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Classifying airports according to their hub dimensions:  An application to the US 
domestic network 
 
1. Introduction 
The US Federal Aviation Administration (FAA) estimates that $42.5 billion will be available 
over the period 2013-2017 to fund infrastructure developments for all segments of civil 
aviation under the Airport Improvement Program (AIP). The National Plan of Integrated 
Airport Systems (NPIAS) is used by the FAA in administering the AIP. In the NPIAS (FAA, 
2011), investment requirements and funding priorities are set according to an airport typology 
based on each airport’s traffic share over total US passenger enplanements (Table 1).  

While the merit and simplicity of that approach are not questioned, the drastic 
changes in route structures after deregulation suggest that the importance of large airports is 
dependent on their ability to accommodate hub-and-spoke operations, which are typically 
achieved by consolidating originating and transfer passenger flows (Button, 2002; Doganis, 
2010). These two dimensions of hubbing (traffic generation and connectivity) are not 
explicitly considered by the FAA in its current hub classification. In this paper, we firstly aim 
to check whether this leads to ambiguity when characterizing the hub nature of the airports in 
the NPIAS.  

To that end, the second objective of the paper is the development of a demand-based 
indicator of airport connectivity, which we achieve by adapting the theory of flow centrality 
to an air transport context. This indicator measures the proportion of total network traffic that 
travels through an intermediate node. The suitability of our flow centrality indicator is 
assessed against other measures by testing their sensitivity to the major cases of airline de-
hubbing in the US, using quarterly data on domestic passenger demand between 1993 and 
2012. 

Finally, the third goal is the definition of an alternative airport classification method, 
based on the two dimensions of hubbing, within the context of the NPIAS. 

 
Table 1. Commercial airport categories according to FAA’s current classification. Source: 
FAA. 
Commercial Airport 
Type 
At least 2,500 boardings 

Hub type 
Percentage of annual passenger 
boardings 

Common name 

Primary 

Large 
1% or more 

Large Hub 

Medium 
At least 0.25%, but less than 1% 

Medium Hub 

Small 
At least 0.05%, but less than 
0.25% 

Small Hub 

Nonhub 
More than 10,000, but less than 
0.05% 

Nonhub Primary 

Nonprimary Nonhub 
At least 2,500 and no more than 
10,000 

Nonprimary Commercial 
Service 
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The paper is structured as follows: Section 2 reviews airport classifications, 

connectivity and centrality indicators. Section 3 describes the data, and covers all 
methodological aspects, including the development of the flow centrality connectivity 
indicator. Section 4 discusses the benefits of classifying large airports according to their hub 
dimensions and an alternative classification of large US hubs is provided using hierarchical 
clustering techniques. Section 5 presents the conclusions. 
 
2. Airport classification, hub dimensions and connectivity 
2.1 Airport classification 
Classifying airports into homogeneous groups is typically used for benchmarking purposes in 
both policy and management contexts. Previous literature on airport classification is very 
heterogeneous, although it seems to be a consensus that hierarchical clustering methods are 
the most commonly employed (Rodríguez-Déniz and Voltes-Dorta, 2014). These have been 
applied to a wide variety of subjects, ranging from accessibility and connectivity (Burghouwt 
and Hakfoort, 2001; Malighetti et al., 2009), runway geometry (Galle el al., 2010), slot 
allocation (Madas and Zografos, 2008), and the comparative analysis of efficiency and 
productivity (Sarkis and Talluri, 2004). The type of variables used to classify airports also 
varies widely, including traffic, infrastructure, and financial indicators (Jessop, 2012). 
 With regard to the US, the closest reference to the present paper is Adikariwattage et 
al. (2012). They classified US airports using four variables: number of boarding gates, 
number of origin and destination passengers, transfer and international passengers. They 
cluster airports in two steps, separating the number of gates from the passenger volumes 
leading to nine groups that combine all these variables. However, their results are not 
particularly sensitive for the largest hubs, since all of them are grouped together in the same 
category (e.g., JFK, LAX, ATL, and CLT), despite presenting radical differences in their hub 
profiles, as it is analysed in Section 4. We build on their contribution to produce a more 
sensitive method for classifying large hubs within the context of the NPIAS. We try to 
achieve this by focusing on the airports’ relative contribution to the network in terms of both 
traffic generation and connectivity, rather than simply relying on absolute passenger volumes. 
These variables have not been explicitly used before to classify US airports. 
 
2.2 Hub dimensions, airport connectivity and centrality indicators 
Hub-and-spoke operations are typically achieved by consolidating originating and transfer 
passenger flows (Doganis, 2010; Button 2002), which implies the existence of two 
dimensions of hubbing: traffic generation and connectivity.  

Connecting traffic is traffic between airport A and airport B via the hub airport H. 
Effective hubbing generates substantial volumes of additional traffic at the hub airport.  The 
city-pair coverage that can be obtained is significant, since increase in the number of airports 
served from the hub impacts exponentially on the number of city-pairs served (Doganis, 
2010).  

Generated traffic is traffic between hub airport H and airport A. Although we tend to 
focus on the importance of transfer traffic at hubs, these are still highly dependent on non-
transfer traffic, since some flight sectors have important shares of non-transfer passengers 
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and the increase of direct services can produce a multiplying effect on the generation of 
traffic from and to the hub. As a matter of fact, most hubs are located in regions with large 
local markets (Liu et al. 2006). 

Concerning specifically airport hub classification and identification, it is difficult to 
find studies using both dimensions of airport hubbing (i.e., traffic generation and 
connectivity). Some connectivity measures1 are able to capture both dimensions. Yet, since 
they rely on supply data of seats and frequencies, connectivity indices usually focus on 
different aspects of potential connectivity, such as the number of feasible connections 
available to the passenger, and centrality indices evaluate the airport’s hubbing potential on 
the basis of its central location in the network. This is related to the difficulties in collecting 
demand data on actual connections made by passengers.  

The necessary information on actual passenger routings, however, was made available 
for the US domestic network by the Department of Transportation. This database includes a 
10% sample of tickets sold; hence, it does not allow us to measure the total number of 
originating and connecting passengers at each airport, a priori the obvious indicators for 
traffic generation and connectivity. Alternatively, we adapt the well-known concept of flow 
centrality to an air transport context and develop two demand-based measures of the hubbing 
activity. Based on our flow centrality indicators, we define an alternative airport 
classification method with stronger hub discrimination power than the existing FAA airport 
classification. 
 
3. Data and methodology 
3.1 Database  
As mentioned above, we use the publicly available data provided by the Bureau of 
Transportation Statistics of the Research and Innovative Technology Administration (US 
Department of Transportation). The Airline Origin and Destination Survey (Database code: 
DB1B) (RITA, 2013) is a sample of airline ticket information from more than 30 US carriers. 
The survey covers about 10% of domestic tickets sold by the reporting carriers with specific 
indication of the full itinerary for multi-sector journeys. Additional variables included in the 
dataset are the operating carrier, the number of passengers or the distance flown, among 
others. These records are available on a quarterly basis and were collected from the first 
quarter 1993 to the second quarter 2012 for our time-series analysis. The resulting sample 
contains about 350 million records representing individual itineraries. 

It is worth clarifying that only domestic itineraries are included in this database (i.e., 
journeys with both origin and destination airports located in the US) and that there are not 
other free available databases providing information on the full itinerary of international 
passengers.  

                                                
1  See Burghouwt and Redondi (2013) for an extensive review of these types of measures. These indicators can 
be roughly classified according to whether they consider temporal restrictions (to determine when an indirect 
connection is viable) or take into account all possible connections in the network (global versus local models). 
While the bulk of the literature is focused on time-dependent local measures (e.g., Doganis and Dennis, 1989; 
Dennis, 1994; Bootsma, 1997; Veldhuis, 1997; Burghouwt, 2007), there has been a growing interest on global 
models in the recent years (e.g., Guimerà et al., 2005; Malighetti et al., 2008; Xu and Harris, 2008; Paleari et al., 
2010; Wang et al., 2011; Jia and Jiang, 2012). Global models are usually based on measures coming from 
complex network theory (e.g., Freeman, 1977, 1978), which is more computationally demanding. 
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3.2 Flow centrality 
In order to measure airport connectivity, this paper adapts the well-known flow centrality 
measure from Freeman et al. (1991). This indicator was developed in a social network 
context and aims to quantify the proportion of the maximum directed flow of information (m) 
between two nodes (j,k) that travels through an intermediate node (xi). This maximum flow 
will depend on the capacity of the links in the network and it is calculated for each pair of 
nodes by applying some simple rules, such as that incoming flow must equal outgoing flow 
for all nodes involved in the transmission of information. By aggregating all possible pairs of 
nodes (j,k), the measurement of flow centrality for node xi is easily calculated as the total 
directed flow that passes through xi divided by the total flow between all pairs of nodes where 
xi is neither a source of information nor its final destination. Thus, the flow centrality (valued 
between 0 and 1) measures the proportion of the total network flow that travels through xi. 
 

(1)                                                   𝐶!! 𝑥! =
!!" !!!

!
!
!!!

!!"
!
!

!
!!!

 

 
Adapting this indicator to an air transport context is straightforward. Airports in the 

US domestic network are defined as nodes. The links that connect the nodes are the 
individual flight sectors operated by airlines. Passenger traffic is the flow that travels through 
the network between a point of origin (j) and a final destination (k) using a variety of routes 
(either non-stop of connecting). Note the market-based definition of passenger flow. The 
capacity of the links is defined by the total passengers from all different origin/destination 
markets that share the same individual sector. Since the available data provides information 
on origin, destination, and intermediate airports (when applicable) at a passenger level, it is 
possible to obtain both flow and capacity matrices.2 By incorporating all these definitions 
into the 𝐶!!   formula (1) and assuming that the maximum flow equals observed flow, the 
degree of flow centrality for airport xi collapses into a quotient between total number of 
passengers that connect through xi and total network passengers that travel in all markets that 
do not start or terminate at xi. This ratio becomes our flow-based measure of connectivity. A 
numerical example is provided in Figure 1, where numbers denote passengers in each market 
meaning that the market between Y and Z airports comprises 5 passengers, 2 travelling non-
stop and 3 via the hub X. Therefore, the value of flow centrality for airport X is 3/5 (0.6). In 
other words, the network has a 60% dependence on X to serve the Y-Z market. 
 

 
Figure 1. Numerical example of flow centrality. 

                                                
2 For itineraries with more than one stopover, passengers are assigned to all intermediate stops, regardless to 
whether the trip had a single or multiple flight numbers. 
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3.3 Benchmarking analysis 
The suitability of the demand-based flow centrality measure is tested by measuring its 
sensitivity to changes in airport connectivity during airline de-hubbing, when a dominating 
carrier dismantles its hubs activities in one of its main bases (Bhadra, 2009). Airline de-
hubbing implies a sudden change in connectivity; therefore, it should be a suitable event for 
performing the benchmarking. Redondi et al. (2012), doing a supply-based time-series 
analysis, identify up to 37 worldwide cases of de-hubbing from 1997 to 2009. Using their list, 
we apply four different centrality indicators (Degree Centrality [Degree], Weighted 
Betweenness Centrality [WBC], Un-weighted Betweenness Centrality [BC], and Flow 
Centrality [Ci]) for a selection of US airports that have suffered a de-hubbing process during 
the last decades.  

Degree centrality (Nieminem, 1974) represents the number of connections that an 
airport has. It can be formalized for an airport i as: 

(2)     𝐶! 𝑖 = !!"!!!"
!!  

where Aij is the adjacency matrix, in which Aij=1 if the airport 𝑖  is connected to airport 𝑗, and 
0 otherwise.  

Betweenness centrality (Freeman, 1977) quantifies the prominence of an actor within 
a network by computing how frequently a node lies on the shortest path between any other 
two nodes. The betweenness centrality measure is given by: 

(3)     𝐶! 𝑣 = !!"(!)
!!"!!!!!∈!  

where σst is the number of minimum length paths connecting nodes 𝑠 ∈ 𝑉 and 𝑡 ∈ 𝑉, and 
𝜎!"(𝑣) is the number of such paths in which some 𝑣 ∈ 𝑉 lies on. Airports with high levels of 
betweenness will be in a privileged, central position in comparison with the rest of their 
peers. From an air transport perspective, however, the betweenness centrality presents some 
serious drawbacks due to its strong topological motivation.3 In order to overcome these 
limitations, Rodríguez-Déniz (2012) introduced a market-based betweenness centrality to 
identify central airports according to both their topological position (i.e., connectivity 
potential) and the relevance of the markets they serve in terms of traffic density, defined as: 

(4)     𝐶!!"# 𝑣 = !!"
!
   ∙ !!"(!)

!!"
    !!!!!∈! , 

where (𝑄!") is the total number of passengers that travelled on market 𝑠, 𝑡 ∈ 𝑉, and (𝑄) the 
total number of passengers in the sample. As a result, top ranked airports are likely to play an 
important role within the network by combining a central location with relevant market 
service. Airports lacking of either characteristic will be penalized.  
 
3.4 An aggregated indicator for the hub dimensions 
After the benchmarking analysis, the flow centrality indicator will be used to develop an 
alternative airport typology. This is expected to be useful to classify large airports with a 
                                                
3 Airports that serve as gateways to isolated regions (e.g., Anchorage, Honolulu) score high on betweenness 
centrality. However, they could hardly be considered "central" to the US airport network.  



 7 

potential to serve connecting traffic. However, it is worth remembering that connectivity is 
only one of the two main dimensions of a hub, which should also generate a significant 
amount of traffic (either as origin or final destination). These two dimensions (connectivity 
and traffic generation) will become the variables of our proposed classification method.  
 

 
Figure 2. Partition of the total network flows with respect to airport i. 

 
Following the simple nomenclature presented in Figure 2, we can easily define two 

separate measures for each airport’s traffic contribution to the network. The first one (ODi) is 
calculated as the ratio between the passengers that originate or terminate at the airport i (odi) 
and the total network passengers (P). This serves as an indicator of the airport’s importance 
as generator of traffic. The second measure is the flow centrality indicator (Ci) that measures 
the airport’s importance as a connecting point. As defined above, it is calculated as the ratio 
between connecting passengers (ci) and total network passengers that do not originate or 
terminate the i-th airport (P – odi). 

(5)                                       𝑂𝐷! =
!"!
!
                                            𝐶! =

!!
!!!"!

 

These two indicators can be used to obtain a more detailed profile on the individual 
airports’ hub characteristics and develop a typology of airports in the US. Furthermore, it is 
also possible to establish a link between these measures and the aggregated indicator 
currently used by the FAA. Since the FAA considers enplanements instead of passengers for 
their indicator, which actually shows the intention of the FAA of aggregating both 
dimensions into one indicator indicator, we just need to define the total number of 
enplanements in the network (E) and the sum of all types of traffic (odi+ci) across all the 
airports. Note the multiple-counting of connecting passengers (which implies that E>P). 
Then, the FAA indicator (FAAi) is defined as the share of airport i over the total number of 
enplanements. 

(6)                                    𝐸 = (𝑜𝑑! + 𝑐!! )                                          𝐹𝐴𝐴! =
!"!!!!
!

 

Therefore, we can establish the following relationship between the FAA indicator and 
the disaggregated ones: 

(7)                                                 𝐹𝐴𝐴! = 𝑂𝐷!
!
!
+ 𝐶!

(!!!"!)
!

 

Equation 7 will be used in Section 4.2 to map the different combinations of ODi and 
Ci that lead to the bi-dimensional FAAi value. This is expected to show the pitfalls of the uni-
dimensional FAA system for hub classification. 
 
3.5 Hierarchical clustering  
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Our alternative classification criteria will be expressed as a set of threshold values for 
connectivity and traffic generation, determined by using agglomerative hierarchical 
clustering (AHC)4 on a cross-section of our airport sample for the year 2011. The resulting 
hierarchical classification is typically presented in a tree-like diagram (i.e. dendrogram) that 
provides a much more informative structure than the flat clusters obtained from other 
partitioning methods, such as k-means. Starting from a matrix of pair-wise distances between 
the individual objects, AHC performs a sequence of merge operations that produce additional 
clusters at new levels of aggregation and are governed by a predefined clustering strategy. 
This paper uses the complete-linkage algorithm, combined with a Euclidean distance metric. 
In this method, each step merges the nearest two clusters according to the farthest distance 
among their components, which leads to more compact aggrupations. Hierarchical methods 
do not require predefining the number of clusters, which can instead be identified by using a 
“tree-cutting” method. We employ the pseudo-F coefficient that takes the ratio of between-
cluster variance to within-cluster variance (Calinski and Harabasz, 1974). The edges of the 
resulting clusters are then used to define the thresholds of our new airport categories. 
 
4. Results and discussion 
4.1 Benchmarking of connectivity and centrality indicators 
Table 2 shows the results of the de-hubbing sensitivity analysis, which vary widely across the 
four indicators. That illustrates the numerous ways in which centrality is measured and the 
impact of these conceptual differences on their characterization of airport connectivity.5 
Unsurprisingly, degree centrality, which depends solely on the airport’s number of 
connections without taking into account route density, is the indicator that shows the least 
variability. This is explained by the practice of de-hubbed carriers and alliances to keep a 
minimum service in order to prevent re-hubbing by rival alliances (Redondi et al., 2012). 
Weighted and un-weighted betweenness centrality are also highly dependent on the airports’ 
geographical location and route structure (see Wang et al., 2011, for a similar effect in 
China), although results are much more erratic and unpredictable. While airports such as 
Cincinnati and Washington Reagan show the expected drop of centrality linked to the closure 
of direct air routes, it is difficult to explain why Pittsburgh, Colorado Springs or Nashville 
experienced an increase in betweenness centrality during their de-hubbing period. Contrary to 
the other indicators, flow centrality is the only indicator that clearly presents the expected 
negative signs in all cases. 

In addition to Table 2, the lack of sensitivity of degree and betweenness indicators to 
airline de-hubbing is shown graphically in Figure 3, which shows the normalized results for 
the massively de-hubbed St Louis Airport (STL) over the whole sample period.  

Furthermore, the value of flow centrality as a measure is not only limited to big 
changes in the in the network structure, as Rodríguez-Déniz et al. (2013) show, it also reacts 
well to punctual events, such as industrial actions, in which the flow of traffic is interrupted. 
It is also important to highlight that de-hubbed airports do not tend to recover after the airline 

                                                
4 General references to data clustering are Everitt et al. (2001) and Xu and Wunsch (2005). 
5 Time-series data was adjusted for seasonality. 
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has completed the process, thus agreeing with the supply-side analysis by Redondi et al. 
(2012). 

Hence, we can conclude that the direct relationship between the changes in the 
amount of connecting traffic and the changes in the flow centrality measure shows that this 
indicator is a sensitive measure of airport connectivity. 

 
 

Table 2. Percentage loss of centrality for a selection of de-hubbing cases. 

Start 
Year 

& 
Quarter 

End 
Year 

& 
Quarter Airport Hub carrier Main cause Degree BC WBC Ci 

2005 
Q4 

2010 
Q4 

Cincinnati 
(CVG) 

Delta-
Northwest Merger -16.62% -43.89% -35.92% -80.38% 

2005 
Q2 

2005 
Q4 

New Orleans 
(MSY) - 

Hurricane 
Katrina -19.36% -17.99% -40.66% -82.37% 

2001 
Q4 

2005 
Q1 

Pittsburgh 
(PIT) US Airways 

Network 
Restructuring -5.89% 13.93% -4.57% -77.91% 

2001 
Q3 

2004 
Q1 

Saint Louis 
(STL) 

American-
TWA Merger -7.26% 4.72% -9.22% -83.50% 

2001 
Q3 

2001 
Q4 

Reagan 
(DCA) US Airways 

9/11 Security 
Restrictions -6.99% -29.30% -11.84% -73.91% 

2001 
Q2 

2001 
Q4 

Raleigh-Durham 
(RDU) Midway Bankruptcy -8.80% -38.56% -21.90% -81.55% 

1997 
Q1 

1997 
Q4 

Colorado Springs 
(COS) 

Western 
Pacific 

Network 
Restructuring -5.29% -1.78% 10.13% -77.74% 

1995 
Q1 

1996 
Q1 

Nashville 
(BNA) American 

Network 
Restructuring -2.89% 25.11% 0.90% -72.15% 

Degree: Degree Centrality. 
BC: Un-weighted Betweenness Centrality. 
WBC: Weighted Betweenness Centrality. 
Ci: Flow Centrality. 
Note: De-hubbing periods were defined following Redondi et al. (2010) and direct examination of the 
time series data. 

 

 
Figure 3. Evolution of centrality measures at St Louis International Airport (STL), 1993-

2012. 
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4.2 Classifying airports according to their hub dimensions: an application to the NPIAS 
Having tested the sensitivity of Ci, we can then proceed to calculate the traffic generation 
indicator (ODi), the flow centrality indicator (Ci) and the aggregated FAA indicator (FAAi) 
for the whole sample. Table 3 and Figure 4 present the results on the two hub dimensions and 
the aggregated FAAi for all FAA-designated large (1% or more) and medium hubs (between 
0.25% and 1%). Using Equation 10, we are also able to represent the different levels of the 
FAA indicator as a combination of connectivity and traffic generation. This graphical 
representation allows for a better comparison between both classification dimensions. 

At first sight, we can conclude that the definition of a 1% share of enplanements as a 
threshold for large hubs is appropriate since it is located around a natural breaking point in 
the dataset. This is undoubtedly a first advantage of the FAA classification, and the second 
one is, evidently, its simplicity, as it only depends on a simple ratio. However, simplicity 
comes at the cost of discriminating power. All airports above 1% are large hubs, but major 
differences in terms of generation and connectivity exist among them (Figure 4). For 
example, in the same category, the current FAA system mixes a mid-size hub (Charlotte 
Douglas-CLT) with a massive one (Atlanta-ATL), whose contribution to the network is twice 
as large in both dimensions, and both of them are joined by a massive traffic generator (Los 
Angeles-LAX). Thus, when aggregating both hub dimensions into a single indicator, the 
current FAA airport classification (Table 1) cannot discriminate among the different airports. 
 
Table 3. Traffic generation and connectivity hub dimensions, and aggregated FAA indicator 
for medium and large hubs, 2011. 
 

 
ODi (%) Ci (%) FAAi (%) 

  
ODi (%) Ci (%) FAAi (%) 

  
ODi (%) Ci (%) FAAi (%) 

  
ODi (%) Ci (%) FAAi (%) 

ATL 5.60 5.70 4.64 
 
FLL 4.00 0.09 1.73 

 
RDU 1.76 0.05 0.77 

 
ONT 1.02 0.02 0.44 

ORD 5.91 2.76 3.60 
 
EWR 3.59 0.37 1.67 

 
SJC 1.75 0.06 0.76 

 
OGG 0.93 0.09 0.43 

DEN 5.78 2.81 3.57 
 
SAN 3.46 0.12 1.51 

 
MSY 1.75 0.05 0.76 

 
BUR 1.00 0.02 0.43 

LAX 7.29 1.09 3.51 
 
DCA 3.18 0.40 1.51 

 
MKE 1.51 0.20 0.72 

 
PVD 0.87 0.01 0.37 

DFW 4.78 3.06 3.26 
 
MDW 2.60 0.84 1.45 

 
SAT 1.64 0.04 0.71 

 
OMA 0.85 0.02 0.36 

LAS 6.77 0.70 3.14 
 
TPA 3.20 0.15 1.41 

 
PIT 1.60 0.04 0.69 

 
RNO 0.76 0.03 0.34 

PHX 4.84 1.90 2.82 
 
SLC 2.19 0.99 1.34 

 
RSW 1.60 0.01 0.68 

 
TUS 0.76 0.02 0.33 

MCO 6.20 0.24 2.72 
 
PDX 2.40 0.21 1.10 

 
DAL 1.27 0.29 0.66 

 
ANC 0.66 0.08 0.31 

SFO 5.43 0.63 2.55 
 
HNL 2.27 0.28 1.08 

 
IND 1.49 0.03 0.65 

 
OKC 0.72 0.02 0.31 

SEA 4.66 0.75 2.28 
 
IAD 1.91 0.61 1.06 

 
CLE 1.21 0.29 0.63 

 
ORF 0.67 0.01 0.29 

BOS 4.98 0.09 2.14 
 
MIA 2.14 0.29 1.03 

 
SJU 1.33 0.03 0.57 

 
SDF 0.65 0.02 0.28 

CLT 2.04 2.98 2.10 
 
STL 2.17 0.25 1.02 

 
CMH 1.27 0.03 0.55 

 
RIC 0.65 0.01 0.28 

LGA 4.67 0.20 2.05 
 
MCI 1.96 0.12 0.88 

 
MEM 0.70 0.59 0.55 

 
LGB 0.64 0.02 0.28 

MSP 3.40 1.46 2.04 
 
OAK 1.91 0.10 0.85 

 
PBI 1.24 0.02 0.53 

 
GEG 0.64 0.01 0.27 

PHL 3.53 1.10 1.94 
 
HOU 1.65 0.31 0.83 

 
BDL 1.19 0.01 0.51 

 
MHT 0.62 0.00 0.26 

DTW 3.08 1.44 1.90 
 
SNA 1.91 0.04 0.82 

 
JAX 1.14 0.03 0.50 

 
ELP 0.59 0.03 0.26 

JFK 3.95 0.31 1.80 
 
SMF 1.87 0.06 0.82 

 
ABQ 1.08 0.09 0.49 

 
BHM 0.58 0.03 0.26 

BWI 3.60 0.67 1.80 
 
AUS 1.82 0.06 0.80 

 
CVG 0.85 0.27 0.47 

 
BOI 0.58 0.02 0.25 

IAH 2.65 1.60 1.78 
 
BNA 1.68 0.20 0.79 

 
BUF 1.09 0.02 0.47 

 
TUL 0.56 0.02 0.25 
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Figure 4. Disaggregated vs. FAA airport classification: large hubs (>1%), 2011. 

 
 In order to obtain an alternative airport classification we use the agglomerative 
hierarchical clustering on the basis of the generation of traffic and the flow-based indicators. 
The results of the clustering are presented in Table 4, which have  an optimal truncation level 
(similarity=0.0182) that leads to nine clusters. However, for simplicity, we decided to explore 
the dendrogram for the immediately next level of aggregation (0.03), leading to six clusters 
for easier interpretation (Figure 5).  

 
Table 4. Class memberships and centroids for optimal truncation level. 

Class 1 2 3 4 5 6 7 8 9 
Objects 1 4 2 5 1 3 8 22 30 
Minimum distance to centroid 0.000 0.005 0.003 0.004 0.000 0.001 0.000 0.001 0.001 
Average distance to centroid 0.000 0.007 0.003 0.006 0.000 0.003 0.004 0.003 0.003 
Maximum distance to centroid 0.000 0.009 0.003 0.010 0.000 0.004 0.007 0.009 0.005 
 Class members ATL ORD LAX MCO CLT MSP PHL MDW SMF DAL ONT RIC 

 
 DEN LAS SFO  DTW JFK SLC AUS CLE OGG LGB 

 
 DFW  SEA  IAH BWI PDX BNA SJU BUR GEG 

 
 PHX  BOS   FLL HNL RDU CMH PVD MHT 

 
   LGA   EWR IAD SJC MEM OMA ELP 

 
      SAN MIA MSY PBI RNO BHM 

 
      DCA STL MKE BDL TUS BOI 

 
      TPA MCI SAT JAX ANC TUL 

 
       OAK PIT ABQ OKC  

 
       HOU RSW CVG ORF  

         SNA IND BUF SDF  
Centroid ATL DEN LAS SFO CLT DTW EWR OAK OMA 
OD-traffic generation 0.056 0.058 0.068 0.054 0.020 0.031 0.036 0.019 0.008 
C-connectivity 0.057 0.028 0.007 0.006 0.030 0.014 0.004 0.001 0.000 
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Figure 5. Class memberships at different truncation levels, 2011. 

 
 With this alternative classification, Atlanta Airport and Charlotte Douglas Airport 
would be placed in their own categories –first and third tier hubs respectively–, which is not 
surprising since there are no other airports that get close to their hub profiles. The remaining 
airports that score high in both dimensions, such as Dallas/Fort Worth (DFW) or Chicago 
O’Hare (ORD) are classified as second tier hubs. Simple criteria for belonging to these 
clusters are detailed in Table 5. 

In addition to the hubs, this alternative classification has three additional groups for 
"traffic generators" (Table 5). In the first tier, we find the main airports serving the largest 
metropolitan areas in the US, for which a representative airport would be San Francisco 
(SFO). In the second tier are found airports such as Baltimore-Washington or Newark. The 
remaining airports are grouped in the third tier. 

 
Table 5. Clusters criteria and representative airports. 
Hubs Representative OD% C% 
1st tier Atlanta >5% >5% 
2nd tier Denver >5% >2% 
3rd tier Charlotte >2% >2% 

Traffic generators Representative OD% C% 
1st tier San Francisco >5% - 
2nd tier Baltimore-Washington >3% - 
3rd tier Oakland >1% - 

 
 
Hence, Table 5 summarizes the alternative classification for regulatory purposes. The 

values are based on the edges of the cluster described above. It is worth highlighting the 
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simplicity and similarity with the current FAA method, the availability of the data to perform 
the calculations, and its ready applicability. 

Nevertheless, it is important to acknowledge limitation that rises from the dataset. 
Note the odd location of large international gateways such as New York-JFK, Miami (MIA) 
or Washington-Dulles (IAD), which show low levels of connectivity. It seems difficult to 
justify that these important airports are classified as second or third tier traffic generators. 
Clearly, this is related to the absence of international markets in the BTS dataset. As a result, 
all these large gateways are characterized here only by their contribution to domestic 
markets. We believe that this issue could be overcome by using supply data followed by 
correction algorithms, yet this remains out of the scope of this paper and does not invalidate 
its main contributions. These are the flow centrality measure and the alternative airport 
classification, which can be updated when the appropriate data becomes available. In 
addition, gateways are easily identifiable by their substantial amount of international 
passengers and their dominant position within the network of international connections 
(Figure 6). They tend to be located in large urban regions and have a more stable traffic since 
they often have emerged at the convergence on inland transport systems (Rodrigue et al., 
2006), while other hubs can disappear if the carrier withdraws the services.  
 

 
Figure 6. Largest international gateways in the US. Source: Own elaboration from the 

Bureau of Transport Statistics. 
 

5. Conclusions 
In summary, this paper develops an alternative airport classification method within the 
context of the Federal Aviation Administration’s National Plan of Integrated Airport Systems 
(NPIAS). A bi-dimensional classification is proposed, considering both traffic generation and 
connectivity, since the uni-dimensional classification criteria proposed by the FAA is shown 
to be insufficient to characterize the hub profiles of the different airports. 
 A flow centrality indicator of airport connectivity has been constructed. It is shown to 
be much more sensitive to airline de-hubbing than other indicators that have been used in the 
same context such as degree centrality and betweenness centrality. This is related to the fact 
that these topological measures only take into account the number of established traffic links 
without considering the density of traffic flows. Thus, we conclude that flow-based centrality 
could be used as the standard demand-based indicator to measure actual airport connectivity. 
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From the policy perspective, the suitability of this indicator to serve as a criterion for 
airport classification in the US domestic network was discussed. The major requirement for 
the regulator would be to set the thresholds that define the airport categories, which can be 
easily obtained using data clustering techniques, such as the we have used. 

From a methodological point of view, further research could try to investigate ways to 
cover the limitations on the availability of international demand data. This might be 
overcome by using supply data followed by correction algorithms. From an analysis point of 
view, further research could focus on applying the flow-based indicator to do much in-depth 
demand-based analysis of airline de-hubbing cases and, in particular, on the variables that 
have an impact on airport recovery. Also, with regard to the airport clustering methods, there 
is scope for more studies looking into the usefulness of this method for the definition of 
policies and regulatory norms, as well as airport performance evaluation. 
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