shifted to φ X[Pq] and φ Y[Pr].

Compared with equation (4), equation (9) interprets that RTU(x,y)
still is a nonlinear drift signal. It will not disturb the peaks detection
even if it is unleveled beforehand, or if it is not totally diminished after
leveled.

In contrast to equation (5), equation (10) is the operation of
weighted moving average (WMA) of the noise signal ax,y by using a
matrix of data Ak,l (k=0, 1, ..., MT -1, l=0, 1, ..., NT-1) as the weights. Ak,l is
expressed by equation (A.12) in AnnexA.



Therefore, after correlation or convolution (CC) filtering, the noise
signal ax,y, from highly dense irregularities, is minimized to a small and
gently changing noise residue signal RTW(x,y). Although it can more or
less modulate the amplitude of the RTf(x,y) if it is superimposed to the
latter, it does not influence the periodicity of the latter (see Fig. 3
ref.[12]).

An 80×80 2D sinusoidal simulation signal f(x,y) of 1 arbitrary unit
(a.u.) amplitude and 20 a.u. periods (Px=Py=20), with Gaussian white
noise W(x,y) of 0.3 a.u. standard deviation, was taken as an example to
demonstrate how RTF(x,y) varies with period Pq and Pr of a half 2D
sinusoidal waveform template T(q,r). T(q,r) has 1 a.u. amplitude and
MT×NT elements, where MT=Pq/2, NT=Pr/2. Based on convolution
operation, the 3D plots of RTF(x,y) are shown in Fig. 2, where 3D plots
marked by a, b, c, d, e and f correspond to Pq=Pr=P/4, P/2, P, 2P, 3P and
4P,which are 5, 10, 20, 40, 60 and 80 a.u., respectively.

From a half 1D sinusoidal waveform as 1D cross-correlation filter
[11,12], when a half 2D sinusoidal waveform of Pq and Pr periods
correlates or convolutes with the raster-scanned signal of a 2D
sinusoidal grating of Px and Py periods with noise, we can deduce:

(1) it can greatly filter noise if Pq ≈Px and Pr ≈Py;
(2) it cannot completely filter noise if Pq <<Px;
(3) it can filter noise but severely modulate the amplitude of signal

RTf (x,y) to make it impossible to distinguish RTf (x,y) from
RTW(x,y) if Pq >>Px and Pr >>Py.

Thus, instead of directly detecting the pitches from the raster-
scanned signal F(x,y), the filtered signal RTF(x,y) is validated for the
pitch detection if we chose Pq≈Px and Pr≈Py. For 2D sinusoidal grating
signal F(x,y) shown in Fig. 1(a), the correlation-filtered signal RTF(x,y) is
exhibited in 2D intensity graph in Fig. 1(b). The practical algorithm on
how to choose Pq and Pr to implement the CC filtering is attached in
Annex B.

3. 2D LATTICES
A 2D lattice is a repetitive arrangement of 3D features, such as

pillars, hills, holes, dimples, etc. The 3D convex type features have
parallelogram (rectangle, square, diamond, etc.) or circle bottoms and
the 3D concave type features have parallelogram or circle tops. Lattices
are fabricated such that the features are arranged in square,
rectangular, hexagonal and oblique array. The arrangement is in
similarity to 2D solid crystalline lattices. Mathematically, they are
described by different analytic functions inside and zero outside the 3D
features.

A. Topographic signals

For a Px - and Py -pitch lattice with any 3D feature in square,
rectangular, hexagonal, and oblique array, the raster-scanned
topographic signal (with Px- and Py-periods) is defined as f(x,y) inside
the 2D waveforms and zero outside. A primitive unit cell with a bottom
or top area A can be defined in the rectangular range G{-Px/2≤x≤Px/2, -
Py/2≤y≤Py/2} so that the 3D feature waveforms at the origin lies
entirely within the primitive unit bottom or top, where x and y are two
independent real variables in the whole feature array. The topographic
signal of two exemplar square lattices with 3D central-symmetric
features in parallelogram holes and hills is shown in Fig. 3(a) and (b),
respectively.

The topographic signal of a lattice can be developed as a 2D Fourier
series in complex exponential form:

,
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I J

x yf x y A j x yω ω
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where, ω xI = 2πI/Px and ω yJ = 2πJ/Pyare the angular frequency in x- and
y-axes, respectively; AIJ is the Fourier transformation coefficient given
by
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(a) (b)

(c) (d)

Fig. 3. Topographic signals of square lattices with 3D features in parallelogram
holes and hills in (a) and (b); the correspondent correlation filtered signals are in
(c) and(d)respectively.

To expand Equation (11) as the real form (Annex C), we find that
2D signal f(x,y) consists of four group of 2D sinusoidal signals with
different phase shifts in each group. Each group includes a constant
item (I, J=0) and infinite numbers of 2D sinusoidal signals including a
fundamental (I, J = 1) period Px and Py, and harmonic period Px/I and
Py/J (I, J = 2, 3, 4,···). Since the amplitude AIJ decreases sharply with I
and J increasing [25], the sinusoidal waveform in fundamental period
(I,J=1) dominates equation (11). Concerning the square lattices with
such 3D central symmetric features as shown in Fig. 3 (a) and (b),
equation (11) can be simplified as

, 0

( , ) 4 sin( )sin( )
2 2

I JIJ
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x yf x y A x y
π π

ω ω
∞

=

= − −∑ (13)

B. 2D CC-filtered signals

If a half 2D sinusoidal waveform with period Pq≈Px and Pr≈Py is
used to filter a series of 2D sinusoidal signals of 2D lattice (with periods
Px/I and Py/J expressed by equation (13)). The filtered 2D sinusoidal
signal with fundamental periods (I, J=1) has the same period Px and Py.
The filtered 2D sinusoidal signals with harmonic periods, due to
Pq >>Px/I and Pr >>Py/J (I,J=2,3,4···), have been severely modulated.
Moreover, with periods decreasing (i.e. I and J increasing), their
amplitudes sharply dropped. Therefore, when the filtered 2D
sinusoidal signals with fundamental and harmonic periods are
combined into the filtered signal of 2D lattices, the filtered 2D
sinusoidal signal in fundamental periods dominates.



The images of the 2D square holes and 2D hills in square arrays in
Fig. 3 (a) and (b) are raster-scanned by different types of AFM in
256×256 pixels. The actual raster-scan ranges are 90µm×90µm and
50µm×50µm, respectively. After correlation-filtered using a half 2D
sinusoidal waveform with periods, pq and pr of 30 pixels and 40 pixels,
the filtered signals are plotted as 2D intensity graphs in Fig. 3 (c) and
(d), respectively.

4. AUTOMATIC PEAK DETECTION

The peak detection in RTF(x,y) can be performed as follows. If a data
RTF(m,n) at (m,n) (m=0,1, ..., M-1, n=0,1, ..., N-1) position in M×N matrix
signal is the true peak, it is the local maximum in both row m and
column n. First, two M×N zero matrices BR and BC are constructed.
Based on the algorithm to find the local maxima in a sequence signals
by applying quadratic/parabolic interpolation of three adjacent
samples [23, 24], the following two steps are taken to detect the local
maxima from row vectors and column vectors, respectively.
Subsequently, the new values are assigned to the corresponding
positionsin BR and BC, respectively:

(1) The local maxima of RTF(m,n) are detected row by row. If
RTF(m,n) is detected as a local maximum in row m, BR(m,n) is
converted to 1, otherwise it remains 0.

(2) The local maxima of RTF(m,n) are detected column by column.
If RTF(m,n) is detected as a local maximum in the column n,
Bc(m,n) is converted to 1, otherwise it remains 0.

As a result, BR and BC are dual-value M×N matrices. Apparently,
RTU(x,y) and RTW(x,y) do not influence the local maxima detection,
though they are included in RTF(x,y). If a data item RTF(m,n) is a true
peak, it should be grey-scale 1 in both images, i.e. BR(m,n)=BC(m,n)=1.
However, if it is only a local maxima, either BR(m,n)=1, BC(m,n)=0 or
BR(m,n)=0, BC(m,n)=1. If BR and BC are merged into a new image GE

using logical ‘AND’ or arithmetical ‘add’ of the corresponding pixels, GE

consists of 0 and 1 or 0, 1 and 2 values. The former is called binary
image and the latter is called ternary image. Those pixels with grey-
scale 1 in the binary image GE or grey-scale 2 in the ternary image GE

are the true peaks. Thus, a ternary images is displayed in dark
background (grayscale=0), colored pixels (grayscale=1) and bright
pixels (grayscale=2). The local maxima (grey-scale=1), which have
disappeared in the binary image, can produce good visual effect in the
ternary image to associate the peaks with the original and filtered
images.

The peaks detection to the raster-scanned signal of the 2D
sinusoidal grating in Fig. 1(a) is shown by the ternary image in Fig.1 (c).
The peak detection of the signals in Fig.3 is shown in Fig. 4. Where, (a)
and (b) are the ternary images before 2D correlation filtering. They
appear chaotic and disordered due to noise; (c) and (d) are the ternary

images after 2D correlation filtering. The true peaks in bright pixels
with grayscale 2 can be easily extracted from the ternary images Fig. 4
(c) and (d).

The peak detection process was applied to the raster-scanned
signals of 2D atomic lattices: (1) silicon (111)-7×7 scanned by the
variable temperature scanning tunneling microscope (VT STM) in
30nm×30 nm range and 800×800 pixel density shown in Fig. 5 (a); (2)
HOPG scanned by the VT STM in 10nm ×10 nm range and 150×150
pixel density shown in Fig. 6 (a). As a result, the correlation-filtered
signals (pq=pr=30 and 10 pixels, respectively) and the ternary images
including true peaks and local maxima are shown in Fig. 5 (b) and (c)
as well as Fig 6 (b) and (c), respectively. It is made possible to use
atoms positions and unit cells to detect the directional drift of the
sample, i.e., the motion of the scanner in an STM.

(a) (b)

(c) (d)

Fig. 4. Ternary image (a), (b), (c) and (d) are the peak detection results
corresponding to the topographic signal (a) and (b), correlationfiltered signal (c)
and(d) in Fig.3, respectively.

(a) (b) (c)



Fig. 5. Topographic signal of silicon (111)-7×7 (30 nm×30 nm scan-range, 800×800 pixel density) in (a), its correlation filtered signal in (b) and the peak detection ternary
image in (c).

(a) (b) (c)

Fig.6. Topographic signal of HOPG (10 nm×10 nmscan-range, 150×150pixel density) in(a), itscorrelationfilteredsignal in (b) the peak detectionternary image in (c).

(a) (b)

Fig. 7. Two narrow window, rotation angles θr and θc and orthogonal angle θo
are schematically illustrated in the ternary image of the topographic signal of the
2D holes in (a); the correspondentlyfitted LSMLs are mapped in (b).

5. PITCH EVALUATION
If a pixel at (m,n) in a binary/ternary image is detected as true peak

(grayscale=2), the correspondent computer-sampled position at (m, n)
is (x, y). If any two narrow windows are manually built, which enclose a
line of peaks along Px-direction and a line of peaks along Py-direction, as
demonstrated in Fig.7 (a), the peaks coordinates will be found to be
(x1(r), y1(r)), (x2(r), y2(r)), (x3(r), y3(r)),···,(xK(r), yK(r)) and (x1(c), y1(c)), (x2(c), y2(c)),
(x3(c), y3(c)),···,(xL(c), yL(c)) within the two narrow windows. The pitches
are calculated by
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1 1
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In addition, one least-square mean line (LSML) r (y=arx+br) along
Px-direction and another LSML c (y=acx+bc) along Py-direction can be
automatically fitted to two groups of peaks coordinates. Consequently,
rotation angles θr and θc as well as orthogonal angle θo between the
r and c can be determined by θr =tan-1(ar), θc=tan-1(ac) and
θo=θr−θc , respectively.

Moreover, LSML r1, r2, ⋅⋅⋅, rM and LSML c1, c2, ⋅⋅⋅, cN can be fitted to the
peaks coordinates in a ternary image. For example, the ternary image
of the 2D square holes in Fig. 7 (a) has nine LSMLs along Px-direction
and ten LSMLs along Py-direction. They are mapped in Fig.7 (b).

If the pitches in a narrow window are evaluated as P1, P2, ⋅⋅⋅, PL, (nm),
the pitch average P and uniformity δ can be automatically calculated
using statistical mathematics.

6. PITCH EVALUATION RESULTS
PD-method is applied to the 2D grating in Fig.1 and two 2D lattices

in Fig.3 for evaluating of pitch Px and Py, and related parameters. Before
CC-filtering, three raster-scanned signals are leveled using the
coordinate rotation-transformation to diminish the drift component
U(x,y), so as to make Px ≈PX and Py ≈PY.

Table 1 Average of pitchesP , uniformityδ, rotation angles cθ and rθ ,

orthogonal angle oθ , etc. evaluated by the PD-method.

2D lattices 2D holes 2D CCD Hutley
unit pixel nm pixel nm pixel nm

xP -PD 26.6 9351.6 31.4 6132.8 19.6 306.3

yP -PD 28.4 9984.4 28.2 5507.8 18.9 295.3

δx 1.4 492.2 1.9 371.1 1.0 15.6

δy 1.3 457.0 1.4 273.4 1.7 26.6

cθ (deg) 89.509 94.927 90.997

rθ (deg) 2.242 11.982 1.649

oθ (deg) 87.267 82.945 89.348

After leveling, CC-filtering and peak detecting, the fitted LSML
coefficients ar and ac of 2D gratings and lattices can be acquired. Thus,
the averages of rotation angles cθ and rθ as well as orthogonal angle

oθ are calculated from the average ca and ra .

The pitch averages xP -PD and yP -PD, uniformity δx and δy,

averages of rotation angles cθ (deg) and rθ (deg), orthogonal angles

oθ , etc. are listed in table 1, where 2D holes, 2D CCD and Hutley

represent 2D square holes in square array, 2D CCD array panel and 2D
sinusoidal grating, respectively. The scale factors Cx and Cy, are
determined by the ratio of raster-scan ranges (unit: nm) to image sizes
(pixel) in x- and y-axis respectively, which are 90000/256, 50000/256
and 4000/256 (nm/pixel), respectively. The '2D holes' is a certified 2D
pitch standard with verified pitch value Px=Py=10030 nm and
expanded uncertainty ±30nm; the '2D CCD' has (6000×5000) nm2

nominal area in unit cell; the 'Hutley' has nominal pitch values of
300nm.



From table 1 we have noticed that there exist the varying degrees of
non-orthogonality between x- and y-axes, unequal pitch average xP
and yP for 2D holes and Hutley, and dispersed individual pitch value Px

and Py. It implicates that the three different AFMs that were used for
raster-scanning three 2D gratings and lattices have unequal scale
factor Cx and Cy, cross-talking between x- and y-scanners, and other
geometrical errors described in [17]. Therefore, if an AFM is not
metrologically calibrated and corrected with compensation, the raster-
scanned images will exhibit severe aberrance and distortion as shown
in fig. 3 (a) and (b).

7. COMPARISION OF PITCH EVALUATION METHOS

As two series of LSMLs (i.e., r1, r2, ⋅⋅⋅, rM and c1, c2, ⋅⋅⋅, cN) along the Px-
and Py-directions can be fitted to the peaks coordinates in the ternary
image based on PD-method, two groups of 1D topographic signal
sequences of a 2D grating or lattice can be extracted along the series of
LSMLs. Consequently, the CG- and FT- methods can be applied in two
groups of 1D signal sequences to evaluate pitches. The inter-
comparison of three pitch evaluation methods is realized about 2D
gratings and lattices.

Table 2 Inter-comparison of pitch evaluation results among the PD-,
CG- and FT-method.

2D lattices 2D holes 2D CCD Hutley
unit pixel nm pixel nm pixel nm

xP -PD 27.1 9511.7 30.9 6040.7 19.6 306.1

xP -CG 27.0 9484.4 30.9 6035.2 19.5 305.4

xP -FT 25.7 9023.4 30.7 5998.9 19.5 304.7

xδ -PD 1.9 671.9 1.8 343.2 1.0 16.3

xδ -CG 1.9 668.0 1.7 323.7 1.4 21.2

σ- xP 0.8 274.4 0.1 22.7 0.1 0.7

yP -PD 28.7 10072.3 27.9 5449.2 18.9 295.7

yP -CG 28.5 10023.0 27.9 5449.2 19.0 296.4

yP -FT 27.6 9696.1 27.4 5348.3 18.9 295.4

yδ -PD 1.7 597.7 1.4 273.4 1.6 25.0

yδ -CG 1.6 555.5 1.4 276.7 2.1 32.2

σ- yP 0.6 204.5 0.3 58.3 0.1 0.5

The results for inter-comparisons among PD-, CG- and FT-methods
are listed in table 2: xP -PD and yP -PD, xP -CG and yP -CG, xP -FT and

yP -FT represent two pitches averages using the PD-, CG and FT-

method; σ- xP and σ- yP denote the standard deviation of two pitches

evaluation results, which reflect how three pitch evaluation methods

are in agreement with each other; the xδ and yδ are the averages of

pitches’ uniformities δ x and δ y.
From the comparison among pitch evaluation methods, it is

concluded that:
(1) The pitch averages evaluated by using the PD- and CG-

methods are within one pixel difference from each other, and
the pitch average evaluated using the FT-method are within
one and half pixels difference from that evaluated using the PD-
and CG-methods, whereas one pixel is proportional to three
significantly different raster-scan step lengths in nanometers,
which are 351.56, 195.31and 15.62 (nm) respectively;

(2) It should be emphasized here that the CG- and FT-methods
deal with 1D topographic signal sequences along the two series
of LSML. Any LSML does not completely cross through all the
peaks detected by the PD-method within the corresponding

narrow window. Nevertheless, the PD-method truly deals with
the 2D topographic signals of 2D gratings and lattices.

8. CONCLUSION
Mathematic analysis with 2D perspective has explicated that a half

2D sinusoidal waveform template can be used as a 2D correlation and
convolution (CC) filter. When it correlates or convolutes with the
topographic signal f(x,y) of a 2D grating or lattice raster-scanned by an
SPM, and if its periods Pq and Pr are approximately equal to that of the
topographic signal, Px and Py, the coexisted noise W(x,y) can be
dramatically suppressed. The practical algorithm has interpreted how
to determine its two periods so as to implement the 2D CC filtering.
After CC filtering, the peaks can be acquired based on local-maxima
detecting, followed by image processing. The pitch evaluation based on
2D CC filtering together with local-maxima detecting and image
processing to detect peak positions is called peaks detection (PD)
method. The PD-method will not be influenced by the unknown angles
of 2D gratings and lattices rotating in-plane relatively to the stage of
measuring instruments. The 2D nonlinear drafting signal U(x,y) which
are simultaneously generated in the raster-scan process will not
interfere the CC filtering, whether or not it is leveled using coordinate
rotation-transformation. The CC filtering allows conveniently and
reliably evaluating the local pitches, the average and uniformity of the
pitches, rotation angle, orthogonal angle between two pitches of 2D
gratings and lattices. It is an additional benefit to the precise pitch
evaluation of 2D gratings and lattices.
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ANNEX A: MATHEMATIC EXPLATION OF CC FILTERING
To deduce the three items of correlation or convolution operation in

equation (7), correlation operator (+) and convolution operator (−) are
combined into one operator (±) in the following equation
developments.

The filtered topographic signal RTf (x,y) can be expressed and
developed as:
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To factorize and reintegrate equation (A.1), it is rewritten as
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To express equation (A.2) in xyz coordinate system, it is rewritten as
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The filtered nonlinear drift signal RTU(x,y) can be expressed and
developed as
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If α=± (k∆q+l∆r) and βj=α j x+bj y are set, according to binomial

theorem,
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The coefficients of each item Ji (i=0, 1, 2, ⋅⋅⋅, K) in equation (A.9) is
given by
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The noise residue signal RTW(x,y) is factorized and reintegrated as
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is set,equation (A.11) is rewritten as
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ANNEX B: PRACTICAL ALGORITHM OF CC FILTERING
The algorithm is used for practically choosing the period Pq and Pr

to implement the correlation or convolution between T(q,r) and F(x,y).
If the raster-scanning positions x and y as well as 2D signal F(x,y) of a

2D grating or lattice (with pitch PX and PY) are computer-sampled at
equal step size, ∆x=∆y. x, y and F(x,y) are all M × N matrices of data, i.e.,
x=∆x, 2∆x, ..., (M-1)∆x and y=∆y, 2∆y, ..., (N-1)∆y. The indexed element
x(m,n), y(m,n) and F(m,n) (m=0,1,...,M-1; n=0,1,...,N-1) mean the
sampled position and topographic data in row m and column n. Here,
m and n do not mean actual physical-coordinate value [26]. If F(x,y) is
plotted in 2D intensity graph and 3D plot, it is plotted against indices
(m,n) but not against actually computer-sampled position data.

If x=m∆x (m=0,1, 2,⋅⋅⋅,M-1), y=n∆y (n=0,1, 2,⋅⋅⋅,N-1), Px=px⋅∆x, Py=py⋅∆y
and ∆x=∆y are put into equation (3), RTf(x,y) can be written in discrete
form:
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where, digital px and py are the equivalents of the sampled data number
within the period Px and Py of f(x,y). As Px and Py are unknown
parameters that need to be evaluated, px and py can be roughly
estimated from the plotted 2D intensity graph of F(x,y).

Likewise, if q=k⋅∆q (k=0,1,2,⋅⋅⋅,MT-1), r=l⋅∆r (l=0,1, 2,⋅⋅⋅,NT-1),
Pq=pq⋅∆q and Pr=pr⋅∆r are put into equation (5), T(q,r) can be written
in discrete form:
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where, digital pq and pr are the equivalents of the elements number
within period Pq and Pr of T(q,r). Thus, pq and pr can be chosen
approximately equal to px and py, i.e. pq ≈ px and pr ≈ py; the T(k,l)
elements numbers, MT and NT, can be calculated as MT=px/2 and
NT=py/2. Consequently, the algorithm of the 2D CC filtering is
implemented by
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ANNEX C: EXPRESSION OF 2D SIGNAL OF LATTICES
To expand the topographic signal of a lattice expressed by equation

(12) as the real form [25]:
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where, xjφ =
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